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The paper proves transportation inequalities for probability measures on spheres for
the Wasserstein metrics with respect to cost functions that are powers of the
geodesic distance. Let μ be a probability measure on the sphere Sn of the form
dμ = e−U(x)dx where dx is the rotation invariant probability measure, and
(n − 1)I + Hess U � κU I, where κU > 0. Then any probability measure ν of finite
relative entropy with respect to μ satisfies Ent(ν | μ) � (κU/2)W2(ν, μ)2. The proof
uses an explicit formula for the relative entropy which is also valid on connected and
compact C∞ smooth Riemannian manifolds without boundary. A variation of this
entropy formula gives the Lichnérowicz integral.

Keywords: Wasserstein metric; curvature; transport; convexity

2020 Mathematics subject classification: 60E15; 58C35

1. Transportation on the sphere

Optimal transportation involves moving unit mass from one probability distribution
to another, at minimal cost, where the cost is measured by Wasserstein’s distance.

Definition. Let (M, d) be a compact metric space and let μ and ν be probabil-
ity measures on M . Then for 1 � p <∞, Wasserstein’s distance from μ to ν is
Wp(ν, μ), where

Wp(ν, μ)p = inf
π

{∫∫
M×M

d(x, y)pπ(dxdy) : π ∈ Prob(M ×M)

}
(1.1)

where the probability measure π has marginals ν and μ (see [8, 14]).

Transportation inequalities are results that bound the transportation cost
Wp(ν, μ)p in terms of μ, ν and geometrical quantities of (M, d). Typically, one
chooses μ to satisfy special conditions, and then one imposes minimal hypothe-
ses on ν. In this section, we consider the case where (M, d) is the unit sphere S2

in R3, and obtain transportation inequalities by vector calculus. In section two,
we extend these methods to a connected, compact and C∞ smooth Riemannian
manifold (M, d).
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1468 G. Blower

On S2, let θ ∈ [0, 2π) be the longitude and φ ∈ [0, π] the colatitude, so the area
measure is dx = sinφdφdθ. Let ABC be a spherical triangle where A is the North
Pole; then by [10] the Green’s function G(B, C) = −(4π)−1 log(1 − cos d(B, C))
may be expressed in terms of longitude and co latitude of B and C via the spherical
cosine formula. A related cost function is listed in [14], p 972. Given probability
measures μ and ν on S2, we can form

G(μ− ν)(x) =
∫
S2
G(x, y)(μ(dy) − ν(dy))

with gradient in the x variable

∇G(μ− ν)(x) =
∫
S2

∇xG(x, y)(μ(dy) − ν(dy)).

Proposition 1.1. Let μ and ν be nonatomic probability measures on S2. Then

W1(μ, ν) �
∫
S2

‖∇G(μ− ν)(x)‖dx. (1.2)

Proof. The Green’s function is chosen so that ∇ · ∇G(B, C) = δB(C) − 1/(4π) in
the sense of distributions. Given non-atomic probability measures μ and ν on S2,
their difference μ− ν is orthogonal to the constants on S2, so for a 1-Lipschitz
function ϕ : S2 → R, we have∫

S2
ϕ(x)(μ(dx) − ν(dx)) =

∫
S2
ϕ(x)∇ · ∇G(μ− ν)(x)dx

= −
∫
S2

∇ϕ(x) · ∇G(μ− ν)(x) dx (1.3)

so by Kantorovich’s duality theorem [8], the Wasserstein transportation distance is
bounded by

W1(μ, ν) �
∫
S2

‖∇G(μ− ν)(x)‖dx. (1.4)

�

Definition. Suppose that μ is a probability measure and ν is a probability measure
that is absolutely continuous with respect to μ, so dν = vdμ for some probability
density function v ∈ L1(μ). Then the relative entropy of ν with respect to μ is

Ent(ν | μ) =
∫
S2

log v(y) ν(dy), (1.5)

where 0 � Ent(ν | μ) � ∞ by Jensen’s inequality.

