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THE FAMILY OF LODATO PROXIMITIES COMPATIBLE 
WITH A GIVEN TOPOLOGICAL SPACE 

W. J. THRON AND R. H. WARREN 

C o m p e n d i u m . Let (X, $~) be a topological space. By 99?i we denote the 
family of all Lodato proximities on X which i n d u c e d " . W e show t h a t 99? i is 
a complete distr ibutive latt ice under set inclusion as ordering. Greates t lower 
bound and least upper bound are characterized. A number of techniques for 
constructing elements of SDîi are developed. By means of one of these construc
tions, all covers of any member of 99? i can be obtained. Several examples are 
given which relate 9D?i to the latt ice 99? of all compatible proximities of Cech 
and the family 99?2 of all compatible proximities of Efremovic. T h e paper 
concludes with a char t which summarizes many of the s t ructural propert ies 

of a», a»! and a»2. 
1. P r e l i m i n a r i e s a n d n o t a t i o n . M. W. Lodato in [51 and [6] has studied 

a symmetr ic generalized proximity s t ructure (see Definition 1.2). Naimpal ly 
and War rack [8] have called such a s t ructure a Lodato proximity. We shall 
also use this name. T h e closure operator induced by a Lodato proximity 
satisfies the four Kuratowski closure conditions. 

This paper is primarily concerned with a s tudy of the order s t ructure of the 
family 99?i of all Lodato proximities which induce the same closure operator 
on a given set. Lodato characterized the least element in 99?i and those topo
logical spaces for which 99?i ^ 0. Sharma and Naimpal ly [9] described the 
greatest member of 99? 1 and have given two methods for construct ing members 
of 2»i. 

T h e symbol &(X) denotes the power set of X, \A\ indicates the cardinal 
number of the set A, and the triple bar = is reserved for definitions. 

Definition 1.1 [21. A topological space {X,3?~) is called an R0-space if and 
only if, given x and y in X such t h a t x £ [y], then y £ [x]. 

T h e Ro-spaces are exactly those spaces for which 99?i 9^ 0. A. S. Davis [2] 
has given a number of characterizat ions of R0-spaces. W e add one more 
character izat ion: A topological space is an R0-space if and only if each subset 
of the space is separated from the points which are excluded from its closure. 
Davis [2] claims t h a t if the topo logy^~ on X is isomorphic (as a latt ice) to the 
topology of a JYspace , then (X,3T) is an R0-space. However, this last s ta te
men t is false as one notes from the following example: Le t X be any infinite 
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LODATO PROXIMITIES 389 

set and let *% = [X, all finite subsets of X]. Then (X, (¥) is a JVspace where 
*€ is the lattice of closed sets. Let Y — X\J \y\ where y d X and let 2 = 
[F, all finite subsets of X]. Then (Y, @) is a topological space which does not 
satisfy the R0-axiom. We observe that *€ and Of are lattice isomorphic. 

Definition 1.2 [7, p. 1]. Let X be a set. A relation gP on <^(X) is said to 
define a Lodato proximity on X if and only if it satisfies the conditions: 

P I : (A,B) e ^ i m p l i e s (B,A) G &\ 
P2: (A,B\J C) t 0 if and only if (A, B) £ & or (4 , C) G ^ ; 
P3: (0, A) i gP for every A CX; 
P4: ([*],[*]) 6 ^ for all x £ X; 
P5: (i4, 5 ) 6 ^ and ([6], C) G ̂  for all b G 5 imply (4 , C) 6 ^ . 

We now list a number of basic results about Lodato proximities which are 
established in the literature. Let gP be a Lodato proximity on X. The function 
c = c ( ^ ) : gP{X) -*gP(X) defined by c(A) = [x : G>],4) Ç ^ ] is a 
Kuratowski closure operator satisfying the R0-axiom. If 0~ is the topology 
generated by c, then we say that gP induces &~ or that gP is compatible with gT. 
More generally, for a relation $P on 0 (X), we say j ^ 7 induces c if for each 
A CX, c(A) = [x : ([x],A) £ S?]. H (X,^~) is an R0-space, then 

Six = [(A,B) : 1 H ^ 0 ] 

is a Lodato proximity on X compatible with J?7". Let 2)?i = 9Jîi(X,J?7~) be the 
family of all Lodato proximities on X which induce gT and let 9ft i be ordered 
by set inclusion. Then 9ïii has a least element gft\ (defined above) and a 
greatest element 

/ # /
1 = ^ ^ [ ^ , 5 ) : 1 and B are not finite unions of point closures]. 

Definition 1.3. Let X be a set. A relation on gP (X) satisfying PI , P2, P3 
and P4 of Definition 1.2 is called a C-proximity on X. 

C-proximities have been studied extensively in [11]. Every Lodato proximity 
on X is a C-proximity on X. By 9ft = 9ft (X, c) we denote the family of all 
C-proximities on the set X which induce the operator c. Clearly 
9fti(X,^~~) C 9ft (X, c) where gT is the topology generated by c when c is a 
Kuratowski closure operator. Let 9ft be partially ordered by set inclusion. 
Then 9ft has a least element 

St s [(A,B) : (Âr\B)\J (Ar\B) 5*&] 

and a greatest element 

W = ^ U [(4, B) : A and J3 are infinite subsets of X]. 

A number of the results in this paper are built upon the properties of (9)?, C ) 
which are proved in [11]. 
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The following definitions will be useful in the sequel. 

Definition 1.4. Let (L, ^ ) be a partially ordered set. If a, b G L, we say 
a covers b or b is covered by a when a > b and a > c > b is not satisfied for any 
c G L. Moreover (L, ^ ) is said to be covered if and only if, given x G L such 
that there is y G £ satisfying y > x, then there is z G L which covers x and 
satisfies z ^ 3>. Also (L, ^ ) is said to be anticovered if and only if the dual of 
(L, S) is covered. 

