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WITT KERNELS OF BI-QUADRATIC EXTENSIONS IN
CHARACTERISTIC 2

HAMZA AHMAD

Let k be a field of characteristic 2. The author's previous results (Arch. Math. (1994))
are used to prove the excellence of quadratic extensions of k. This in turn is used
to determine the Witt kernel of a quadratic extension up to Witt equivalence. An
example is given to show that Witt equivalence cannot be strengthened to isometry.

INTRODUCTION

An extension of fields L/k induces a homomorphism t* : W(L) —> W (k) of the Witt
groups of (equivalence classes of) quadratic forms. The kernel of (t*) is precisely the
(classes of) anisotropic fc-forms that become hyperbolic over L. For fields of characteristic
T̂  2, the Witt kernels of quadratic and bi-quadratic extensions are known (for example see
[5, Theorem 3.2 p. 200] and [4, 2.12 p. 457]). In characteristic 2, the results for separable
quadratic and separable bi-quadratic extensions are analogous to the characteristic ^ 2
case. Baeza in [3, 4.3] determined the Witt kernel of inseparable quadratic extensions up
to Witt equivalence. In [1, 2.8], the Witt kernel of such extensions was determined up
to isometry. The purpose of this note is to characterise the Witt kernel of bi-quadratic
extensions in characteristic 2 (Theorems 10 and 11). As in the characteristic ^ 2 case the
excellence of quadratic extensions plays an important role. Based on [1, 2.5] we establish
the excellence of inseparable quadratic extension (Proposition 3). In the end we give an
example to show that the characterisation (which is up to Witt equivalence) cannot be
improved to isometry.

TERMINOLOGY AND NOTATION. Throughout, the field k will always have characteristic
2. We follow the standard notation as in [2]. In particular, a quadratic fc-form (or simply
a form) q is a map from a finite dimensional ^-vector space V to k satisfying: (i) For
every a € k and x e V, q(ax) = a2q(x), and (ii) 5,(x,y) := q(x+y) - q(x) - q(y) is a
bilinear map. A form q is called anisotropic if (q{x) = 0 implies x = 0); and q is called
nonsingular if the subspace V x := {x € V | Bq{x,y) = 0 for all y € V} = 0. The
isometry of forms is denoted by =, and the orthogonal sum of forms is denoted by _L.
The (non-singular) two dimensional quadratic space (V", q) with a basis {e, f} such that
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q(e) = a, q(f) = b and Bq(e, f) = 1 will be denoted by [a, 6]. The hyperbolic plane [0,0]
will be denoted by H. The orthogonal sum m • HI := H ± ... ± M (m-summands) is
called a hyperbolic form. It is known ([2]) that any non-singular A;-form q decomposes
into

9 a s m - e ± [ a 1 > 6 1 ] ± . . . ± [ o r , 6 r ] ,

with auk G k such that the form q' — [a,i,bi] ± ... ± [ar,br] is anisotropic. The form
q' and m are uniquely determined by q and are, respectively, called the anisotropic part
and the Witt index of q. Two forms are Witt equivalent if their anisotropic parts are
isometric. The set of Witt equivalence classes of non-singular quadratic fc-forms with the
operation ± define a group W(k), the Witt group of k. Let L/k be a field extension.
Then any fc-form q can also be viewed as an L-form (denoted by ?£,).

1. EXCELLENCE OF QUADRATIC EXTENSIONS

Let L/k be a field extension. An L-form ip is said to be defined over A; if there exists
a k- form 7 such that <p = -yL. The extension L/k is called excellent if the anisotropic
part over L of any non-singular k-form is defined over k.

It is known that separable quadratic extension are excellent. This is an immediate
consequence of the following proposition.

PROPOSITION 1 . 1 . [2, Theorem 4.2 p. 121] Let Jfc be a Beld of characteristic
2 and let K = k(P)/k where 0 g k and 01 - (3 = b € k. If a non-singular anisotropic
k-form q has Witt index s over K, then q = Ci[l,6] ± . . . ± c5[l,6] _L q0 for some
d,...,c, € k and a k-form q0- In particular, if q becomes hyperbolic over K, then
q^ci[l,b] ± ... ±Cr[l,6] for some cu...,Cr e k

Before showing that inseparable quadratic extensions are excellent, we make the
following.

R E M A R K 1.2. Let K = k(Vd).

(i) By [1, 2.5], any non-singular anisotropic fc-form q can be written as

q*qi ±(q0±dq0)± ([alt 6,] ± d\au c,]) ± . . . ± ([ar, br] ± d[ar, cv]),

where 90 and q\ are fc-forms and ai,6j,Cj € k, (i = 1, . . . , r ) such that

the Witt index of q over K = k(\/d) equals dim(g0) + r. In particular, qi

remains anisotropic over K, and [at, bi] ± d[oj, ci\ is not hyperbolic over K.

