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This paper comprises a number of applications of the results of Part I.
We use essentially the same notation as in Part I with a few additions
necessary for the problems at hand.

The first section deals for the most part with a problem which one of
the authors has treated elsewhere [3] and [4] in different settings.2 In
the present case, it takes the form: Suppose T is an averaging operator
on C (X), where X is a compact group. Under what conditions is X represent-
able as a direct product of groups Sx and S2 such that

Tf{xltxt) =

where dsx is the Haar measure on Sx. In the process of solving this problem,
we also characterize those averaging operators T which (for X locally
compact) map CC(X) into C(X) and commute with translations.

In Section 2, we discuss the normalizers of various topological algebras.
The problem of finding the normalizer of various partially ordered algebras
has been condidered in [5] and [6]. In commutative algebras the normalizer
coincides with the algebra of multipliers. The problem of finding the
multiplier algebra for various Banach algebras and convolution algebras
has been discussed in [2], [7], [14], [15]. We show here that the normalizer
of V{X) coincides with MM(X) and the normalizers of Ce(X) and L\{X)
coincide with Me(X). In addition various new general results about normal-
izers are found.

In Section 3 the results of 2.8 and Section 5 in Part I are applied to
problems regarding the division of measures and of distributions. Our results
are analogous to those of Wells in [13].

Finally, in Section 4 we comment on the problem of isomorphisms of
convolution algebras in relation to representation theorems for multipliers.

1 This paper was prepared while the first-named author was a Visiting Fellow at the
Institute of Advanced Studies of the Australian National University, during 1963.

2 The numbers in square brackets refer to bibliographical items listed at the end of
Part II.
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[2] Linear operators which commute with translations, II 329

1. Averaging operators which commute with translations

Let X be a locally compact topological group, and let CC(X) and
C(X) be given their natural topologies.

For the purposes of this paper, an averaging operator T is a non-zero
continuous linear mapping from Ce(X) to C(X) such that

(1.1) T{fTg) = TfTg.

From Theorem 1.2 of Part I, it is clear that if T commutes with the right
translations pa [resp. with the left translations T J , then there is a /x e M(X)
such that

Tf = n*f [resp. f */i]
for feCt(X).

Using this result, we prove the following theorem which is a generaliza-
tion of a theorem of Birkhoff [1] and is related to the results of Kelley [12].

1.1 THEOREM. Let T be a continuous linear mapping of Cc into C.
If T is an averaging operator which commutes with the pa [resp. ra], then there
exist a closed subgroup S of X and a constant c such that

Tf(x)=cj' f(s-ix)do(s),
(1.2) Js

[resp. Tf(x)=cfsf(xs-*)do(s)]

where a is the normalized left [resp. right] Haar measure on S. The converse
is also valid.

PROOF. Since Tf =/j, * f [resp. / * fi] for all feCc, we can write
equation (1.1) as follows:

[resp.

Let x — e, and replace / by / to obtain

xg{z~1y-1W{z) = \x'f{yW{y)

[resp. jxf(y)A(y)d[t(y)

for all feCc(X). Thus it follows that
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330 B. Brainerd and R. E. Edwards [3]

[resp.

for all g e CC(X) and all y in S the support of /x. Therefore,

[resp. jxg{zy)A{x)dft{z) = jxg{z)A{z)d/j,{z)]

for all yeS and geCc(X). In the case where T commutes with the ra

and Tf = f * ft, let v be the measure on X defined by the equation
v(A)=fA*(*)df*(*)- Thus

(1.3) p{yA) = n(a) [resp. v(Ay) = v(A)]

for all y e S and all Borel sets A in X. Since 4 ->• y~xA is a one-to-one
mapping of the set of Borel sets of X onto itself, it follows that equations
(1.3) are valid if yeSv S"1. A short argument involving the definition
of \fi\ shows that equations (1.3) are valid when /x is replaced by |^|. If A
is a neighbourhood of s e 5, then yA is a neighbourhood of ys and since
1̂ 1(̂ 4) > 0, \n\(yA) > 0, so ys e S for y e S u S'1. Therefore

( S u S - 1 ) - S s S,

and hence S is a subgroup X. It is closed because it is a support. Because
fi is invariant under pa for each a e S, it is clear that n = ca, where c is
complex number and a is the normalized left Haar measure on S. Thus
the first of equations (1.2) is valid.

A similar argument shows that v is a right invariant measure on S
which is a closed subgroup of X. Thus, in this case,

where a is the normalized right Haar measure on S and v = ca.
Conversely, if S is a closed subgroup of X, the equation (1.2) defines

an operator which commutes with pa [resp. TO]. Equation (1.1) is easily
verifiable if one uses the fact that ds is the left [resp. right] Haar measure
on S and is invariant.

For the remainder of this section we use ds to stand for the left [resp.
right] normalized Haar measure on S.

1.2 COROLLARY. T2 = cT.
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PROOF. Indeed,

[resp. T*f{x) = c2 jgdSljsf(s^s?x

where dst [resp. ds] stands for the normalized left [resp. right] Haar measure
on S.