Definition 1.5. Let (L, ^ ) b e a partially ordered set. If (L, ^ ) has a least 
element d, then a G L is an atom if and only if a covers d. Also c G £ is an 
antiatom if and only if c is an atom in the dual of (L, ^ ). Furthermore (L, ^ ) 
is called atomic when each x G £, x not the least element, is the least upper 
bound of the atoms ^ x. Moreover (L, ^ ) is called strongly atomic if and only 
if, given a G L, the partially ordered set [b : a S b £ L] is atomic. Also 
(L, ^ ) is antiatomic if and only if the dual of (L, ^ ) is atomic. 

2. Lodato proximities. In this section we give several characterizations of 
a Lodato proximity. 

THEOREM 2.1. Let £P be a C-proximity on X. Then £P is a Lodato proximity 
on X if and only if (4 , B) G SP implies ( 4 , 5 ) G ^ . 

Proof. In [7, p. 5] the authors have proved that if & is a Lodato proximity, 
then (4 , 5 ) G & implies ( 4 , 5 ) G ^ . 

Assume that ( 4 , 5 ) G ̂  implies (A,B) G ^ . To verify P5, suppose 
(C, £>)_G & and ([d], £)_ G & for all d G 5>._Hence d G £ for all d É_D, and 
£> C E. P2 implies (C, E) G ̂ . Since C C C, PI and P2 imply (C, £ ) G ^ . 
By our assumption (C, £ ) G «^. 

Definition 2.1. Let X be a set and SP a relation on &(X). H A <Z X, we 
define i * = [x É I : ([#],4) G SP\ We introduce names for the following 
statements. 

P5' : (A*, B*) G & and ([b]*, C*) G ̂  for all b G 5 imply (4 , C) G ^ . 
P6: (4*, B*) G ̂  implies ( 4 , 5 ) G SP. 
P6': (4*, 5 ) G ̂  implies (4 , 5 ) G ^ . 
P7: (4 , 5 ) G ̂  and B C C* imply (4 , C) G ^ . 
P7': (4 , 5 ) G ̂  and 5 * C C* imply (4 , C) G ^ . 
P8: 4** C 4 * . 

One notes that the definition of 4 * is motivated by the fact that if £P is a 
Lodato proximity, then 4 * = 4 . 

THEOREM 2.2. Le/ X be a set and SP a relation on £P(X). Then the following 
are equivalent: 

(i) £P is a Lodato proximity on X. 
(ii) & satisfies PI , P2, P3, P4 and P6. 
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(iii) & satisfies PI , P2, P3, P4 and P7. 
(iv) & satisfies PI , P2, P3, P4, P7' and P8. 
(v) ^ sato/^s PI , P2, P3, P4 awd P5'. 

(vi) ^ sa*«/fes PI , P2, P3, P4 and P6'. 

Proof. The proof is a straightforward verification. We indicate an easy 
route, (i) =» (ii) =» (iii) =» (i). (ii) => (iv) => (i). (ii) =» (v) => (i). (ii) => 
(vi) => (iii). 

THEOREM 2.3. In the axiom system in Theorem 2.2(iv), P7' and P8 are 
independent axioms. 

Proof. First we give an example where PI , P2, P3, P4 and P8 hold, but P7' 
fails. Let X be the set of real numbers, 0~ the usual topology on X, 8P — 
[(A,B) : {AC\B)\J (A C\ B) * 0] and A* = A for all A C.X. 

The following example satisfies PI, P2, P3, P4 and P7' but not P8. Let 
5 = [r, s, t] and let 0> be the relation on 0* (S) such that 

~^> = [(0, A) : i C 5 ] U [(£, 0) : £ C 5] U [([5], [/])]. 

3. Continuous and ̂ -continuous functions. 

Definition 3.1 [7, p. 8]. A mapping/ from a Lodato proximity space (X, £P) 
to a Lodato proximity space (F, £P*) is said to be p-continuous if and only if 
(AyB) Ç ̂  implies ( / ( 4 ) , / ( £ ) ) G ^ * . 

An equivalent formulation of this definition is: / is ^-continuous if and only 
if for all (C, D) g 0* with C, £> C F, it is true that ( f'~l(C),/-1 (D)) g 0>. 
It is known [7, p. 8] that every ^-continuous function is a continuous function 
with respect to the induced closure operators. In this context the following 
theorem may be of interest. 

THEOREM 3.1. Let (X,0~) and {Y,°ll) be ^-topological spaces. Let 
0 e 9Wi(F, <%) and let g%x be the least element in Mi(X,0~). Iff : (X,ST) -> 
(F, °ll) is continuous, then f is p-continuous with respect to S%\ and SP. 

Proof. If (A,B) 6 3$i, then l H ^ 0 . Since/ is continuous, 

Hence (f(A),f(B)) is in &. 

There is a fixed completely regular topological (R0-closure) space (F, °tt) 
with the following property. If (X, ^ ) is a completely regular topological 
(Ro-closure) space and if 0* is a compatible proximity (C-proximity) on X 
such that all continuous functions from (X, cé>) to (F, ^ ) are ^-continuous 
with respect to 0 and the smallest compatible proximity (C-proximity) on 
F, then £P must be the smallest compatible proximity (C-proximity) on X. 
For C-proximities this result is proved in [11, Theorem 3.4]. By the next 
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theorem we shall show that no such R0-topological space (F, %) exists for 
Lodato proximities. Our proof is constructive. 

