WITT KERNELS OF BI-QUADRATIC EXTENSIONS IN CHARACTERISTIC 2

Hamza Ahmad

Let k be a field of characteristic 2. The author's previous results (Arch. Math. (1994)) are used to prove the excellence of quadratic extensions of k. This in turn is used to determine the Witt kernel of a quadratic extension up to Witt equivalence. An example is given to show that Witt equivalence cannot be strengthened to isometry.

Introduction

An extension of fields L / k induces a homomorphism $\iota^{*}: W(L) \rightarrow W(k)$ of the Witt groups of (equivalence classes of) quadratic forms. The kernel of (ι^{*}) is precisely the (classes of) anisotropic k-forms that become hyperbolic over L. For fields of characteristic $\neq 2$, the Witt kernels of quadratic and bi-quadratic extensions are known (for example see [5 , Theorem 3.2 p. 200] and [$4,2.12$ p. 457]). In characteristic 2 , the results for separable quadratic and separable bi-quadratic extensions are analogous to the characteristic $\neq 2$ case. Baeza in [3, 4.3] determined the Witt kernel of inseparable quadratic extensions up to Witt equivalence. In [1, 2.8], the Witt kernel of such extensions was determined up to isometry. The purpose of this note is to characterise the Witt kernel of bi-quadratic extensions in characteristic 2 (Theorems 10 and 11). As in the characteristic $\neq 2$ case the excellence of quadratic extensions plays an important role. Based on [1, 2.5] we establish the excellence of inseparable quadratic extension (Proposition 3). In the end we give an example to show that the characterisation (which is up to Witt equivalence) cannot be improved to isometry.

Terminology and Notation. Throughout, the field k will always have characteristic 2. We follow the standard notation as in [2]. In particular, a quadratic k-form (or simply a form) q is a map from a finite dimensional k-vector space V to k satisfying: (i) For every $a \in k$ and $\mathbf{x} \in V, q(a \mathbf{x})=a^{2} q(\mathbf{x})$, and (ii) $B_{q}(\mathbf{x}, \mathbf{y}):=q(\mathbf{x}+\mathbf{y})-q(\mathbf{x})-q(\mathbf{y})$ is a bilinear map. A form q is called anisotropic if $(q(\mathbf{x})=0$ implies $\mathbf{x}=0)$; and q is called nonsingular if the subspace $V^{\perp}:=\left\{\mathrm{x} \in V \mid B_{q}(\mathrm{x}, \mathrm{y})=0\right.$ for all $\left.\mathrm{y} \in V\right\}=0$. The isometry of forms is denoted by \cong, and the orthogonal sum of forms is denoted by \perp. The (non-singular) two dimensional quadratic space (V, q) with a basis $\{\mathrm{e}, \mathrm{f}\}$ such that
$q(\mathbf{e})=a, q(\mathbf{f})=b$ and $B_{q}(\mathbf{e}, \mathbf{f})=1$ will be denoted by $[a, b]$. The hyperbolic plane $[0,0]$ will be denoted by \mathbb{H}. The orthogonal sum $m \cdot \mathbb{H}:=\mathbb{H} \perp \ldots \perp \mathbb{H}$ (m-summands) is called a hyperbolic form. It is known ([2]) that any non-singular k-form q decomposes into

$$
q \cong m \cdot \mathbb{H} \perp\left[a_{1}, b_{1}\right] \perp \ldots \perp\left[a_{r}, b_{r}\right]
$$

with $a_{i}, b_{i} \in k$ such that the form $q^{\prime}=\left[a_{1}, b_{1}\right] \perp \ldots \perp\left[a_{r}, b_{r}\right]$ is anisotropic. The form q^{\prime} and m are uniquely determined by q and are, respectively, called the anisotropic part and the Witt index of q. Two forms are Witt equivalent if their anisotropic parts are isometric. The set of Witt equivalence classes of non-singular quadratic k-forms with the operation \perp define a group $W(k)$, the Witt group of k. Let L / k be a field extension. Then any k-form q can also be viewed as an L-form (denoted by q_{L}).

1. Excellence of quadratic extensions

Let L / k be a field extension. An L-form φ is said to be defined over k if there exists a k - form γ such that $\varphi \cong \gamma_{L}$. The extension L / k is called excellent if the anisotropic part over L of any non-singular k-form is defined over k.

It is known that separable quadratic extension are excellent. This is an immediate consequence of the following proposition.