(ii) Let a,b,c G fc. Then, over K, we have

[a,6] J. d[a,c] S [a,6] ± [a,c] S [0,6] 1 [0,6 + c] a H ± [0,6 + c]

The first isometry follows because d£ K2. To see the second isometry, take
Ui ,v 1 ,u 2 ; v 2 to be a basis associated with the presentation [a,b] ± [a, c],
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and rewrite the form with respect to the new basis Ui +112, vi, U2, V2 + V!

to get [0 ,6]± [a,b + c].

PROPOSITION 1 . 3 . Let k be a fieid of characteristic 2. Let q be a non-singular

anisotropic k-form. Then the anisotropic part of q over K = k(Vd) is defined over k; i.

e. K/k is excellent.

P R O O F : Replacing q by its anisotropic part, we may assume that q is anisotropic

over k. Write

q a Ql ± (9o -L dq0) ± ([a.M] ± d [a i , d ] ) ± • • • ± ( K A ] J- <*[(»,, * ] ) ,

as in (i) of Remark 1.2. By (ii) of 1.2, [OJ, &*] ± d[aj, Cj] = M ± [a*, 6* + a], and therefore

gK a (dim ^o+^ll lf t J. [a^h + d]! ... ±[ar,br +Cr).

Since the Witt index of qx equals dim go + T (Remark 1.2.(i)), the anisotropic part of q
over K is qi ± [ai,bi + Ci] ± ... ± [or, br + cv], which is defined over k. D

As in characteristic ^ 2, the excellence property implies (see [3, Lemma 2.1])

COROLLARY 1 . 4 . Let K = k(\/d) be a quadratic extension over k. Let a and
6 be non- singular k-forms and let 7 be a non-singuiar K-form. If oK = 5K -L 7, tien 7
is defined over k.

To determine the Witt kernel of bi-quadratic extensions, one needs a "characteristic
2" analogue of [3, Proposition 2.11.(a)]. For separable quadratic extensions we have the
following statement whose proof is identical to that of [3, Proposition 2.11.(a)].

THEOREM 1 . 5 . Let k be a Geld of characteristic 2. Let K/k be an excellent
extension of k. Let q = ei[l, b] ± ... ± er[l, b] where b e k' and eu..., er € K. Ifq is
defined over k, then there exist c\,..., cv € k such that q = c\[l, b] 1 ... _L Cr[l, 6].

In the case of inseparable quadratic extensions we have

THEOREM 1 . 6 . Let K be an excellent extension of k, and let d e k'. Let 7 be
a non-singular K-form such that the form 7 ± dy is defined over k. Then there exists a
k-form 6 such that 7 ± dj S (6 ± d6)K.

The proof will be broken into two lemmas.

LEMMA 1 . 7 . Let a, b, c, d e k such that the form 8 = [a, 6] _L d[a, b] represents c.

Then S = [c, b'] JL d[c, b'} for some bf £ k.

PROOF: Note that 6 = aa where a is the Pfister form [l,ab] ± d[l,ab]. Since a
represents ac, we have

6 = aa = a2ca = ca^ c[l, ab] ± dc[l, ab]

But c[l, ab) = [c, b'\ for some b' 6 k. D
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LEMMA 1 . 8 . Let K be a Geld extension of k, and let d £ k'. Let 7 be a non-
singular K-form such that the form 7 J_ d-y represents an element ofk. Then there exist
a € k, b € K, and a K-form 71 such that

7 JL d1 s ([a, 6] J. d[a, b]) ± (7 l _L d7l)

PROOF: Let (V, 7) be a non-singular if-quadratic space. If d is a square in K, then
7 X d-y is a hyperbolic form of dimension 2(dim7) which is divisible by 4. Hence in this
case we take a = b = 0 and 71 to be the hyperbolic form of dimension (dim 7 — 1).

If 7 is isotropic, then 7 = [0,0] ± 71 and we then let a = b = 0. So, we may assume
that 7 is anisotropic and 7 ± d-y represents an element c S k*. So, there exist Vi,v2 € V
not both zero such that

If v , (respectively v2) is the zero vector, then 7 ^ ) (respectively 7(v2)) equals c (re-
spectively c/d). So, 7 represents an element a of fc* where a = c or a = c/d. Therefore
7 = [a, b) _L 7J for some b € K and a if-form 71, and the conclusion follows.