THEOREM 3.2. For each ^-topological space (F , fy) there is an ^-topological 
space (X, cé>) and there is & in 2)?i(X, cê) — [£%ï\ such that each continuous 
function f : (X, cé?) —> (Y,&) is p-continuous with respect to SP and 3$*. 
Here S%\ is the least member of 2)?i(X, cé>) and S%* is the least member of 
a» i (F ,« r ) . 

Proof. Given (F, ^ ) , let X be an infinite set such that \X\ > \Y\. Choose 
disjoint subsets^, B ofX such that \A | = \B\ = Ko and \X - (A \J B)\ = |X|. 
Let *$ be the following family of subsets of X: X, A, B, any finite subset of X 
and any finite union of these sets. Then (X, <¥) is an R0-topological space 
where *$ is the family of closed sets. 

Let & be the relation on & {X) defined by: 

& = ^ i W [ ( C , f l ) : (CD A and DDB) or (C D B and D D A)]. 

Then & e mi(X, V) and & * mx. 
Suppose there exists a continuous function / : (X, cê) —•> (F, °ll) which is 

not ^-continuous with respect to £P and ^ * . Then there are subsets E, F of X 
such that (£, F) Ç ̂  but ( / ( £ ) , / ( F ) ) g ^ * . T h u s / ( £ ) H / ( F ) _ = 0._Since 
/ is continuous, / ( £ ) r\f(F) = 0 from which it follows that £ H i7 = 0. 
Hence (£, F) £ ( ^ - ^ i ) and consequently / ( Z ) H / ( B ) = 0. 

Let T =f-\f(A)) and 5 =f~1(f(B)). Since T and 5 are disjoint, closed 
sets, we note that \X - (T W S)\ = \X - (A U B)\. Given x in X - (TKJS), 
then / ^ ( [ / ( J C ) ] ) is a closed, finite subset of X - (T \J S). Hence \X -
(T\JS)\ ^ |F | . Since |X| = \X - (T U S)|, we have contradicted \X\ > | F | . 

THEOREM 3.3. Let (X,$~) be an ^-topological space, let Y = [0, 1, 2] and let 
<% = [0, F, [0], [2], [0, 2]]. Thus (F, ^f ) « a topological space with <% the 

family of closed sets. We define (A, B) $ & if and only if there is a continuous 
function f: (X,£T) -> (F, <£) such that A Cf'HlO]) and BCf'l([2]). 
ThenZP = ^ i . 

Proof. Let (A,B) (? &. Then there is a continuous function/ : (X,^7"") —» 
(F, ^ ) such that A C / " 1 © ] ) and B C / " 1 ^ ] ) . Since / is continuous, 

/ ^ ( [ O ] ) is a closed set. Thus 4 C / " 1 © ] ) . Similarly, 5 C / " 1 ^ ] ) . Since 
/ _ 1 ( [0 ] ) H / - 1 ^ ] ) = M n ^ = 0. Consequently (4 , B) g âtx. 

Conversely, let (A,B) $ 8tx. Then i n ^ = 0 . W e define g : X -> F by 

!

0, if x G 4 
1, i f x g ^ U J 
2, if x G 5 . 

Clearly g is well-defined and continuous. Hence (A, B) (? ^ . 

We point out that the image space (F, c€) in the last theorem is not R0. 
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4. Construction of Lodato proximities. In this section we characterize 
the least and greatest elements of 9Wi and describe several techniques for 
constructing members of SDti. The most important result is that each atom of 
9Wi can be constructed from the least member of Wfti by using two special 
bunches. 

THEOREM 4.1. Let (fX,3T) be an ^-topological space. If \SP i : i G I] C SDîi, 
then U [&i : i G I] G 2Wi. 77ms 9Wi is a complete lattice with the operator 
V = U. 

Proo/. Since 2tti C 9», it follows that [ ^ : i G i ] C 2 R . From [11], 
U [Pt : i 6 I] G m. So ^ C U [&i : i 6 I] ClT. By [11, Theorem 3.1], 
U \SPi : i_G_i] induces^". 

Let ( i , 5 ) ê U [^ i : i G I ] . Then for some i, ( 4 , 5 ) G ̂ * . Since 
^ i É 2Wi, by Theorem 2.1 we have (A,B) £ &t. Therefore 

(A,B) G Ul&i'.ie II 

Hence by Theorem 2.1, U \0* i : i G I] is a Lodato proximity on X. 
Since Tti has a least element and since U [& : SP G 9Wi] is the greatest 

element of SDti, the last statement in the theorem follows from the work of 
Thron [10, pp. 7-10]. 

THEOREM 4.2. Let (X, J7"") be an ^-topological space. The greatest element of 
SDîi isW x = &i^J [(A, B) : Â and B are not finite unions of point closures]. 

Proof. Since Wli C l , ^ i É 3». Thus f C * C # . Clearly Wx Ç^IV. 
Therefore by [11, Theorem 3.1], IV\ induces $~ and satisfies P3, P4. 

Clearly PI is satisfied by Wx. _ 
To verify P2, let (A, B U C) G ^ ~ ^ \ . Then A a_nd B U C are not a 

finite union of point closures. Since B \J C = B W C, B or C is not a finite 
union of point closures. So (A, B) or (A, C) G ^ i . 

Conversely, let ( i , 5 U C ) g Wx._ Then Q4,£ U C) £ ^ i , and so 
(4 , B) £ gftx and (̂ 4, C) £ S%i. Also i or 5 U C is a finite union of point 
closures. If Â is a finite union of point closures, then (A,B) £W\ and 
(A, C) £ W\. If B U C is a finite union of point closures, then 5 is a finite 
union of point closures. Hence (A, B) £ W\. Similarly, (A, C) £ W\. 