Let s^ = | [resp. s Sj = f]; then

T»f(x) =

[resp. T*f(x) =

Hence it follows in both cases that

Now we determine some necessary and sufficient conditions for S
to be a normal subgroup of X. The following definition is needed to carry
out this programme:

1.3 Let T be an averaging operator which commutes with the pa

[resp. T0], then let

x = y if and only if f(x) = f{y) for all / e TCC.

LEMMA. / / T is an averaging operator which commutes with the pa [resp.
ra], then x = y if and only if y e Sx [resp. y e xS].

PROOF. If x = y, then, since TCC is closed with respect to right [resp.
left] translations, for any a e X we have xa = ya. [resp. ax EEE ay].

Thus x = y if and only if e = yx"1 [resp. x-1«/ = e]. If x ^ e, then
77(3) = 7/(«) for all / e Cc and so

[resp.

Then we have

ff(x-is)ds = f f(s)ds
(1-4) J 5 Is

[resp.

for all / e Cc. Thus if <r stands for the normalized left [resp. right] Haar
measure on S, then from equations (1.4) it follows that

= a {A) [resp. <J{AX'^) = a {A)],
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where A is any neighbourhood in S of e e X. Therefore x~x e S, and so
x e S. Hence if x = y, then y e Sx [resp. y e xS].

Conversely, suppose y e Sx [resp. y e xS]. Then yx~x e S [resp. xy1 e S],
Now for soe S and / e TCC, there is a g e C , such that Tg = /, and

/(so*) ^

[resp. /(xs0) = jsf{xsos-1)ds1\.

Let s^xs = | [resp. s s^1 = £]; then

(1-5)
[resp. /(xs0) = c

From equation (1.5) it follows that for x e X and s e S,sz = x [resp. zs = #].
Hence 2/ = ya;""1* = x [(resp. xx~xy = y = x].

1.4 THEOREM. / / T is an averaging operator which commutes with the
pa [resp. TO], and if S is the closed subgroup of X corresponding to T, then the
following statements are equivalent:

(1) S is a normal subgroup of X.
(2) (r/)v = r/.
(3) feTCc^feTCc.
(4) For every f e TCC, every x e X, and every s e S, ((x^sx) = f(s).

PROOF. Since the proofs for the two cases, commutation with the po

and with the ra, are entirely analogous we present only the proof for the
case when T commutes with the pa.

(1) => (2): If S is normal, then xS = Sx for all x e X, and s o a s s i
and s x s a ; for all x e X and s e S. In general, we have from Corollary 1.2.

(1.6)

Since 5 is normal,

(1.7)

The equations (1.6) and (1.7) can be combined to yield

c(r/)v = cTf(x).
Thus Tf= (Tf).
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(2) => (3): If / = Tg, then / = (7g)v = Tg e TCC and so feTCc=>
jeTCc.

(3) => (4): By (3), if feTCe, then feTCe. Now if p',= lJA(a) Pa,
it is easily shown that if / e TCe then p'af e TCC. Thus h = (p'x p' f)v e TCC

for each feTCc, each a ; , e l , and each s0 e S, and so

(1-8) * (* )=(P«X/ ) V (* )

for each x eX.
By Lemma 1.3, if feTCc then

^ / ( s * ) * = /(*),
and so

f(xosox) = \sh{sx)ds = jsf{xososx)ds = Js/(xosa;)^s

= /(*o«0

for each feTC0, xxxoeX, and s o e S . Choose a; = a;̂ 1; then

/(^oVO = /(e)
for all i o e X and s0 s S. Equivalently,

/(ar-isa?) = f(e) = /(s)

for all a: e X, s e S.

(4) => (1): By (4) and Lemma 1.3,

x~xsx e S

for every s e 5. Thus S is normal.
Now we derive the product theorem mentioned in the Introduction.

Assume for the remainder of this section that X is a compact group and
that 7\ and T2 are averaging operators on C(X) which commute with pa

for each aeX. We will work entirely with the pa, but it is clear from the
symmetry of Theorem 1.1 that analogous results for operators which
commute with the ra are also provable.

1.5 By theorem 1.1, there is a closed subgroup St and a constant
ct {i= 1, 2) such that

where ds{ is the normalized Haar measure on St (i = 1, 2). 7\ and T2 are
said to be complementary if
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where 1 stands for the function defined on X with constant value 1, and L
stands for a non-trivial continuous linear functional on C(X).

1.6 THEOREM. Let a signify the normalized Haar measure on X, and
Of the normalized Haar measure on S{ (i = 1, 2). / / Tx and T2 are com-
plementary, then

(1) ax * a2 = a2 *
 ai == a>

(2) TiTi=TiTx.

PROOF. Since
TiT2f(x) = c1c2al * (<r2 * f(x)) = L{f) • 1

for all x e X, and since Ti commutes with right translations,

L(f)=L(Paf)
for all a e X and / e C(X). Thus the measure I is a Haar measure, and
L =ka for some complex number k. Since 7\ !T2 (1) = cx c2 = L (1) = for (1) = &,
it follows that o1 * er2

 = ff. a n ( i hence

a = <T = CT2 * <*L
 = = ff2 * ffi

by the compactness and hence unimodularity of X and S{. Therefore (1)
is valid; (2) follows immediately from (1).