At x ∈ S2, we have tangent space TsS2 = {y ∈ R3 : x · y = 0}. For y ∈ TxS2 with
‖y‖ = 1, we consider expx(ty) = x cos t+ y sin t so that expx(0) = x, ‖ expx(ty)‖ =
1 and (d/dt)t=0 expx(ty) = y; hence expx : TxS2 → S2 gives the exponential map.
We let Jexpx

be the Jacobian determinant of this map.
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Transportation on spheres via an entropy formula 1469

Suppose that μ(dx) = e−U(x)dx is a probability measure and ν is a probability
measure that is absolutely continuous with respect to μ, so dν = vdμ. We say that
a Borel function Ψ : S2 → S2 induces ν from μ if

∫
f(y)ν(dy) =

∫
f(Ψ(x))μ(dx) for

all f ∈ C(S2;R). McCann [12] showed that there exists Ψ that gives the optimal
transport strategy for the W2 metric; further, there exists a Lipschitz function
ψ : S2 → R such that Ψ(x) = expx(∇ψ(x)); so that

W2(ν, μ)2 =
∫
S2
d(Ψ(x), x)2μ(dx) =

∫
S2

‖∇ψ(x)‖2μ(dx). (1.6)

Talagrand developed Tp inequalities in which Wp(ν, μ)p is bounded in terms of
Ent(ν | μ), as in [14], p 569. In [5] and [6], the authors obtain some functional
inequalities that are related to Tp inequalities. Here we offer an approach that
is more direct, and uses only basic differential geometry to augment McCann’s
fundamental result. The key point is an explicit formula for the relative entropy in
terms of the optimal transport maps.

Lemma 1.2. Suppose that ν has finite relative entropy with respect to μ, and let

H = Hessxψ(x) and A = Hessxd(x, y)2/2 at y = Ψ(x); (1.7)

let Ψt(x) = expx(t∇ψ(x)) for t ∈ [0, 1]. Then the relative entropy satisfies

Ent(ν | μ) �
∫
S2

(
trace

(
H − log(A+H)

)− log Jexpx
(∇ψ(x))

+
∫ 1

0

(1 − t)
d2

dt2
U(Ψt(x))dt

)
μ(dx). (1.8)

where A is positive definite, H is symmetric and A+H is also positive definite,
and

trace (H − log(A+H)) � 0. (1.9)

If ψ ∈ C2, then equality holds in (1.8).

Proof. To express the relative entropy in terms of the transportation map, we
adapt an argument from [1]. We have Ent(ν | μ) =

∫
S2 log v(Ψ(x))μ(dx), where the

integrand is

log v(Ψ(x)) = U(Ψ(x)) − U(x) − log JΨ(x), (1.10)

where the final term arises from the Jacobian of the change of variable y = Ψ(x),
where Ψ = Ψ1 and Ψt(x) = expx(t∇ψ(x)). We compute this Jacobian by the chain
rule for derivatives with respect to x. Specifically by [6] p 622, we have Hess(ψ(x) +
d(x, y)2/2) � 0 and

log JΨ(x) = log Jexpx
(∇ψ(x)) + log det Hess(ψ(x) + d(x, y)2/2) (1.11)

where Jexpx
is the Jacobian of expx : TxS2 → S2 and Hess = D2

x is the Hessian,
where the expression is evaluated at y = expx(∇ψ(x)). For x ∈ S2 and τ ∈ R3 such
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1470 G. Blower

that x · τ = 0, we have τ ∈ TxS2 and

expx(τ) = cos(‖τ‖)x+
sin(‖τ‖)

‖τ‖ τ ; (1.12)

see [5]. By a vector calculus computation, which we replicate from [5], one finds

Jexpx
(‖∇ψ(x)‖) =

sin ‖∇ψ(x)‖
‖∇ψ(x)‖ . (1.13)

With ψ : S2 → R we have ∇ψ(x) ⊥ x, so 0 = x · ∇ψ(x), hence 0 = ∇ψ(x) +
Hess(ψ(x))x. We write θ = ‖∇ψ(x)‖ for the angle between x and Ψ(x) so

Ψ(x) = expx(∇ψ(x)) = x cos θ +
sin θ
θ

∇ψ(x);

let v = x× θ−1∇ψ(x) where × denotes the usual vector product; then
{x, θ−1∇ψ(x), v} gives an orthonormal basis of R3. Hence

∂Ψ
∂v

= v cos θ − sin θ〈∇θ, v〉x+

(
cos θ − sin θ

θ

)
〈∇θ, v〉∇ψ(x)