We have shown that *W\ is a C-proximity on X. To verify that W\ is a 
Lodato proximity on X we will show that (Â, B) G ^ \ implies (A, B) G W \ 
and appeal to Theorem 2.1. Clearly (Â,B) G g%\ implies (A,B) G ^?i since 
&ti G 2Ki. So we suppose that (Â, B) G iVx - S%x. Then A and 5 are not a 
finite union of point closures. Since Â = A and B = B, Â and 5 are not a finite 
union of point closures. Thus (A, B) G ^ î -

We now show that W\ is the greatest member of 3)11. Suppose there is 
^ G 2Ki a n d ^ £ ^ 1 . Choose (£, F) G ^ - T ^ i . Consequently (£, F) $ ^ \ . 
Hence E or ^ is a finite union of point closures, say E. So 

Ë = Û bJ. 
< = 1 
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It follows from PI , P2 and induction that for some i, ([3/*], F) G SP. By 
Theorem 2.1 (\yt], F) G 0. Thus y, Ç F, and (£, F) G ̂ \ which is a contra
diction. 

Theorem 4.2 was first published by Sharma and Naimpally [9]. We arrived 
at this result independently by the approach presented above. 

Note that A U B is a finite union of point closures if and only if Â and B 
are finite unions of point closures. Therefore 

Wi = f i U [ ( i , 5 ) : A U 5 is not a finite union of point closures]. 

Of course, IV x = U [0 : ̂  G 2Ri]. 
The following theorem gives necessary and sufficient conditions for the 

greatest element of 9ÎÎ to be the greatest element of 2fti. 

THEOREM 4.3. Let (X,0~) be an ^^topological space. TheniV = iV\ if and 
only ifW\ D [(A,B) : A and B are infinite subsets of X]. If (X,0~) is a 
Ti-space, thenW = Wi. 

Proof. The proof is an easy verification. 

THEOREM 4.4. Let (X,0~) be an ^-topological space, and let ybe a relation 
on SP{X). J / f i C y C ^ i , then y induces 3T; y satisfies P3, P4; and 
A* = Â for every A C X. 

Proof. Clearly 3t C @i and IV x ÇL1V. So St C ¥ OV. By [11, Theorem 
3.1], y i n d u c e s ^ and satisfies P3 and P4. 

Also y G A* *=> ([y], A) Ç y <=> y G Â. 

Definition 4.1. Let (X,0") be a topological space and let A <ZX. We 
define p(A) to be the cardinal number of the set of distinct point closures 
contained in Â. 

THEOREM 4.5. Let (X,y) be a topological space and let A^B C X. 
(i) p(AUB) SP(A)+p(B). 

(ii) Ifp(A) ^ X0orp(B) ^ X0,thenp(A) + p(B) = p(A U S ) . 

Proof. Since the proof is straightforward, it is omitted. 

Definition 4.2. Let (X,S~) be a topological space and A (Z X. We define 
A\ to be the family of all ordered triples of cardinal numbers (X, ju, v) for 
which there is an open cover °ll of A such that X ̂  \°tt\ ^ \x and every sub-
cover has cardinality ^v. 

Note that A is compact if and only if, whenever (X, ju, v) £ A\, then v is 
finite. 

Definition 4.3. Let (X,0~) be an R0-topological space; let E be a closed 
subset of X; let X, /x, *> be infinite cardinal numbers and let 0* Ç 9D?i. We 
introduce the following notation. 
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(i) 0>{E, /») = & U [ (4 , B):p{A(~\E)^ii, and 0 ( 5 Pi £ ) S; „]. 
(ii) ^°(-E. d ) = f i ^ ( ^ W [(4, -B) : p(A H £ ) è M or 

p{BC\E) ^ ] ) . 

(iii) ^ { E , \n,v] = &\J [(A,B) : (X, fi, v) e (An £ ) f H (5 n £ ) | ] . 
(iv) &*{E,\p,v\ s ^ H ( ^ U [ ( 4 , 5 ) : 

(X, M, , ) f ( l n £)f U ( l n £)f]. 

THEOREM 4.6. Each of the following relations is in <$fll: 

(i) ^ ( £ , / i ) . 
(ii) ^ ° (£,„). 
(iii) ^ { £ , X f M , * } . 
(iv) £*>{£, X,/»,"}. 

Proof, Based upon Theorem 4.4 the proof is relatively straightforward and 
therefore is omitted. 

The Lodato proximities in Theorem 4.6 have properties similar to those 
established in [11, Theorems 3.6-3.9]. Since we will not make use of these 
properties, we omit them. 

Theorem 2.3 of [9] is a special case of Theorem 4.6 (i) when E = X and 
8P = 3%\. Also Theorem 2.1 of [9] is a special case of Theorem 4.6 (iii) when 
E = X, gP = dli and M = v = Ko. 

Definition 4.4 [7, p. 10]. Let 3P be a Lodato proximity on X. A nonempty 
family ^ C SP (X) is a 6«»cA with respect to (X, SP) if and only if 38 satisfies 
the following three axioms: 

B l : (A,B) G & for all A, B i n ^ ; 
B2: A U 5 G ^ if and only if ^ 6 ^ or B <E ^ ; 
B3: A G ̂  if and only if A G ^ . 
In [7, p. 10] the authors prove that if 3P is a Lodato proximity on X and ^ 

is a ultrafilter on X, then 

is a bunch with respect to (X, ̂ ) . We note that if the ultrafilter ^ contains 
no point closures, then &(^0 contains no point closures. In the light of the 
next theorem this means that if the ultrafilters tft^ contain no point closures, 
then (b(&) X i ( ^ ) ) C ^ i . 

THEOREM 4.7. Let (X,0~) be an ^-topological space and lets/, Se be bunches 
with respect to {X,SP) where £P £ SDîi. If s/ \J 38 contains no point closures, 
then (s/ X38) C ^ i . 