1.7 THEOREM. The set TXC • T2C = {/i/2|/i e 7"CJ separates points in
X if and only if S± n S2= {e}.

PROOF. If TXC • T2C separates points, then for x0 =fi e with xoe S^n S2

there is ft e TCt (i — 1, 2) such that

/ iWM^o) = 0 and f^Uie) = 1.

Either /x(x0) = 0 or f2{x0) = 0. In the former case, it follows from Lemma
1.3 that x0 cannot be a member of Sx. A similar argument involving f2

and S2 holds when f^x^ ^ 0. Therefore, S-^^ S2— {e}.
On the other hand, if St n S2= {e} and xx ^ x2 in X, then for i = 1,2,

xi(S1 n S2) = xiS1 n ^ S 2 = a;̂ .

If for example a;1S1 = x2Slt then a;xS2 7̂  x2S2, and by Lemma 1.3 there
is an f2eT2C such that f2{x^ ^ f2(x2). A similar argument holds if

Now the main theorem of the section can be stated.

1.8 THEOREM. If 7\ and T2 are complementary averaging operators on
C(X) which commute with right translations, if TXC • T2C separates points
in X, and if, for i = 1, 2, TtC is closed under the operation f ->• /, then there
exist normal subgroups 5X and S2 of X such that
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(1) Ttf = ciai* f, where at is the normalized Haar measure on S{ and
c{ is a complex number,

(2) S1xSa = X,
(3) Every xeX can be uniquely written in the form x = xxx2, where

xiBSi, and

(1.9) TJ(x) = Cl

(1.10) T2f(x) = c2

PROOF. Part (1) is the substance of Theorem 1.1. From Theorems 1.4
and 1.7, it follows that Sx and S2 are normal and that Sx n 52 = {e}. There-
fore in order to show that X = SiXS^, we need only show that X = SXS2.
Suppose x0 e -X'\S1S2' Both S1S2 and XoSjSa are closed subsets of X. Since
Sĵ  and S2 are normal,

( 1 . 1 1 ) '->l'-'2 = = >-'2'-'l> •*'0'-'l'->2 = = '-'l^'0'-'2 = = 1-'l'-'2'''O = = ' ' >

and a;0S152 n S1S2 = 0. The topological normality of X ensures the existence
of a continuous function / defined on X into [0, 1] such that

ffaSiS,) = 0 and /(SX52) = 1.
Since

T2f(x) = c2 I f{s2
1x)ds2,

it follows that for s^ e St and s'z e S2, we have

(s21s'1s'2)ds2 = c2

because s^s^Sg e 5152 by equations (1.11). Similarly,

^i/(«b*i*i) = c2 f /(sJ-^sisiJifc = 0

because s^x^s^e S2x0S1S2=^ XQSJ^SZ by equations (1.11). Let

ft(x)=-Ttf(x);
C 2

then f2 e T2C and /2(a;o5152) = 0 while / ( S ^ ) = 1. Now

and so

TiTM = TJM = Cljsj(s?xo)ds = 0

because s^Xg eS^ = XQSJ^Z X0S1S2. Thus the hypothesis that x0 $ S^g
is incompatible with the complementary nature of Tx and JT2. Therefore
X = S1S2, and so X = S1xS2. Thus Part (2) is proved.
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To prove Part (3) note that if * = xtx2, where xt e S,- (*" = 1, 2), then

Tifixixz) = cijs f{s\x\xi)ds\.
and so

T1f{x1x2) = ^j /(sjx^isj.
jbl

In addition,
T2f{x1x2) = c2 f f{s2x1xi)dsi

JS2

by the permutability of elements from Sx and S2. Since the group is uni-
modular ds2 is both right and left invariant, and hence

= c2 f f{x1s2)ds2.

REMARK. Conversely, if X = S 1 xS 2 and Ttf = o{* f (i = 1, 2),
where at is the Haar measure on Sit then it is clear that 7\ and T2 are
complementary averaging operators, and by Theorem 1.7, 7\C • T2C
separates points in X.

2. Normalizers

Normalizers, which are defined in 2.2, have been discussed by R. E.
Johnson [11] and by one of the authors in [6]. In addition, the results of
B. E. Johnson [10] concerning the double centralizers are also relevant
to the study of normalizers.

Here we outline some of the general properties of normalizers and
extend some of the results of Choda and Nakamura [7] to normalizers.
Finally, we find the normalizers of ^(X), L](X), and CC(X), where X is
a locally compact group.

Let A be an algebra over the complex field (other fields are of course
possible with analogous results.) Assume that A contains no non-zero right
or left annihilators, that is, A is faithful. Let Et(A) and Er(A) be the
algebras of endomorphisms written on the left and right respectively of the
linear space A. Now consider M , ( i ) c EZ{A) [resp. Mr(A) s Er(A)] defined
as follows:

Mt(A) = {TsEl: T(fg) = (Tf)g for all /, g e A},

[resp. Mr(A) = P e Er : (fg)T = f(gT) for all f . g e A}}.