θ
+

sin θ
θ

Hessψ(x)v,

and we obtain (1.13) from the final factor. Then by spherical trigonometry, we have

cos d(expx(τ), y) = (cos ‖τ‖) cos d(x, y) +
sin ‖τ‖
‖τ‖ 〈τ, y〉, (1.14)

so we have 〈∇x cos d(x, y), τ〉 = 〈y, τ〉 and 〈Hessx cos d(x, y)τ, τ〉 = −(cos d(x, y))
‖τ‖2; so

〈Aτ, τ〉 =
1
2
〈
Hessxd(x, y)2τ, τ

〉
=

d(x, y)
tan d(x, y)

‖τ‖2 +

(
1 − d(x, y)

tan d(x, y)

)
〈y, τ〉2

sin2 d(x, y)
;

(1.15)
hence A is positive definite and is a rank-one perturbation of a multiple of the
identity matrix. Note that the formulas degenerate on the cut locus d(x, y) = π;
consider the international date line opposite the Greenwich meridian. �

We have

Ent(ν | μ) =
∫
S2

(
U(Ψ(x)) − U(x) − log JΨ(x)

)
e−U(x)dx (1.16)

in which

U(Ψ(x)) − U(x) = 〈∇U(x),∇ψ(x)〉 +
∫ 1

0

(1 − t)
d2

dt2
U(Ψt(x))dt, (1.17)

and we can combine the first two terms in (1.16) by the divergence theorem so∫
S2
〈∇U(x),∇ψ(x)〉e−U(x)dx =

∫
S2

∇ · ∇ψ(x)e−U(x)dx. (1.18)
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Hence from (1.11) we have

Ent(ν | μ)=
∫
S2

(∇ · ∇ψ(x)− log JΨ(x))μ(dx)+
∫
S2

∫ 1

0

(1− t)
d2

dt2
U(Ψt(x))dtμ(dx),

(1.19)
in which the Alexandrov Hessian [6], [14] p 363 satisfies

trace Hessxψ(x) � ∇ · ∇ψ(x) = ΔDψ(x), (1.20)

where ΔDψ is the distributional derivative of the Lipschitz function ψ; so we
recognize (1.8).

We have an orthonormal basis{
x,

∇ψ(x)
‖∇ψ(x)‖ , x× ∇ψ(x)

‖∇ψ(x)‖

}
(1.21)

for R3 in which the final two vectors give an orthonormal basis for TxS2. Then〈
A

∇ψ(x)
‖∇ψ(x)‖ ,

∇ψ(x)
‖∇ψ(x)‖

〉
= 1 (1.22)

and 〈
A

(
x× ∇ψ(x)

‖∇ψ(x)‖

)
, x× ∇ψ(x)

‖∇ψ(x)‖

〉
=

d(x, y)
tan d(x, y)

, (1.23)

hence A and H have the form

A =

⎡
⎣1 0

0
‖∇ψ(x)‖

tan ‖∇ψ(x)‖

⎤
⎦ , H =

[
h β
β k

]
(1.24)

with respect to the stated basis of TxS2.
The function f(x) = x− 1 − log x for x > 0 is convex and takes its minimum

value at f(1) = 0. Let T be a self-adjoint matrix with eigenvalues λ1 � · · · �
λn where λn > −1; then the Carleman determinant of I + T is det2(I + T ) =∏n
j=1(1 + λj)e−λj . Since A+H is positive definite, as in [1] corollary 4.3, we can

apply the spectral theorem to compute the Carleman determinant and show that

− log det
2

(A+H) = trace
(
A+H − I − log(A+H)

)
� 0 (1.25)

so

trace
(
H − log(A+H)

)
= trace

(
A+H − I − log(A+H)

)
+ trace (I −A)

� 0 + 1 − ‖∇ψ(x)‖
tan ‖∇ψ(x)‖ � 0. (1.26)
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1472 G. Blower

Proposition 1.3. Suppose that the Hessian matrix of U satisfies

HessU(x) + I � κUI (x ∈ S2) (1.27)

for some κU > 0. Then μ satisfies the transportation inequality

Ent(ν | μ) � κU
2
W2(ν, μ)2. (1.28)

This applies in particular when μ is normalized surface area measure.

Proof. Let K : [0, π) → R be the function

K(α) = 1 − α

tanα
+ log

α

sinα
=

d

dα

(
α log

α

sinα

)
. (1.29)

Then from (1.13) and (1.26) we have

∫
S2

(∇ · ∇ψ(x) − log JΨ(x))μ(dx) �
∫
S2

(
− log det

2
(A+H) +K(‖∇ψ(x)‖)

)
μ(dx).