Proof. Suppose there is (A,B) € ( ( j / X 38) -WJ. Then A or B is a 
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finite union of point closures, say A. So 

A = U \ail 

By B2 and induction, there is i such that [ô~J G s/, which is a contradiction. 

THEOREM 4.8. Let (X, ^) be an ^-topological space and let SP G 2fti. Also 
let se and 38 be bunches with respect to (X,SP). If (s/ X 38) Ç_1VY, then 
gp> = op \j ( s / x 38) \J {38 X J / ) « i» 2»i. 

Proof. Clearly SP' satisfies PI . P2 follows directly from B2. Since 
^ i C ^ ' C ^ i , the result follows from Theorems 4.4 and 2.2, and from the 
fact that P6 is a consequence of B3. 

THEOREM 4.9. Let (X, ST) be an ^-topological space and let SP, SP* G 9fti 
such that there is (C, D) in SP — SP*. Then there are nonprincipal ultrafilters 
#" , & on X such that (C,D) G (#~ X &) C (6(^") X b(&)) ÇLSP. Also 
&~ and & can be chosen so that^ \J & contains no point closures. 

Proof. Since SP G 9ft, by [11, Theorem 3.11] there are nonprincipal ultra-
filters J ^ <3 onX such that (C, D) G (^ X ^ ) C ^ . Let (A,B) G ( f t ( ^ ) X 
Z>(^)). Then (A, B) G ( J ^ X ^ ) C ^ . Since ^ G 9fti, (4 , £ ) G SP. Thus 
*(^") X ft(^) C ^ . 

Let (£, G) G ( ^ X ^ ) . Then (£ , F) G (J*~ X ^ ) , since J ^ and ^ are 
filters. Consequently (£, F) G (6(«^~) X 6 ( ^ ) ) , and ^ X ^ C 6(«^) X 
b(&). 

Suppose there is x G X such that [x] G ^~. Then [x] G b(J^) and 
([x], £>) G ^ . Thus x G D. On the other hand, ([x] H C)_G ^~. Since 0 € J^ , 
there is y G ([x] H C). Because (X,&~) is R0, x G [y] C C. Thus x G C H J5, 
and (C, D) G ̂ î C ^ * which is a contradiction. 

It follows from Theorem 4.9 that 

[3%1 U (f t (^) X 6 (^ ) ) W (ft(^) X b(#~))], 

where S%\ is the least member of 9ft i and ^ and ^ are ultrafilters containing 
no point closures, is a base for the lattice 9fti. 

THEOREM 4.10. Let (X,37~) be an ^-topological space and let SP cover SP* in 
9ft i. Then there are nonprincipal ultrafilters^', & on X such that 

ôp = ôp* \j (6(JT) x b(&)) U (b(&) X b{^)). 

Proof. Choose (C, D) G SP — ^ * . By Theorem 4.9, there are nonprincipal 
ul traf i l ters^, ^ on X such that (C, £>) G (6(«^") X 6 ( ^ ) ) C ^ . So 

^ * C ^ * u (ft(^) X b(&)) U (b(&) X 6 (^ ) ) = &'. 

By Theorem 4.8 SP' G 3ft i. Since 0>' Ç_SP and ^ covers ^ * , we must have 
SP' = ^ . 
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One might ask if the converse of Theorem 4.10 is true, i.e., if (X,^) is an 
Ro-topological space and if 3P = 3P* U (&(#") X b(&)) U (b(&) X b(&)) 
where «^* 6 2Wi, then is it true that 3P covers ^ * in 2»!? The answer is no. 
To see this, consider Example 6.9 with n = 3 in Section 6. 

Let the family of bunches with respect to the Lodato proximity space 
(X, 3P) be ordered by set inclusion. Given nonempty A C. X, then by Zorn's 
lemma there is a minimal bunch containing A. 

THEOREM 4.11. Let (X, 3P)bea Lodato proximity space and let Se be a minimal 
bunch containing the nonempty subset A. Then there is an ultrafilter % on X 
such that 38 = b(^/). 

Proof. Since 38 is a bunch, 38 satisfies the hypotheses of Lemma 5.7 in [8]. 
By this lemma there is an ultrafilter ^ o n l such that A £ % C 38. From 
B3 it follows that b{$l) Ci 38. Since 38 is minimal and i Ç ô ( ^ ) , we have 
b{%) = 38. 

After proving Theorem 4.11, we asked: if the bunch b(rffc) contains A, then 
is b(&) always a minimal bunch containing A? The answer is no. To see this 
fact, consider Example 6.9 with n = 3 in Section 6. 

THEOREM 4.12. Let (X,^~) be an ^-topological space, let 3P £ 5D?i and let 
(C, D) G i^i — 3P. Then there are ultrafilter s ̂ ', & on X such that 

3P' = & \J (b(^) X b(&)) W (b(&) X b(^)) 

is a minimal member of Tli containing both (C, D) and 3?. 

Proof. As a result of Theorem 4.9 there are ultrafilters °tt, i^ on X such 
that (C,D) e (b(<%) X ft 0*0) CWlm By the above work there are ultra-
filters^, & on X such that 6(^~), b(@) are minimal bunches containing 
C, D respectively. Clearly (b{3f) Xb(&)) C ^ i , and thus by Theorem 4.8, 
3P' is in 9Ki. Since b (J^") and b(&) are minimal, it follows that 3P' is a minimal 
member of 3J?i containing both 3P and (C, D). 

The converse of Theorem 4.12 is false, i.e., one can use Example 6.9 with 
n = 3 to show that there is an R0-topological space, 3P G 9Wi and (C, D) in 
WX-3P such that &' = ^ U ( 6 ( ^ ) X 6 ( ^ ) ) U ( 6 ( ^ ) X b(&~)) is not 
a minimal member of 9)?i containing both 3? and (C, D). 