2.1 The mapping / -> / [resp. / ->/ ] , where f(g) = fg [resp. (g)/= gf]
is an injection of A into Mt. [resp. A into Mr]. The algebra MX(A) [resp.
Mr(A)] is called the left [resp. right] multiplier algebra of A.
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If we identify A with A in Mt [resp. A in Mr], then the following lemma
is easily seen to be valid.

LEMMA. Mt(A) [resp. Mr(A)] contains A as a left [resp. right] ideal.

2.2 The set

Nt(A) = {T e Mt: For each / e A, there is fT e A such that

fT(g) = frg f°r each g e A}

[resp. Nr(A) = {T e Mr: For each g e A, there is gT e A such that

(f)Tg = fST f o r every / e A}]

is called the left [resp. right] normalizer of A.

2.3 LEMMA. (1) A [resp. A] is an ideal of Nt(A) [resp. Nr(A)].
(2) The identity mapping belongs to Nt(A) [resp. Nr(A)].
(3) If S is an algebra which contains A as an ideal, contains an identity,

and contains no non-zero left or right annihilators of A, then there is an in-
jection of S into Nt(A) [resp. Nr(A)].

PROOF. Statements (1) and (2) are immediate from the definitions
of Nt and Nr.

(3): Consider the mapping s -> s where s(f) — sf for s e S and f e A.
First, seMt(A), and if f,geA, then in S we have

fHg) = fsg = (fs)g
where fs = f§ e A. Therefore se2V;(^4). Now s ^ s is clearly a homo-
morphism. If sx = s2, then

(Si-s*)f = 0

for all / e A and hence st = s2. Therefore s -> s is an injection of 5 into
N(A). An analogous result is clearly valid for Nr(A).

2.3 For TeN[(A) consider the mapping

where fT is the unique (because of the lack of annihilators) element of A
which satisfies the equation

(2-2) fT(g) = fTg

for all ge A. Since (hf)T = h(fT) and equation (2.2) holds, it follows that
(•)TeNr(A). In [6] it is verified that

(2.3) T^(-)T

is an isomorphism between A ,̂(̂ 4) and iVr(^4).
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In order to distinguish whether a given T manifests itself as an element
of Nt or Nr we adopt the convention that T(-) [resp. (-)T] is the manifesta-
tion of T as an element of N^A). [resp. Nr(A)].

2.4 Let A be a quasi topological algebra, that is, a topological linear
space in which the mappings x^-xy and x^-yx are continuous for each
y e A. Then let Wt(A) [resp. Wr(A)] be the subring of Mt [resp. Mr] com-
posed of continuous endomorphisms of A. Let 62, (Sr, 3lt, 3lr be defined
analogously.

If @j [resp. (gr] is given the strong operator topology as a ring of
operators on A, that is, the topology of pointwise convergence on A, then it is
easily verified that @e [resp. 6r] is Hausdorff if A is Hausdorff.

2.5 LEMMA. Let A be Hausdorff.

(1) Wl,(A) [resp. WT{A)] is closed in @,(4) [resp. @r{A)].
(2) TTw injection f^f [resp. / - > / ] of A into mt{a) [resp. 3Rr(4)] w

continuous.

PROOF. (1) If {q>a} is a net in 9Jij such that lim <pa = <p e(S;, then

for all /, g e A, because A is a topological algebra. However <pa(/)g = <px(fg),
and so

= lim 9>a(/g) = lim

Therefore 9? e 501;.
(2) If {/a} is a net in A which converges to feA, then

fag - • /?

for all geyl, and so / a - > / in the strong operator topology. Therefore / -> /
is continuous.

The proofs of (1) and (2) are entirely analogous for operators on the
other side.

2.6 REMARK. The inverse mapping /->•/ [resp./->/] is not contin-
uous unless A contains no left [resp. right] topological divisors of zero,
that is, no nets {fa} such that fag -» 0 [resp. gfa -> 0] for all g e R while
{/a} does not converge to zero.

2.7 THEOREM. If A satisfies the closed graph theorem and is Hausdorff,
then Nt(A) [resp. Nr(A)] is composed entirely of continuous functions, that is,

PROOF. Suppose T eNt(A). It is continuous if it has a closed graph.
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Assume that /„ -> 0 in A and that T(fa) -> h; then since multiplication is
continuous

for any geA. However TeNt(A), and so

(g)Tfa = gT{fa).
Therefore, since

(g)Tfa -> o,
it follows that

gh = O

for all g e A. Since the only right annihilator of A is zero, h = 0 and T has
a closed graph.

2.8 REMARK. The convolution algebras CC{X), L\(X), and LX(X) all
satisfy the closed graph theorem, as also do Banach algebras in general.
From Theorem 2.7 the normalizers of these algebras contain only continuous
operators.

2.9 REMARK. Note that if A is commutative and satisfies the closed
graph theorem, then N{ = Nr = 2JJ, = Wr = M{ = Mr, so there is no need
to distinguish between 9JJ and M.

Suppose for the remainder of this section that A is Hausdorff and
satisfies the closed graph theorem.