Considering the final integral in (1.8), we have

∂Ψt(x)
∂t

= −‖∇ψ(x)‖ sin(t‖∇ψ(x)‖)x+ cos(t‖∇ψ(x)‖)∇ψ(x) (1.30)

which has constant speed ‖∂Ψt(x)
∂t ‖ = ‖∇ψ(x)‖ and 〈∂Ψt(x)

∂t , Ψt(x)〉 = 0; also

∂2

∂t2
U(Ψt(x)) =

〈
HessU ◦ Ψt(x)

∂Ψt(x)
∂t

,
∂Ψt(x)
∂t

〉
− ‖∇ψ(x)‖2

〈
(∇U) ◦ Ψt(x),Ψt(x)

〉
, (1.31)

where the final term is zero since ∇U ◦ Ψt(x) is in the tangent space at Ψt(x), hence
is perpendicular to Ψt(x). We therefore have the crucial inequality

Ent(ν | μ) �
∫
S2

(
− log det

2
(A+H) +K(‖∇ψ(x)‖)

+
∫ 1

0

(1 − t)
〈
HessU ◦ Ψt(x)

∂Ψt(x)
∂t

,
∂Ψt(x)
∂t

〉
dt

)
μ(dx) (1.32)

To simplify the function K, we recall from [9] 8.342 the Maclaurin series

log
α

sinα
= log Γ

(
1 +

α

π

)
+ log Γ

(
1 − α

π

)

=
∞∑
m=1

ζ(2m)
π2mm

α2m (|α| < π), (1.33)
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where we have introduced Euler’s Γ function and Riemann’s ζ function, so

K(α) =
∞∑
m=1

(2m+ 1)ζ(2m)
π2mm

α2m � 3ζ(2)
π2

α2 =
α2

2
. (1.34)

Now we consider (1.32) with the hypothesis (1.27) in force. The Carleman determi-
nant contributes a nonnegative term as in (1.25), while the final integral in (1.32)
combines with the integral of K(‖∇ψ(x)‖) to give

Ent(ν | μ) �
∫
S2

(
K(‖∇ψ(x)‖) +

1
2
‖∇ψ(x)‖2

)
μ(dx)

� κU
2

∫
S2

‖∇ψ(x)‖2μ(dx)

=
κU
2
W2(ν, μ)2. (1.35)

When μ is normalized surface area, U is a constant and the hypothesis (1.27) holds
with κU = 1. �

2. Transportation on compact Riemannian manifolds

Let M be a connected, compact and C∞ smooth Riemannian manifold of dimension
n without boundary, and let g be the Riemannian metric tensor, giving metric d. Let
μ(dx) = e−U(x)dx be a probability measure on M where dx is Riemannian measure
and U ∈ C2(M ;R). Suppose that ν is a probability measure on M that is of finite
relative entropy with respect to μ. Then by McCann’s theory [12], there exists a
Lipschitz function ψ : M → R such that Ψ(x) = expx(∇ψ(x)) induces ν from μ.
then we let Ψt(x) = expx(t∇ψ(x)). We proceed to compute quantities which we
need for our extension of lemma 1.2.

Given distinct points x, y ∈M , we suppose that x = expy(ξ), and for w ∈ TyM
introduce

γ(s, t) = expy(t(ξ + sw)) (2.1)

so that t �→ γ(s, t) is a geodesic, and in particular γ(0, t) is the geodesic from
y = γ(0, 0) to x = γ(0, 1). When y = expx(∇ψ(x)) for a Lipschitz function ψ :
M → R, we can determine ξ as follows. Let φ(z) = −ψ(z) and introduce its infimal
convolution

φc(y) = inf
w

{1
2
d(y, w)2 − φ(w)

}
(2.2)

which is attained at x since y = expx(∇ψ(x)) = expx(−∇φ(x)). Now φcc(x) = φ(x),
so

φ(x) = inf
w

{1
2
d(x,w)2 − φc(w)

}
(2.3)

where the infimum is attained at y since φ(x) + φc(y) = d(x, y)2/2. By lemma 2 of
[12], φc is Lipschitz and

x = expy(−∇φc(y)). (2.4)
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The speed of γ(0, t) is given by

∥∥∥∂γ
∂t

∥∥∥ = ‖∇φc(y)‖ = d(y, expy(−∇φc(y))) = d(x, y)

= d(x, expx(−∇φ(x))) = ‖∇ψ(x)‖. (2.5)

Let R be the curvature of the Levi–Civita derivation ∇ so

R(X,Y )Z = ∇Y∇XZ −∇X∇Y Z −∇[Y,X]Z (X,Y,Z ∈ TxM).