5. The order structure of the family 3J?i of all Lodato proximities 
compatible with a given R0-topological space. In Theorem 4.1 we showed 
that 9J?i is a complete lattice and we characterized least upper bound in 9Ki. 
In this section greatest lower bound is characterized and 2)îi is shown to be a 
sublattice of the lattice 9JÎ of all compatible C-proximities. Although 9fti is 
distributive, it is not nicely behaved since it may lack atoms and antiatoms. 
This section concludes with several cardinality arguments about SDîi. 
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THEOREM 5.1. Let (Xr^~) be an ^-topological space ana let 

[0>a:aeK]C 2»i. 

Then the greatest lower bound of \SPa : a £ K] in 9ft 1 is the greatest lower bound 
of [0>a:ae K] in 9ft. 

Proof. Let & be the greatest lower bound of [^a : a G K] in 9ft. If we show 
SP G 9fti, then the result follows because 3fti C 9ft. Since & G 9ft, we shall 
show that (A,B) G & implies (A,B) € &> and appeal to Theorem 2.1 to 
obtain &_ G_ 9fti. 

Let ( 4 , 5 ) G ^ and let 

4 = U [ i 4 « : i 6 / ] , 5 = U [ 3 , : j G J ] 
where i", / are finite sets. Hence Â = [J [Ât : i £ I] and B = \J [B3- : j G J], 
By [11, Theorem 4.1] there are i, j such that (ÂitBj) G Pi D^« : OL G 2£]. 
Since [^« : a £ K] (Z 9fti, an application of Theorem 2.1 leads to 

( 4 „ 3 , ) G n [ ^ « : « G i q . 

By [11, Theorem 4.1], (A, B) G ^ . 

We note that greatest lower bound in 9ft is characterized in [11, Theorem 4.1]. 
This same characterization is applicable to greatest lower bound in 9fti. 

Using the techniques in the proof of Theorem 5.1, one easily verifies that 
the lattice of all Lodato proximities on a set X is a sublattice of the lattice of 
all C-proximities on X (no compatibility requirement in either lattice). 
Similarly, one easily shows that 9fti (X, 3f~) is a sublattice of the lattice of all 
Lodato proximities on X. Also 9fti is a sublattice of 9ft. 

Let (X, <¥~) be an R0-topological space and let c be the closure operator 
induced by 3?~. Then the following diagram shows the sublattice structure. 

lattice of all 
C-proximities on X 

/ lattice of all Lodato 
/ proximities on X 

lattice m(X,c) 

lattice 2tti(X,jT) 

THEOREM 5.2. 9fti is distributive and consequently, modular. 

Proof. By [11, Theorem 4.4], 9ft is distributive. Since 9fti is a sublattice of 
9ft and since every sublattice of a distributive lattice is distributive, the first 
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portion is proved. Because a distributive lattice is modular [1, pp. 12, 13], 
the theorem is proved. 

THEOREM 5.3. The lattice 9Jîi may have no atoms and no antiatoms, even when 
|SD?i| > 1. Thus 90ti may lack the following properties: atomic, antiatomic, 
strongly atomic, covered and anticovered. 

Proof. This result follows from two examples in the next section. In 
Example 6.10, $D?i has no atoms and |9Ki| = Ko- Thus 3Jîi may be neither 
atomic, strongly atomic nor covered. 

In Example 6.2 tyfli has no antiatoms and |SDîi| > 1. Thus $)îi may be 
neither antiatomic nor anticovered. 

THEOREM 5.4. Let X be an infinite set and n a positive integer. Then there is a 
Tx-topology$~ on X such that W\(X,^~) is linearly ordered and has exactly n 
elements. Furthermore, there are examples of topological spaces for which 
12^1 = Ko, 2*<\or22Ko. 

Proof. The first result follows from Examples 6.1 and 6.9 in Section 6. In 
Example 6.10, |SDîi| = Ko- Extending Example 6.10 by transfinite induction, 
one obtains a topological space that \Sfl\\ = 2Ko. In Example 6.2, |2)?i| = 22Ko 

when the underlying set in the space has cardinality Ko-

THEOREM 5.5. Let3T, °tt be ^-topologies on a set X. Let 3%i, Sftf be the least 
members of 2Wi(X,^~), 9»i(X, <%) respectively. Then 3?x C ^ i * if and only if 
A (Z Â for every A C X. Here A, A denote the closure of A with respect to^~, fy 
respectively. 

Proof. Assume-(%1 C ^ i * - Suppose there ist G (A - i ) . T h e n ([t],A) G 31 lm 

By assumption, ([t], A) G ^ i * . Thus there is y G ([t] DÂ). Since (X,°ll) 
is Ro, t G [y] C Â which is a contradiction. 

Conversely, assume A C_ Â for every A C X. If (C, D) £ &i, then 
C C\D j£ 0. Since C C C and D C D, C D D 9* 0- Thus (C, D) G <^i*. 

THEOREM 5.6. Let3T, °il be R0-topologies on a set X. Let 3%u 8%f be the least 
members of Wx(X,3T), W^X, <%) respectively. If S%x C ^ i * , then 

\m1(xi^)\ ^ \mi(x,&-)\. 
Proof. If IF is an ultrafilter on X, we designate b(F) = [A_C X : A G F ] 

and b*(F) = [A C X : A G ^ " ] . Throughout this proof A, Â denote the 
closure of A with respect to £T, °ll respectively. 