It may be of interest to consider topologies for Nl and Nr such that the
(algebraic) isomorphism

(2.3) T(-) - > (-)T

is a homeomorphism.

2.10 PROPOSITION. Let ®t(A) [resp. ©r(^4)] be given the topology for
which, if {Ta} is a net,

Ta->T if and only if fTa{g)^fT{g) [resp. (f)Tag - (f)Tg]

for all f,geA. If A is Hausdorff, then ffli(A) [resp. 50Jr(̂ 4)] is closed in
6J(J4) [resp. (Sj(^4)]; / - > / [resp. f -> / ] is a continuous injection; and if Nt

[resp. Nr] is endowed with the restriction of this topology, then

(2.3) T{-) -> (-)T

is a hotnomorphism of Nt onto Nr.

PROOF. The first two assertions of the conclusion are easily verified.
To verify that T{-) -> (-)T is a homeomorphism fromiVj onto .A/,, consider
Ta(-) - > T(-) i n N t ( A ) . T h e n f o r a l l f . g e A
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and since Ta and TeNt{A)> fTa{g) = (f)T«(g) and/rfe) = (f)T(g). There-
fore {-)Ta -> (-)T and the mapping T(-) ->• (-)T is continuous. The reverse
argument is identical.

Now we prove some theorems for normalizers which are analogous
to results found by Choda and Nakamura [7] for multiplier algebras.

2.11 PROPOSITION. Let A be complete and {Ta{-)} be a net in Nt(A).
If {Ta(-)} is a Cauchy net in the strong operator topology for &t(A) and if
{{•)Ta} is a Cauchy net in the strong operator topology of %{A), then there
is a TeNi{A) such that

and
hm (.)Ta = (-)T

in the strong operator topology of @j(4) and ®r(A) respectively.

PROOF. Let Ta{f)^T0(f) and (/)ra-> (/)7\ define the operators
ToeEt(A) and TxeEr{A) respectively. Since Ta(Jg) = Ta{f)g, and since
A is Hausdorff, it follows that T0(f)g = T0(fg) and so r o eM,(4) . Analo-
gously TxeMr{A). For f, geA,

so
fe)rx/ = lim (g)TJ = hmgTa(f) = gT0(f).

Thus ToeNt(A) and (-)T0= {^T^

2.12 REMARK. Since Cc, L\, L1 are all complete, Proposition 2.11
can be applied to them.

2.13 COROLLARY. Nt(A) [resp. Nr(A)] is complete relative to the
topology with convergent nets defined as follows: If {Ta} is a net in Nt(A)
[resp. NT(A)], then Tx-> T if and only if both

(g)Ta^(g)T and Ta(f)^T(f)

for all f, geA. In addition, the mapping

T(-) - (-)T

is a homeomorphism in this topology.

PROOF. If {Ta} is a Cauchy net in this topology, then {Tx(f)} and
{{f)Ta} are Cauchy nets in A. By Proposition 2.10, there is a TeNt(A)
such that

and

for all feA. Therefore N,(A) [resp. Nr(A)] is complete.
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Since the topology of this corollary is entirely symmetric with respect
to Nt(A) and Nr(A), the mapping T(-) -> (-)T is a homeomorphism.

2.14 The topology of Corollary 2.13 can be called the two-sided
strong topology. It is clear that / - > / [resp. / -> / ] is a continuous injection
of A into Nt(A) [resp. Nr(A)] in this topology.

2.15 A net {fa} in A is called a two-sided approximate identity if for
every g e A

tag-^g and gfa->g.

2.16 THEOREM. A [resp. A] is dense in Nt(A) [resp. Nr(A)], with
respect to the two-sided strong topology, if and only if A possesses a two-
sided approximate identity.

PROOF. If A is dense in Nt(A), then there is a net {/a} in A such that
fa -> 1, the identity operator, and so for each g e A, fag -+ g and gfa -> g.
Therefore {fa} is a two-sided approximate identity.

Conversely, if A has a two-sided approximate identity {/a}, then for
TeNt(A) and g e A,

T • fx(g) = T(fag) = T(fa)g = T{fXg,

and since fag -> g,

(2-4) T(facr(g)^T(g)

for all g e A. On the other hand,

(g)T(fa) = gT(fa) = (g)Tfa,

and so for all, g e A,

(2.5) r
Equations (2.4) and (2.5) together imply that A is dense in Nt(A) in the
two-side strong topology. The proof is analogous for operators on the right.

2.17 Assume that A is a Banach algebra. Then @((̂ 4) [resp. (&r(A)]
becomes a Banach algebra when it is endowed with the norm

(2.6)
II/IISSI

(2.7) [ r e s p . \\T\\ = sup \\(f)T\\.]

In both cases the norm topology is stronger than the strong operator
topology. Thus 3Ji( (A) [resp. Wr(A)] is closed in this norm topology. Similar-
ly the injection / - > / [resp. / -> / ] defined in 2.1, is continuous in this norm
topology. Since the closed graph theorem is valid in A, Nt(A)^ Wtt{A)
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[resp. Nr(A)^Wr{A)]. Neither MZ{A) nor Mr(A) need be closed in its
appropriate norm topology. However, if Nt(A) [resp. Nr(A)] is endowed
with either of the equivalent norms

(2.8) \T\ =

or

(2.9) |||r|H = Max

then the following result can be proved.