Then by [13] p 36, for all Y ∈ TxM , the curvature operator RY : X �→ R(X, Y )Y
is self-adjoint with respect to the scalar product on TxM . Also

Y (s, t) =
∂

∂s
γ(s, t) (2.6)

satisfies the initial conditions

Y (s, 0) = 0,
∂Y

∂t
(0, 0) = w, (2.7)

and Jacobi’s differential equation [4] (2.43)

∂2Y

∂t2
+R

(
∂γ

∂t
, Y

)
∂γ

∂t
= 0. (2.8)

By calculating the first variation of the length formula [13] p 161, one shows that

1
2

〈
Hessxd(x, y)2Y (0, 1), Y (0, 1)

〉
= g

(
∂Y

∂t
(0, 1), Y (0, 1)

)
. (2.9)

Assume that there are no conjugate points on γ(s, t). Then by varying w, we can
make Y (0, 1) cover a neighbourhood of 0 in TxM . Let

A =
1
2
Hessxd(x, y)2

∣∣∣
y=expx(∇ψ(x))

, (2.10)

and

H = ψ(x). (2.11)

Let Jexpx
(v) be the Jacobian of the map TxM →M given by v �→ expx(v), as in

(3.4) of [3].

Lemma 2.1. Suppose that Ψt(x) = expx(t∇ψ(x)), where Ψ1 induces the probability
measure ν from μ and gives the optimal transport map for the W2 metric. Then the
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relative entropy satisfies

Ent(ν | μ) �
∫
M

(
trace

(
H − log(A+H)

)− log Jexpx
(∇ψ(x))

+
∫ 1

0

(1 − t)
〈
HessU ◦ Ψt(x)

∂Ψt(x)
∂t

,
∂Ψt(x)
∂t

〉
dt

)
μ(dx). (2.12)

where H is symmetric and A+H is also positive definite. If ψ ∈ C2(M ;R), then
equality holds in (2.12).

Proof. This is similar to lemma 1.2. As in (1.5), we have

trace
(
H − log(A+H)

)
= − log det

2
(A+H) + trace(I −A)

� trace(I −A), (2.13)

and by standard calculations [13] p 32 we have

∂2

∂t2
U(Ψt(x)) =

〈
HessU ◦ Ψt(x)

∂Ψt(x)
∂t

,
∂Ψt(x)
∂t

〉
(2.14)

since Ψt(x) is a geodesic. �

The curvature operator is the symmetic operator RZ : Y �→ R(Z, Y )Z. If M has
nonnegative Ricci curvature so that RZ � 0 as a matrix for all Z, then we have

− log Jexpx
(∇ψ(x)) � 0. (2.15)

by (3.4) of [Ca].
The following result recovers the Lichnérowicz integral, as in (4.16) of [1] and

(1.1) of [7]. This integral also appears implicitly in the Hessian calculations in
appendix D of [11]. Let ‖H‖HS be the Hilbert–Schmidt norm of H.

Proposition 2.2. Suppose that ψ ∈ C2(M ;R) and Ψτ (x) = expx(τ∇ψ(x))
induces a probability measure ντ from μ such that Ψτ is the optimal transport map
for the W2 metric. Then

Ent(ντ | μ) =
τ2

2

∫
M

(
‖Hessψ(x)‖2

HS + traceR∇ψ(x)

+
〈
HessU(x)∇ψ(x),∇ψ(x)

〉)
μ(dx) +O(τ3) (τ → 0+). (2.16)