PROPOSITION 1.1. [2, Theorem 4.2 p . 121] Let k be a field of characteristic 2 and let $K=k(\beta) / k$ where $\beta \notin k$ and $\beta^{2}-\beta=b \in k$. If a non-singular anisotropic k-form q has Witt index s over K, then $q \cong c_{1}[1, b] \perp \ldots \perp c_{s}[1, b] \perp q_{0}$ for some $c_{1}, \ldots, c_{s} \in k$ and a k-form q_{0}. In particular, if q becomes hyperbolic over K, then $q \cong c_{1}[1, b] \perp \ldots \perp c_{\tau}[1, b]$ for some $c_{1}, \ldots, c_{T} \in k$

Before showing that inseparable quadratic extensions are excellent, we make the following.
Remark 1.2. Let $K=k(\sqrt{d})$.
(i) By $[1,2.5]$, any non-singular anisotropic k-form q can be written as

$$
q \cong q_{1} \perp\left(q_{0} \perp d q_{0}\right) \perp\left(\left[a_{1}, b_{1}\right] \perp d\left[a_{1}, c_{1}\right]\right) \perp \ldots \perp\left(\left[a_{r}, b_{r}\right] \perp d\left[a_{r}, c_{r}\right]\right)
$$

where q_{0} and q_{1} are k-forms and $a_{i}, b_{i}, c_{i} \in k,(i=1, \ldots, r)$ such that the Witt index of q over $K=k(\sqrt{d})$ equals $\operatorname{dim}\left(q_{0}\right)+r$. In particular, q_{1} remains anisotropic over K, and $\left[a_{i}, b_{i}\right] \perp d\left[a_{i}, c_{i}\right]$ is not hyperbolic over K.
(ii) Let $a, b, c \in k$. Then, over K, we have

$$
[a, b] \perp d[a, c] \cong[a, b] \perp[a, c] \cong[0, b] \perp[a, b+c] \cong \mathbb{H} \perp[a, b+c]
$$

The first isometry follows because $d \in K^{2}$. To see the second isometry, take $\mathbf{u}_{1}, \mathbf{v}_{1}, \mathbf{u}_{2}, \mathbf{v}_{2}$ to be a basis associated with the presentation $[a, b] \perp[a, c]$,
and rewrite the form with respect to the new basis $\mathbf{u}_{1}+\mathbf{u}_{2}, \mathbf{v}_{1}, \mathbf{u}_{2}, \mathbf{v}_{2}+\mathbf{v}_{1}$ to get $[0, b] \perp[a, b+c]$.
PROPOSITION 1.3. Let k be a field of characteristic 2. Let q be a non-singular anisotropic k-form. Then the anisotropic part of q over $K=k(\sqrt{d})$ is defined over k; i. e. K / k is excellent.

Proof: Replacing q by its anisotropic part, we may assume that q is anisotropic over k. Write

$$
q \cong q_{1} \perp\left(q_{0} \perp d q_{0}\right) \perp\left(\left[a_{1}, b_{1}\right] \perp d\left[a_{1}, c_{1}\right]\right) \perp \ldots \perp\left(\left[a_{T}, b_{T}\right] \perp d\left[a_{r}, c_{r}\right]\right)
$$

as in (i) of Remark 1.2. By (ii) of $1.2,\left[a_{i}, b_{i}\right] \perp d\left[a_{i}, c_{i}\right] \cong \mathbb{H} \perp\left[a_{i}, b_{i}+c_{i}\right]$, and therefore

$$
q_{K} \cong\left(\operatorname{dim} q_{0}+r\right) \mathbb{H} \perp q_{1} \perp\left[a_{1}, b_{1}+c_{1}\right] \perp \ldots \perp\left[a_{r}, b_{r}+c_{r}\right]
$$

Since the Witt index of q_{K} equals $\operatorname{dim} q_{0}+r$ (Remark 1.2.(i)), the anisotropic part of q over K is $q_{1} \perp\left[a_{1}, b_{1}+c_{1}\right] \perp \ldots \perp\left[a_{r}, b_{r}+c_{r}\right]$, which is defined over k.

As in characteristic $\neq 2$, the excellence property implies (see [3, Lemma 2.1])
Corollary 1.4. Let $K=k(\sqrt{d})$ be a quadratic extension over k. Let σ and δ be non- singular k-forms and let γ be a non-singular K-form. If $\sigma_{K} \cong \delta_{K} \perp \gamma$, then γ is defined over k.

To determine the Witt kernel of bi-quadratic extensions, one needs a "characteristic 2 " analogue of [3, Proposition 2.11.(a)]. For separable quadratic extensions we have the following statement whose proof is identical to that of [3, Proposition 2.11.(a)].

Theorem 1.5. Let k be a field of characteristic 2. Let K / k be an excellent extension of k. Let $q \cong e_{1}[1, b] \perp \ldots \perp e_{r}[1, b]$ where $b \in k^{*}$ and $e_{1}, \ldots, e_{r} \in K$. If q is defined over k, then there exist $c_{1}, \ldots, c_{r} \in k$ such that $q \cong c_{1}[1, b] \perp \ldots \perp c_{r}[1, b]$.

In the case of inseparable quadratic extensions we have
Theorem 1.6. Let K be an excellent extension of k, and let $d \in k^{*}$. Let γ be a non-singular K-form such that the form $\gamma \perp d \gamma$ is defined over k. Then there exists a k-form δ such that $\gamma \perp d \gamma \cong(\delta \perp d \delta)_{K}$.