2.18 THEOREM. / / Nt(A) [resp. Nr(A)] is endowed with either of the
norms (2.8) or (2.9), then it is complete and the mapping

T(-) -> (-)T

is an isometry of the Banach algebra Nt{A) onto Nr(A).

PROOF. Let {Ta(-)} be a Cauchy net in N^A) with regard to the norm
|r | . Since

\\Ta(f)-Te(f)\\ < \Ta-Tf\ Il/H,

{Ta(-)} is a Cauchy net with respect to the two-sided strong topology on
Nr(A). By Corollary 2.13, it follows that there is a TeNT(A) such that
T(')->• T(-) in the two-sided topology.

Now Wlt{A) is complete with respect to the norm of equation (2.6),
and so there exists To e Wt(A) such that Ta(-) -»• To(-) in norm. Similarly
there is 7\ eWr(A) such that (')Ta -> (-)7\ in the norm of equation (2.7).
Since in either case the strong operator topology is weaker than the norm
topology,

J^-) = Jo(-) = T(-), and Nt(A) is complete.

Finally, it is obvious that T(-) -> (-)T is an isometry.

2.19 Now we come to use some of the results of Part I to find the
normalizers of certain special convolution algebras of measures. Let X
be a locally compact group. Recall that ^(X), L\{X), and CC(X) stand
respectively for the set of integrable functions, the set of integrable functions
with compact support, and the set of continuous functions with compact
support. Each of these spaces forms a topological algebra if it is endowed
with its natural topology and multiplication is taken to be convolution.

2.20 PROPOSITION. Let A be taken to be either D-(X), L)(X), or Ce{X).
A continuous linear operator on A commutes with right [resp. left] translations
if and only if it is a left [resp. right] multiplier.
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PROOF. We prove the result for right translations and left multipliers.
The result for left translations and right multipliers follows analogously.

Suppose T commutes with the pa's for /, geA. Then

where ds stands for the left Haar measure on X. When A = L1 we may use
[8, p. 323] to show that T and J commute. Similarly, when A = L\ the
same theorem may be used on L1(9I), where 21 is a compact set which
contains the sum Sf-\-Sg of the supports of / and g. Finally if A = Cc,
the same theorem can be applied to C(9t) under the usual norm. Thus in
general we have

T(f*g)=jxTPJg(s)ds

for /, geA, and since T commutes with ps,

T(f*g)=jxPsTfg(s)ds

= {Tf)*g.

Conversely, suppose T commutes with right convolution, that is,
T is a left multiplier. For /, geA,

= jxTPJg(s)ds

by the continuity argument advanced in the previous paragraph. By
hypothesis, T(f*g) = (Tf) *g, so

T(f *g)=jx TPsfg(s)ds = j x piPsTfg(s)ds

for all /, geA. Thus for all / e A and all s e X,

TPsf = PsTf.

2 .21 C O R O L L A R Y . / / £ : , « - » • / * * ( • ) a n d rj : fi - > ( • ) * Pi> t h e n

(a) mM(X)=mi(L^)> (a')
(b)
(c) M.{X) =SUJ!(L

1
C), (c') rjMc(X) =

This corollary follows directly from Corollary 2.6.2, Theorem 1.2,
and Corollary 2.6.1 of Part I combined with Proposition 2.20.

2.22 The normalizers of L\, L1, and Cc are characterized by the
following theorem:
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THEOREM, The following statements are valid:

(a) mi{Li)=Nl(V), (a') 2Kr(H) = Nr{V),
(b) mi{L

1
e)=Nl(L\), (b') mr(Ll)=Nr(Ll),

(c) ml(ct)=Nl(ce), (C) mr(cc)=Nr(cc).

PROOF. If /ieMM(X), then

/ * C« * g) = ( /* /* )* g

for /, g belonging to any of L1, L\, Cc. Thus /**{•) eN^L1) [resp.
(•) xfieN^L1)] iox[ieMhd, and further /J, * (•) eN^L]) [resp. (•) */je2Vr(Lj)]
and,M* (•) eiVj(C,.) [resp. (•) * fi e iVr(Cc)] for^eM,. . Thus in (a) through
(c') the left-hand member is a subset of the right-hand member.

Since in L1, L], Cc the closed graph theorem is valid, by Theorem 2.7
it follows that (a) through (c') are all valid.

2.23 Theorem 2.22 together with Lemma 2.3 ensures that any
algebra with identity which contains L1 or L\ or Cc as an ideal and contains
no right or left annihilator of this ideal except 0 can be injected (alge-
braically) into mx or Wr.

3. Certain division problems

We shall here apply the results of Part I, 2.8 and § 5 to some problems
regarding the division of measures and of distributions.

3.1 THEOREM. Suppose that

In order that

[ ' ' [resp. L1 * [i c L1 * Ax-) 1-L1 * A,]

it is necessary and sufficient that there exist vlt • • •, vs e MM(X) such that

( 3 2 ) p = Xl*vx-\ +AS * va

[resp. fi = vx * Xx + • • • +vs * A,].