Therefore we may assume that V! and v2 are both non-zero. First assume that vj
and v2 are not orthogonal or Vi and v2 are linearly dependent. Since 7 is non-singular, in
either case the vectors v x ,v 2 are contained in a non-singular two dimensional quadratic
subspace Vo of V. Then

(1)

for some /if-form 71. Let / = 7(vj) and g = 7(v2). Then by [1, 2.2], we have

(2) (Vo,7k) = [/,/'] and (V0,7k) = [<?,</],

for some f',g' £ K. Since f + d2g = 7(^1) + d7(v2) = c, the form [/,/'] ± d[g,g'}
represents c £ k. By the previous lemma, there exists 6 6 K such that

(3) [f,f')±d[g,g')^[c,b)±d[c,b}

From the equations (l)-(3) we have

7 ± d1 ^ ([ / , / ' ] ± 71) ±d{[g,g'}± 71)

S* ([ / , / ' ] ±d[g,g'})± (71

as desired.

Finally, assume that V! and v2 are orthogonal and linearly independent. Then by

[1, 2.2],

(4) 7 = [ e i , / i ] l [ e 2 , / 2 ] ± 7 o
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where e, = 7(v,), i = 1,2, / i , / 2 € K and 70 is a K-iona. Since t\ + de2 = 7 ( v J
+ d"f(v2) = c, the form [ei, }x] J_ d[e2, f2] represents c£ k. By [1, 2.2] again, there exists
b,r,s € K such that

(5) [e i l / i ]±d[e2 > / 2 ]a[c ,6]±[r ,5]

From the equations (4) and (5) we have

7 ± d-y a ([ei, /x] JL [e2, /2] ± 70) ±- <*([ei, /j] J. [e2, f2] JL 70)

a ([d, h] ± d[e2, h] -L 7o) -L d([eu fx] ± d[e2, f2] ± 7o)

a ([c, 6] ± [r, s] ± 7o) ± d([c, 6] ± [r, s] ± 70)

a ( [ c ,6 ]±d[c ,6 ] )± (7 i±d7 i )

where 71 := ([r, s] ± 70). This completes the proof of the lemma. D

REMARK 1.9.

(i) The forms [a, b], a[l,ab] and a[l,a2b2] are isometric because they are two
dimensional forms representing a common element a and have the same
Arf invariant (see [6, Lemma 4.4.(i), p. 341]).

(ii) Let K = k{Vd), a € k and b e K. By (i), [a,b] a a[l,a262]; hence is
denned over A; because a2b2 G k. So in the conclusion of Lemma 1.8, we
may assume that both a and b are in k.

To complete the proof of Theorem 1.6, note that if 7 ± dj is defined over k, then it
represents an element of k. By 1.8 and 1.9

7 ± d7 = ([a, b] ± d[a, b}) ± (71 ± d7t)

where a.b G k and 71 is a /f-form. If dim(7) = 2, then we are done. If dim(7) > 2. then
corollary 4 implies that 71 ± d2ji is denned over k. The assertion of the theorem follows
by induction.

2. W I T T KERNELS OF BI-QUADRATIC EXTENSIONS

We start with the inseparable case first. One distinguishes between two types of
inseparable bi-quadratic extensions: the purely inseparable case where L = k(y/d~\, \fda)
with d\,d2 € k: and the case L/k contains an intermediate separable extension. In the
latter case, L = k(0, y/d) for some non-square element d € k and 0 g k such that

07 - p = b e k.

THEOREM 2 . 1 . Let L/k be an inseparable bi-quadratic extension over k. Let q

be an anisotropic non-singular k-form such that q is hyperbolic over L.
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(i) If L = k{\/dl, y/dv) with d\, d2 € k, then q is Witt equivalent to a form of
the shape

(gi ±di?i) 1 (ft -Ld2q2)

for some k-forms gi and q2.

(ii) UL = k{0, Vd) where d € k - k2, 0 <£ k and 02 - 0 = b € k, then q is
Witt equivalent to a form of the shape

(c 1 [ l ,6 ]J_ . . ._Lc r [ l ,6 ] )±(g 0 J_dg0)

for some Ci £ k (i = 1 , . . . , r) and a k-form go-

PROOF: For (i), let K = k{\Zd[). If q is hyperbolic over K, the theorem follows
immediately from [1, 2.8]. So, assume qK is not hyperbolic. Let tp denote the anisotropic
part of q over K. By proposition, tp is defined over k. Since q is hyperbolic over
L = K(y/ck), <PL is hyperbolic; hence there exists a K- form q2 such that tp = q2 ± d2q2.
By Theorem 1.6, we may assume that q2 is a fc-form. Consider the A;-form a := q
_L -(<72 -L ^292)- Over K, the form a is hyperbolic because (in W{K)) [an] = [q -L -(92
-L d2q2)K\ = [v -L —f] = 0- So, by [1, 2.8], a is Witt equivalent (over k) to 91 _L dig! for
some /c-form 91. Therefore in the Witt ring of A; we have

[9 _L -(92 -L d292)] = [91

or equivalently,

[q] = [(g2 ± d2g2) ± (91

as desired.