Proof. For small τ > 0, we rescale ψ to τψ and consider y = expx(τ∇ψ(x));
then we return to x along a geodesic γτ (t) = expy(−t∇(−τψ)c(y)) for 0 � t � 1
with constant speed τ‖∇ψ(x)‖. Observe that τψ(x) = (−τψ)c(y) − τ2‖∇ψ(x)‖2/2,
and ∇xd(x, y)2/2 = − exp−1

x (y) = −τ∇ψ(x) and ∇yd(x, y)2/2 = − exp−1
y (x) =

∇(−τψ)c(y) by Gauss’s Lemma. Recalling that the curvature operator is self-
adjoint by page 36 of [13], we choose the basis of TyM so that the first basis
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vector points along the direction of the geodesic γτ (0). Hence Jacobi’s equation
(2.8) can be expressed as a second-order differential equation in block matrix form,
with a symmetric matrix S−∇(−τψ)c(y) given by components of the curvature tensor
such that

R

(
dγτ
dt

, Y

)
dγτ
dt

=
[
0 0
0 S−∇(−τψ)c(y)

]
Y (0 < t < 1). (2.17)

as in (2.4) of [6]. Then the Jacobi equation reduces to a first-order block matrix
equation with blocks of shape (1 + (n− 1)) × (1 + (n− 1)) in a (2n) × (2n) matrix

d

dt

[
Y
V

]
=

⎡
⎢⎢⎣

0 0 1 0
0 0 0 In−1

0 0 0 0
0 −S−∇(−τψ)c(y) 0 0

⎤
⎥⎥⎦
[
Y
V

]
;
[
Y (0)
V (0)

]
=
[
0
w

]
. (2.18)

�

To find the limit as τ → 0, we can assume that S−∇(−τψ)c(y) is constant on
the geodesic, and may be expressed as τ2S where τ2S = Sτ∇ψ(x) has shape
(n− 1) × (n− 1). The functions cosα and sinα/α are entire and even, so cos

√
s

and sin
√
s/
√
s are entire functions, hence they operate on complex matrices. Note

that the matrix

T =
[
0 0
0 S−∇(−τψ)c(y)

]

in the bottom left corner is symmetric, has rank less than or equal to n− 1, and
does not depend upon t. Hence we consider the matrix

[
Y
V

]
=

⎡
⎣ cos(t

√
T )

sin(t
√
T )√

T
−√

T sin(t
√
T ) cos(t

√
T )

⎤
⎦[Y0

V0

]

which has derivative

d

dt

[
Y
V

]
=
[

0 I
−T 0

]⎡⎣ cos(t
√
T )

sin(t
√
T )√

T
−√

T sin(t
√
T ) cos(t

√
T )

⎤
⎦[Y0

V0

]

so we can use this formula to solve (2.18). So the approximate differential equation
has solution

[
Y (1)
V (1)

]
=

⎡
⎢⎢⎢⎢⎣

1 0 1 0

0 cos τ
√
S 0

sin τ
√
S

τ
√
S

0 0 1 0
0 −τ√S sin τ

√
S 0 cos τ

√
S

⎤
⎥⎥⎥⎥⎦
[
0
w

]
. (2.19)
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Hence by (2.9) we have

A =

⎡
⎣1 0

0
τ
√
S

tan τ
√
S

⎤
⎦ = (1 +O(τ2))In (2.20)

which gives rise to the approximation

trace(In −A) = trace

(
In−1 − τ

√
S

tan τ
√
S

)
=
τ2

3
trace(S) +O(τ4) (τ → 0+),

(2.21)
and likewise we obtain

− log Jexpx
(τ∇ψ(x)) = − log det

sin τ
√
S

τ
√
S

=
τ2

6
trace(S) +O(τ4). (2.22)

From (2.19), we have

− log det
2

(A+ τH) =
1
2
trace

(
(A− In + τH)2

)
+O(τ3)

=
τ2

2
trace(H2) +O(τ3)

=
τ2

2
‖Hessψ(x)‖2

HS +O(τ3), (2.23)

so the result follows by lemma 2.1.
We conclude with a transportation inequality which generalizes proposition 1.3

to the unit spheres Sn. See [2] for a discussion of measures on product spaces.

Theorem 2.3. Let M = Sn for some n � 2, and suppose that

(n− 1)I + HessU(x) � κUI (x ∈ Sn) (2.24)

for some κU > 0. Then

Ent(ν | μ) � κU
2
W2(ν, μ)2. (2.25)

Proof. In this case, the curvature operator is constant, so we have S∇ψ(x)

Y = ‖∇ψ(x)‖2Y , so

traceR∇ψ(x) = (n− 1)‖∇ψ(x)‖2. (2.26)

Thus the result follows with a similar proof to proposition 1.3 using data from the
proof of proposition 2.2. �
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