REMARK. The meaning of the first relation in (3.1) is, of course that
each convolution fi * f, where / e L1, is expressible as a sum X1*f1-\ \-h, * fs,
where ft e l 1 {i = 1, • • •, s) is suitably chosen. Similar conventions apply
to the second relation in (3.1), and to subsequent analogous symbolism.

PROOF. The sufficiency is obvious, since

v * f e L1 and f * v e L1 if / e L1 and v e Mbd.
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To prove necessity, assume that (3.1) holds. With the notation of
Part I, 2.8, define J C (L1)* as in 2.8.2 of Part I. Then (3.1) ensures that
there exists a linear map T : L1 —>• (L1)a/J such that Tf = gj if and only
if g= (gi, •••>gs) a n d

( 3 3^ p * f = K * gi-\ VK * gs

[ r e s p . f * f t = g l * AXH \-gs * A,].

It is evident that this T commutes with right [resp. left] translations.
Let us verify that T has a closed graph, and is therefore continuous.

Suppose indeed that /(n) ->• 0 in L1 and Tf(n) ->gj in (Z.1)8//; we have to
show that gj = 0, that is, that gej. Now, without altering gJt we may
suppose that Tf{n) = gf\ where

For each n we have

^*/<") = K*g^+---+K*g[n)

[resp. /(»> * ̂  = gW * Ax+ • • • +g<"> * A.].

Letting w -> oo, it follows that

0 = Ai*&H M.*g .
[resp. 0 = ^ * AH hgs * K1>

showing that g e J.
By 2.8.2 (c) and Theorem 2.9 in Part I, we infer that there exists

v e (MM)g such that
Tf = ( „ . / ) ,

V ^ [resp. (/ * v)j\.

In view of (3.3) this means that

(I * / = hx * Vx * / + • - • +^s *Vs*f

[resp. f*ju = f*v1* Ax+ • • • + / * r, * A,]

for all / e l 1 . Whence follows (3.2).

3.2 REMARKS. For bounded measures on the half-line (0, oo), an
analogous result is given by Wells [13]. We have been unable to decide
whether the analogue of Theorem 3.1, in which L1 is everywhere replaced
by Co, is valid. But see 3.11 below.

In case s = 1 and X is Abelian, Theorem 2.9 in Part I has the following
application.

3.3 THEOREM. Let X be a locally compact Abelian group X the dual
group, and S a subset of X such that S C Int S. Let <p be a function on S with
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the property: to each f e Z,1 corresponds at least one geL1 such that q>(f\S) = g\S.
Then there exists veMhd(X) such that <p = v\S. (The converse is true and
trivial, whatever the subset S of X.)

PROOF. We now define T: L1 -> Lx\], where

J = {feL1:f=O on S},

by Tf = gj where geL1 and g\S = <p(f\S). The result will follow from Theo-
rem 2.9 in Part I (with s = 1), as soon as it is shown that J satisfies the
condition in Part I, 2.8.1. For this we must show that if jaej, Wj^ is
bounded, and ja -> / for a(L1,C0), then jej too. Now let Q = Int S.
If fisL1(X), we have by the Fubini-Tonelli theorem

j U(t;)]a(£)dii = j ja(x)v(x)dx,

where

belongs to C0(X.). So it follows that

The right-hand side of this expression is zero whenever u = 0 on X\S,
a fortiori if u = 0 on X\Q. From this it follows that /(I) = 0 on Q and,
by continuity on Q D S. Thus / e J.

As we shall now show, if X = Rn and s = 1, the results of Part I,
§ 5 lead to partial analogues of Theorem 3.1 for distributions.

3.4 THEOREM. Suppose X = Rn, \ie2', ke 2', and

(3.5) /i*C"cl*s;.

To each £ e 3fe, which is the limit in 3' of finite linear combinations of
translates of A, corresponds vg e 3)'c such that

(3.6) /j, * | = A * Vg.

PROOF. Given /eC™ there exists g e @'e such that

(3.7) ix*f = l*g.

This g is in general not uniquely determined by /. However, if A * g = X * g',
then | * g = f * g' for any £ e ^ ' which is the limit of finite linear combina-
tions of translates of A. So Tf = | * g is uniquely defined. It is evident
that T : C~ -> &c is linear and commutes with translations, and that

(3.8)
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We now show that T is continuous from C£° into £&\, where the latter
is given the topology a(Si'c, C). To accomplish this, it suffices to show that
for each u e C°°, the map Tu : C~ -> C°° defined by

(3.9) TJ = (Tf) * u

is continuous from C£° into C°°. (This remark is based on the observation
that ru/(0) = (u, T/>.) For this it is in turn sufficient to show that Tu\Ce>K

has a graph closed in C~K X C°°, K being any compact subset of Rn. Now
for f.tpeC™ we have from (3.8) and (3.9)

Tu(f * <p) = T(f * <p) * u — (Tf * 95) * u = (7"/ * w) * 99

= TV * <P-

The convolutions are associative since Tf and 93 have compact supports.
Thus

(3-10) Tu(f*9) = TJ*<p (f.yeC?).

