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Abstract

The IFR property of the stochastic process governing a one-component
system supported by an inactive standby and a repair facility when the
lifetime of one component and the repair time of the other component are
dependent, is established. We solve the problem of selecting repair rates to
maximize the steady-state availability for given component failure rates
when a lower bound for the MTBF and upper bounds for the steady-state
expected number of repairs of the components per unit time and expected
number of failures of the system per unit time are given.

1. Introduction

Extensive reviews of two-component repairable system models have been presented by Lie
et al. (1977) and Yearout et al. (1986). However, the literature assumes that the lifetimes and
repair times of the components which take place simultaneously are statistically independent
of each other. There exist situations, as illustrated in Section 3, where such dependency must
be considered.

In this letter we record results for Model 3 of Barlow and Prosch an (1975), p. 202, with the
following modifications. We denote the number of operative components at time t by
{X(t), t ~ O}, a stochastic process with state space {O, 1, 2}. We assume that P[X(O) = 2] = 1.
Initially the failure rate of the online component is Ai. Upon failure of this component, it is
taken for repair instantly, the repair rate is u and the standby component is switched online
and operates with failure rate A « A;). The justification for assuming A< Ai is that 'since no
spare is available the component is not utilized to its full capacity'. Further, if the system
enters state 2 due to the completion of a repair then the online component continues to
operate with changed failure rate Ai. This is justifiable, since the failure of this component will
no longer cause the failure of the system. On the other hand, if the system enters state 0 due
to the failure of the online component, the repair rate of the component under repair is
increased to III in order to minimize the expected downtime of the system. The use of the
Freund (1961) bivariate exponential distribution for the joint distribution of the lifetimes and
the repair times occurring simultaneously seems appropriate.

Further, in Section 3, we give the values of (Il, Ill) which maximize the steady-state
availability when -the specific restrictions are imposed on MTBF, the expected number of
repairs of the components per unit time and the expected number of failures of the system per
unit time.

2. Analysis

Following the definition of an IFR stochastic process (see Ross (1979», we state the
following result.

Theorem. The stochastic process {X(t), t ~ O} underlying the model discussed in Section 1
is IFR.
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Performance measures of the system are listed below. These are obtained by inverting
appropriate Laplace transforms.

1. Reliability, R(t), the probability of failure-free operation of the system in (0, t] is

R(t) = {(L~~LL)}[(~J exp (-L.t) - (~J exp (-L2t)]

where

The corresponding hazard rate increases and is bounded above by Lt.

Remark. The MTBF of the system is

(1) MTBF=rR(t) dt = (A + ~A~ A.) .

2. Availability, AV(t), the probability that the system is operative at time t is

Cs
AV(t) = C

6

+ K, exp (-L 3 t ) + K 2 exp (-L4 t ),

where

The steady-state availability is

(2) AV = lim (AV(t» = Cs
.

t __00 C
6

3. M(t), the expected number of repairs of the components in (0, t] is

JlAt C8 t (
M(t) = C

6

+ C
6

+K3 exp -L3t ) + K4exp(-L4 t ),

where

The steady-state expected number of repairs ·of the components per unit time is

(3) M = lim [M(t)/t] = C8
•

( __00 C
6

4. N(t), the expected number of failures of the system in (0, t] is

C9 t
N(t) = C

6

+ K, exp (-L3t ) + K 6 exp (-L4t ),

where

K-~
s - 2L~Ls'
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The steady-state expected number of failures of the system per unit time is

N = lim [N(t)/t] = CC9
•

t_oo 6

719

3. Optimization problem

For the system discussed above, suppose A V is to be maximized for given component
specifications, viz. failure rates A, At, the lower bound for MTBF, and the upper bounds for
M, N. This problem can be mathematically formulated as follows:

(JlJlt + AtJlt)
max AV(Jl, Jlt)= ('l '1 '1)'

/\,/\,t + JlJlt + /\'tJlt

subject to

(MTBF)

(M)

(N)

(5) Jlt > Jl > 0,

(6)

where at, az, a3(< az), A and At are externally supplied positive reals. Let

AAtaz
C = alU I - A- AI < u: f(p,) = {(A_ az)AI + (AI _ az)p,} ~ P,I

and

_ AAt a3 >
g(p,) - {(A - a3)AI - p,a

3
} = P,I·

The problem (5) may be reformulated as

max Z(Jl, Jlt) = Jlt(Jl + At): subject to: Jl > C: u, - f(Jl) ~ 0:

u, - g(fJ.) ~ 0: u, - fJ. > 0: fJ. > o.
The feasible region formed from constraints in (6) is a bounded set in IR:. Further, as Z

increases the convex curves corresponding to the objective function shift in the upward
direction. Therefore the diagrammatic representation of the feasible region given by the
constraints in (6) can be used successfully to get the optimum solution (fJ. *, fJ.i).

Note that at A = A(az - a3)/a3' f(A) = g(A). Now, if A E (0, C) then (u", fJ.i) = (C, f(C»,
if A>f(A) then iu", fJ.i)= (At, g(At» where At is such that At<A and At=g(At), if
A E (C,f(A» then (u", fJ.i) = (A,f(A».

Remark. 'f(C) < C' or 'g(C) < C' causes u, < fJ. and hence the situation of an infeasible
solution to the problem arises. For finite A, At, at, a-, a-; « az) if min {f(C), g( C)} > C, then
the problem (6) has a finite optimal solution.

Illustration. In the western part of India there are local power generating stations (LPGS),
in addition to regional power generating stations (RPGS). Generally, an LPGS has two
generators of which one functions at a time and the second is a standby. When the online
generator fails, the standby generator starts operating; however, this time the generator is not
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used to its full capacity, since the other one is non-operative. Now two activities, production
of power by the online generator and repair of the failed generator, take place.

If the repair ends first, the power production is increased. On the other hand, in case of
failure of the online generator before completion of the repair of the other generator the
actions taken are;

(a) repair rate of the generator already under repair is increased, and
(b) 'power' is borrowed from an RPGS during the downtime of both the generators located

at the LPGS.
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