We begin by showing that if i^~, ^ are nonprincipal ultrafilters on X which 
contain no point closures with respect to °ll, then 

&tx \J (b(<F) X b(&)) \J (b(&) X b(F')) 

is in Wli(X,<F). S u p p o s e d contains a point closure with respect t o ^ . Then 
there is x G X such that [x] G F. Since S%\ C <^i*, Theorem 5.5 implies 
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[x] C [&]- Because J ^ is a filter, [x] Ç & which is a contradiction. Similarly, 
^ contains no point closures with respect toJ^~. Hence 

9tx \J (b(<F) X b(&)) U (b(&) X b(#~)) 

i s in9 f t i (X , JO. 
Let ^ € 2»i(X, <2f). If (C, D) £&> - &!*, then by Theorem 4.9 there are 

nonprincipal ultrafilters Fc, & D on X such that 

(CD) 6 ( # ~ c X ^z>) C ( ^ ( ^ c ) X ft*(^z,)) C ^ 

and &~c ^J & D contains no point closures with respect to %. 
We define g : 9fti(X, °U) -> 9fti(X,JT) by 

* ( ^ ) = U [ * W (ftC^c) X 6 ( ^ ) ) U (6(2^) X 6(^"c)) : 
(C, D) 6 ^ — 3$i* a n d ^ c , ^ are nonprincipal ultrafilters on X such 

that (C,D) e (#~c X ^ ) C (b*(^c) X 6 * ( ^ D ) ) C & and 
J ^ \J ^D contains no point closures with respect to ^ ] . 

By the above work, g(&) £ 9fti(X,^~). 
To verify that g is 1 : 1, let 3?, 3P' € ^ ( X , ^ ) and ^ ^ &'. Hence there 

is (£, F) in ^ - ^ ' or ^ ' - ^ , say in 3P - &'. Thus 

(£, F) G (^~* X S^ ) C ( 6 ( ^ ) X 6 ( ^ , ) ) C g(&). 

On the other hand, (£, F) £ &' implies (£, £) g ^?i*. Since ^ C ^ i * , 
(£, F) g ^?i. If (C, £>) € ^ ' - ^ i * f then Z>*(#~c) X 6*(^i>) C &' implies 
(£, F) g (b*(Fc) Xb*(&D)). We will show that for each ultrafilter ^ on 
X, b(&~) C b*(#~). I t follows that (£, £) g ( 6 ( ^ ) X 6(^z>)). We con
clude that (£, £) g g ( ^ ) . So g ( ^ ) ^ g ( ^ ' ) . 

Lastly, we show that if F is an ultrafilter on X, then b(F) C b*(F~). 
Let S e b(^). Then S £ ^ . Since ^ C <^i*, Theorem 5.5 implies S C S. 
S i n c e ^ is a filter, S e<F. Thus 5 G 6*(^"). 

6. Examples. Each of the following examples is ani?0-topological space and 
illustrates an embedding of 9ft i in 9ft. When the space is also completely 
regular, we will comment about the embedding of 9ft2 in 9fti and 9ft. Here 9ft2 
denotes the family of all compatible Efremovic proximities partially ordered 
by set inclusion. 

We begin by collecting some known results. In an R0-topological space, 
9ft has least element 3$ and greatest e l e m e n t ^ , and 9fti has least element 3%\ 
and greatest e l e m e n t a l . Furthermore 3% C 3%\ C ^ i C ^ . In a completely 
regular topological space 9ft2 has a least element which we denote by < ?̂2. 
Moreover 3%\ C 3%i C ^ i - In a completely regular space, 3%\ = 3?2 if and 
only if the space is normal. In a completely regular, locally compact space 
9ft2 has a greatest element which we designate as /# /

2 . Also 3?2 C ^ 2 C ^ i . 

Example 6.1. A completely regular, normal, locally compact space such that 
3? = 3$x = 3$2 = ^ 2 =Wi 9^W: Let X be an infinite set and let Y,Z 
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be a partition of X into two infinite sets. Let J?7" = [0, X, Y, Z]. By Theorem 
4.3, there are no Ti-spaces satisfying the conditions of this example. 

Example 6.2. A completely regular, normal, locally compact topology on 
an infinite set X such that St = ^ i = ^ 2 ^ ^ 2 = # \ - W, 9K = 3Wi ^ 9K2, 
[atoms of 5DÎ] = [atoms of 2W2], 5D?i has no antiatoms, |3W| = 2 2 , x ' = |2R2| and 
|9K - $)Î2| è K0: Let ^ be the discrete topology on X. 

Example 6.3. A Ti-space which is not T2 and not completely regular such 
that St 5* ^ 1 = ^ 1 = iV\ Let Z = [real numbers x : * = 2 or 0 g x g 1]. 
If i C ^ then we define 

(-4 if -4 is finite 

(A U [2] if A is infinite. 

Here 4̂ represents the relative closure in X with respect to the usual topology 
on the set of real numbers. It is easily verified that c is a Kuratowski closure 
operator on SP(X). 

Example 6.4. A completely regular, normal, locally compact space such that 
St * Mx = S%2 ?±1f2 ^ ^ 1 = * " , |2R - 2»i| è Ko, |2»i - 2»2| à Ko and 
ISDÎ2I è Ko: Let X be the set of real numbers and 3T the usual topology on X. 

Example 6.5. A completely regular, normal, locally compact space such that 
& = Stx = &2 ^ 2 -Wx 7±W, |2R - Wli\ ^ Ko, |2»i - 2K2| è Ko, and 
ISDÎ2I ^ Ko: Let the space be the topological sum of the spaces in Examples 6.1 
and 6.2. By Theorem 4.3, there are no Ti-spaces satisfying the conditions of 
this example. 

Example 6.6. A completely regular, normal, locally compact space such that 

® ^ stx = ̂ 2 9^iV2 jt-Wi ^iv, \m - a»i| ^ Ko, |awi - a»2| ^ K0, and 
ISDÎ2I è Ko: The space is the topological sum of the spaces in Examples 6.1 
and 6.4. By Theorem 4.3, there are no Ti-spaces satisfying the conditions of 
this example. 