Supposing that /„ -> 0 in C™K and TJn-*h in C°°, then by (3.10)
it follows that for any 9? e Cf we have

Tu(Jn * 95) = Ju /B * 9? = Tu<p * fn -> 0

in C00, and also

in C°°. Thus h * 9? = 0 for all 95 e C£°. Hence h = 0, and the graph is closed.
With this, the continuity of T is established.

Appealing to Theorem 5.2 (c) in Part I, we conclude that there exists
v^ e 3)'c such that

(3.11) Tf = V;*f.

Thus from (3.7) and (3.11) it follows that, for each feC™, there exists
g e 2>'c such that

fi * / = X * g and £ * g = vg * /.

Since £, /, g all have compact supports,

which shows that (3.6) holds.

3.5 COROLLARY. If X = Rn, fie 2', X e 2'e, and

(3.5) /«*CC
O O£A*S;,

exists v e £$' such that
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(3.6) p = X * v.

(The converse is true and trivial.)

PROOF. We may assume that X ^ 0: if X = 0, (3.5) entails that /J, = 0,
so that (3.6) is true for any v e 3>'c.

If A 7̂  0 and \%3)'c, its translates span the whole of S>', since use of
the Fourier transform shows that the only y e Cf orthogonal to all translates
of X is cp = 0. Hence we may apply Theorem 3.4, taking therein | = s,
the Dirac measure.

If we assume (as in Corollary 3.5) that Xe2'c, there is an analogous
result, as follows.

3.6 THEOREM. Suppose that X = Rn, fx e 2', X e 3>'c, and that

(3.12) ^C^clsf.

To each | 6 S>'c which is the weak limit in 3)',. of finite linear combinations of
translates of X there corresponds Vg e 2' such that

(3.13) / i * | = A*v£.

PROOF. This proof is very similar to that of Theorem 3.5, appeal being
made to Theorem 5.2 (a) of Part I. We omit the details.

3.7 COROLLARY. Suppose that X = Rn, / j e ^ , and that

(3.12) /t * Cc°° £ X * 2'.

Suppose further that

(3.14) ueC°° and X * u — 0 imply u = 0.

Then there exists v e £>' such that

(3.15) JU = X * V .

PROOF. Condition (3.14) is precisely that required to ensure that the
Dirac measure e (and hence every member of !3'e) is the weak limit in Q>'t.
of finite linear combinations of translates of X. Apply Theorem 3.6, taking
£ = e.

Finally, by using Theorem 5.3 (b) of Part I, we may derive the fol-
lowing theorem.

3.8 THEOREM. Suppose that X = Rn, /ie2', Xe 3>', and that the
translates of X are total in 2' (as happens if X ̂  0, Xe 2'e). Suppose also that

(3.16) /**Ccc X *MC.

Then there exists v e 3>'c, with v bounded on Rn, such that

(3.17) [i = X * v .
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3.9 REMARK. Notice that if (3.17) holds with v as specified, then not
only is (3.16) true, but even

(3.18) pl^ch^.

3.10 The relation fi * Co c X * Cc. It is here supposed that fj, and X
belong to MM(X). As stated in 3.2, we do not know whether this entails
that fi = 1 * v for some v e Mbd.

However, partial results, analogous to Theorems 3.4, 3.6 and 3.8,
can be established. In particular one can show that, if

(3.19) / i * C , c l * C 0 ,

and if | e MM satisfies the condition

(3.20) g e C 0 and X *g = 0 imply f *g = 0,

then there exists vi e Mhd such that

(3.21) / w * | = A*vj.

(The proof, which follows the customary pattern, is left to the reader.)
Now (3.19) itself implies that f = JX fulfills (3.20). For if we take a

net {fa} in Co converging for a(MM, Co) to e, we have fx * fa = 1 * ga for
certain ^ e Co. Then (i = lira [i * fa weakly. Hence if g e Co and A * g = 0,
we have

fi * g = lim /< * fa * g = Km X * ga * g

= lim (A * g) * ga = lim 0 = 0.

So we infer that (3.19) entails

(3.22) JX * fi = X * v for some v e AfM.

In particular, Co = X * Co holds if and only if X is inversible in Mbd.
Again, if X * Co is dense in Co, then (3.20) is valid for any $ eMM.

So, taking f = e, (3.19) is seen to imply the best-possible conclusion, namely

(3.23) fi — X * v for some v e MM.

4. Isomorphisms of convolution algebras

Representation theorems for multipliers of L1 (see Corollary 2.6.2 of
Part I) were used by Wendel [14], [15] as the basis for a study of isometric
and bipositive isomorphisms of Z.1-group algebras. Theorems 1.2, Corollaries
2.6.1 and 2.6.2, and the results of Section 3, all in Part I, can likewise be
used to show that if X and X' are two locally compact groups, and if A
denotes any one of the convolution algebras L1, L\, Cc, or Lv (1 < p < co)
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over a compact group, then the existence of a bipositive isomorphism
between A (X) and A (X') entails that X and X' are isomorphic topological
groups. Details of the arguments appear in Edwards [9].
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