For (ii), we let K = k{0). If qK is hyperbolic, then we are done by 1.1. So, assume

that 9K- is not hyperbolic and let tp be its anisotropic part. As in part (i), it follows that

tp = g0 -L d2<7o for some fc-form g0 and the fc-form a := 9 _L g0 -L d2go is hyperbolic over

K. Proposition 1.1 implies that a is Witt equivalent (over k) to Ci[l,6] ± . . . ± Cr[l,6]

for some d € k (i — 1 , . . . . r). Therefore g is Witt equivalent to (c\[l, b] J. . . . J_ Cr[l, 6])

-L (go J- dg0) D

Using an argument similar to that in the proof of Theorem 2.1 (or similar to [3,
Proposition 2.12] together with Theorem 1.5) we get

THEOREM 2 . 2 . Let L = k(a,0) be a (separable) bi-quadratic extension over k
with a2 — a = a € k and 02 — 0 = b 6 k. Let 9 be an anisotropic non-singular k-form.
If q is hyperbolic over L, then 9 is Witt equivalent to a form of the shape

(e,[l ,a] -L . . . 1 er[l, a]) 1 (^ [ l , b] ± ... ± f.[l, b})

for some ei, fj € k {i = 1,... ,r\j = 1,..., s).
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We conclude this note by an example which shows that the Witt equivalence in the
conclusions of Theorems 2.1 and 2.2 above cannot be strengthened to isometry.

EXAMPLE. Let k0 be a fixed field of characteristic two. Let k = ko(r, s, t, u) where r, s, t, u
are algebraically independent elements over k0 and set

Let a, P (in the algebraic closure of k) be such that a2 - a = r and 02 — j3 — r + s. Then

(i) The form q is anisotropic over k because r, s, t, u are algebraically independent
elements over ko (see [5, ex. 1 p. 273]).

(ii) Over the fields Kx = k{y/i), K2 = k(y/u), K3 = k(a) and K4 = k{0), the form
q is isotropic and have Witt index 1. We see this as follows: First over Kx, t € K\ and
[1, r] ± t[l, s] S [1, r] ± [1, s] 2* H ± [1, r + s] (see (ii) of Remark 1.2). Therefore

(6) qKl^m±[l,r + s}±u[l,r + s}.

Since r + s and u are algebraically independent over ko(y/i), the form [1, r + s] _L u[l, r+s]
is anisotropic over Kx, and therefore qi^ has Witt index 1. Similarly, we can show that
9/c2 also has Witt index 1.

Now over K3 = k(a), the form [1, r] is isotropic and [ l , r + s) =K3 [l,s] (for they
have the same Arf invariant over K3 and represent 1). Therefore, over K3,

(7) qKa^B±t[l,r + S]±u[l,r + s]

and i[l, s] ± u[l, s] is anisotropic over K$ because s, t and u are algebraically independent
over ko(a)- Therefore, q^ has Witt index 1. Likewise, qi<4 has Witt index 1.

(iii) The form q is hyperbolic over the fields Lx = k(y/t, y/u), L2 = k(y/t,/3) and
L3 = k(a,/3):

Note that u e L\ and therefore the form [l , r + s] ± u[l,r + s] = [l,r + s]

±[l,r + s] = 2H. Since Kx C Lx, we have from equation (6) above that

qLl S i l [ l , r + s ] l u [ l , r + s ] = 3 I

That is, qLl is hyperbolic.

Since [} belongs to L2 and L3, [1, r+s] = H over L2 and L3 because 02+l3+(r+s) = 0.
Therefore the form [ l , r + s] ± u[ l , r + s] (respectively, t [ l , r + s] ± u [ l , r + s]) is hyperbolic
over Li (respectively, L3). Therefore equation (6) (respectively, equation (7)) implies that
qL2 (respectively, qi3) is hyperbolic.

(iv) Theorems 2.1 and 2.2 imply that over k the form q is Witt equivalent to forms
of the shape

(a) {qx Ltqi) ± {q2 Luq2).

(b) {qx 1 tqx) ± {cx [1, r + s] ± . . . 1 c j l , r + s)).
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(c) (ftxll.r] ±...± bm{l,r\) X (Cl[l, r + s] X . . . X c»[l,r 4- «]).

where 6j,Ci € & and gi and q-i are non-singular /c-forms. This Witt equivalence cannot

be improved to isometry. For if q is isometric to (a), (b) or (c), then by comparing

dimensions we have either dim?! ^ 2, dimg2 ^ 2, m ^ 2 or n ^ 2. This respectively

imply that the Witt index over K\, K2, K3 or K± is ^ 2; contradicting part (ii) of this

example.
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