Example 6.7. A space which is not completely regular such that S, j* St\ = 
iV\ y£ W\ The space is the topological sum of the spaces in Examples 6.1 and 
6.3. By Theorem 4.3, there are no Ti-spaces satisfying the conditions of this 
example. 

Example 6.8. A completely regular, normal, locally compact space such that 
0t = 3%x = 3%2 = iVi = i^i = W\ Let 3^ be the indiscrete topology on a 
nonempty set, which is a Ti-space when the set is a singleton. 

In the preceding examples we have shown that the eight possible equalities 
and inequalities between St, 3%\, "fV\ and W can occur. In the following 
examples we shall show variations in the embedding of SDîi in tyfl. 

Example 6.9. A Ti-space which is not T2 and not completely regular such 
that 9Ki is a chain with n elements (n an integer > 1) and St = Sti T ^ / # \ = W\ 
Let X be an infinite set. 
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We part i t ion X into two infinite sets X i , X 2 . 
We part i t ion X 2 into two infinite sets X 3 , Yu 

We part i t ion X 3 into two infinite sets X 4 , F 2 . 

We par t i t ion X n _i into two infinite sets X n , Fw_2. 
We note t h a t when n = 2, there is exactly one par t i t ion, t h a t of X into X i , X 2 . 
Let ^n be the following family of subsets of X: any finite set, any 
Xi (i = 1, . . . , n) and any finite union of these sets. Then (X, ^n) is the 
desired topological space where ^n is the family of closed sets in the space. 

Example 6.10. A Ti-space which is not T 2 and not completely regular such 
t h a t 2Wi is a chain with no a toms, |SET2:X| = Ko and $t = £%i F ^ I = W: Le t 
X be an infinite set and par t i t ion X into four infinite sets X 0 , X i , Yu F 2 . 

Let X 2 = Y2 U X\ and par t i t ion Y\ into two infinite sets F 3 , F 4 . 
Let X 3 = F 4 U X2 and par t i t ion F 3 into two infinite sets F5 , YQ. 

Let Xw = F2w_2 VJ Xn-i and par t i t ion F2„_3 into two infinite sets F2 n_i, F2„. 

Let ^ be the following family of subsets of X: any finite set, any Xu X and 
any finite union of these sets. Then (X, cé>) is the desired topological space 
where ^f is the family of closed sets in the space. 

I t is easy to extend Example 6.9 (in a manner similar to Example 6.10) so 
t h a t 3Ki will be a chain with no an t ia toms . 

Example 6.11. An R0-space which is not T i and not completely regular such 
t h a t 2» 1 = [ ^ 1 , ^ 1 ] and @ = &tx ^Wx j*W\ T h e space is the topological 
sum of the spaces in Examples 6.1 and 6.9 for n = 2. 

Example 6.12. A Ti-space which is not T 2 and not completely regular such 
t h a t 3JÎ! = [ ^ 1 , ^ 1 ] and M 5* <^i ^ ^ i = W\ Le t X be an infinite set. 
Choose 5, £ in X such t h a t s ^ t. Par t i t ion X — [s, t] into three infinite sets 
R, S, T. Le t I i = S U [5], I 2 = r U [*] and X 3 = R U [5, / ] . Le t ^ be the 
following family of subsets of X: any finite set, Xf VJ any finite set (i = 1 ,2 ,3 ) , 
Xt VJ Xj VJ any finite set (i,j = 1, 2, 3) and X . Then (X, <jf) is the desired 
space where *$ is the family of closed sets in the space. 

Example 6.13. An R0-space which is no t T i and not completely regular such 
t h a t 9Ki = [ ^ 1 , ^ 1 ] and 0t 5* 3%i 9^W1 ^ IV\ T h e space is the topological 
sum of the spaces in Examples 6.8 (when the underlying set is infinite) and 
6.12. 
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We note that Examples 6.9, 6.11, 6.12 and 6.13 show that if 9»i = [ÛSui^i] 
where S%\ ^ ^ I , then the four possible equalities and inequalities between 
S% and S%\ and between W\ and#^ can occur. 

7. Summary. The following table is a summary of some of the properties of 

X=2tt,2Kiand2W,. 

Is H nonempty? 
Is H determined 
by closed sets? IsX a lattice? 

Is join set 
theoretic union? 

a» Yes, if and only if 
the space is 
Ro-closuie 

Yes, if and 
only if 

Yes Yes 

a»i Yes, if and only if 
the space is 
i?o-topological 

Yes Yes Yes 

23î2 Yes, if and only if Yes Yes, if the space is 
the space is locally compact ; it is 
completely regular an open question 
topological to give necessary and 

sufficient conditions 
on the space for 97?2 
to be a lattice 

Is X strongly 
atomic? Is3£ atomic? Is X antiatomic? IsX covered? Is X anticovered? 

m Yes Yes No, if and only if 

|2»| > i 
Yes No, if and only if 

|2K|>i 

m, In some cases 
yes and in 
some cases no 

In some cases 
yes and in 
some cases no 

In some cases 
yes and in 
some cases no 

In some cases 
yes and in 
some cases no 

In some cases 
yes and in 
some cases no 

m, Yes Yes Open question Yes Open question 

For the rest of this table, if H = 9W2, then we require that 9JJ2 be a lattice. 

I s * complete? Is 36 distributive? I s £ modular? 

m Yes Yes Yes 

a». Yes Yes Yes 

9^2 Yes, if and only if the space Yes, if and only if Yes, if and only if 
when it is is locally compact |SDî2| < 2, see [4] |SD?2| < 5, see [4] 
a lattice 

Join may not exist ; 
when it does exist, 
then examples are 
known where join 
is not union 
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