The proof will be broken into two lemmas.
Lemma 1.7. Let $a, b, c, d \in k$ such that the form $\delta \cong[a, b] \perp d[a, b]$ represents c. Then $\delta \cong\left[c, b^{\prime}\right] \perp d\left[c, b^{\prime}\right]$ for some $b^{\prime} \in k$.

Proof: Note that $\delta \cong a \alpha$ where α is the Pfister form $[1, a b] \perp d[1, a b]$. Since α represents $a c$, we have

$$
\delta \cong a \alpha \cong a^{2} c \alpha \cong c \alpha \cong c[1, a b] \perp d c[1, a b]
$$

But $c[1, a b] \cong\left[c, b^{\prime}\right]$ for some $b^{\prime} \in k$.

Lemma 1.8. Let K be a field extension of k, and let $d \in k^{*}$. Let γ be a nonsingular K-form such that the form $\gamma \perp d \gamma$ represents an element of k. Then there exist $a \in k, b \in K$, and a K-form γ_{1} such that

$$
\gamma \perp d \gamma \cong([a, b] \perp d[a, b]) \perp\left(\gamma_{1} \perp d \gamma_{1}\right)
$$

Proof: Let (V, γ) be a non-singular K-quadratic space. If d is a square in K, then $\gamma \perp d \gamma$ is a hyperbolic form of dimension $2(\operatorname{dim} \gamma)$ which is divisible by 4 . Hence in this case we take $a=b=0$ and γ_{1} to be the hyperbolic form of dimension ($\operatorname{dim} \gamma-1$).

If γ is isotropic, then $\gamma \cong[0,0] \perp \gamma_{1}$ and we then let $a=b=0$. So, we may assume that γ is anisotropic and $\gamma \perp d \gamma$ represents an element $c \in k^{*}$. So, there exist $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}} \in V$ not both zero such that

$$
c=\gamma\left(\mathbf{v}_{1}\right)+d \gamma\left(\mathbf{v}_{2}\right)
$$

If \mathbf{v}_{1} (respectively \mathbf{v}_{2}) is the zero vector, then $\gamma\left(\mathbf{v}_{1}\right)$ (respectively $\gamma\left(\mathbf{v}_{2}\right)$) equals c (respectively c / d). So, γ represents an element a of k^{*} where $a=c$ or $a=c / d$. Therefore $\gamma \cong[a, b] \perp \gamma_{1}$ for some $b \in K$ and a K-form γ_{1}, and the conclusion follows.

Therefore we may assume that \mathbf{v}_{1} and \mathbf{v}_{2} are both non-zero. First assume that \mathbf{v}_{1} and \mathbf{v}_{2} are not orthogonal or \mathbf{v}_{1} and \mathbf{v}_{2} are linearly dependent. Since γ is non-singular, in either case the vectors $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}$ are contained in a non-singular two dimensional quadratic subspace V_{0} of V. Then

$$
\begin{equation*}
(V, \gamma) \cong\left(V_{0},\left.\gamma\right|_{V_{0}}\right) \perp \gamma_{1} \tag{1}
\end{equation*}
$$

for some K-form γ_{1}. Let $f=\gamma\left(\mathbf{v}_{1}\right)$ and $g=\gamma\left(\mathbf{v}_{2}\right)$. Then by $[1,2.2]$, we have

$$
\begin{equation*}
\left(V_{0}, \gamma \mid V_{0}\right) \cong\left[f, f^{\prime}\right] \quad \text { and } \quad\left(V_{0}, \gamma \mid v_{0}\right) \cong\left[g, g^{\prime}\right] \tag{2}
\end{equation*}
$$

for some $f^{\prime}, g^{\prime} \in K$. Since $f+d_{2} g=\gamma\left(\mathbf{v}_{1}\right)+d \gamma\left(\mathbf{v}_{2}\right)=c$, the form $\left[f, f^{\prime}\right] \perp d\left[g, g^{\prime}\right]$ represents $c \in k$. By the previous lemma, there exists $b \in K$ such that

$$
\begin{equation*}
\left[f, f^{\prime}\right] \perp d\left[g, g^{\prime}\right] \cong[c, b] \perp d[c, b] \tag{3}
\end{equation*}
$$

From the equations (1)-(3) we have

$$
\begin{aligned}
\gamma \perp d \gamma & \cong\left(\left[f, f^{\prime}\right] \perp \gamma_{1}\right) \perp d\left(\left[g, g^{\prime}\right] \perp \gamma_{1}\right) \\
& \cong\left(\left[f, f^{\prime}\right] \perp d\left[g, g^{\prime}\right]\right) \perp\left(\gamma_{1} \perp d \gamma_{1}\right) \\
& \cong([c, b] \perp d[c, b]) \perp\left(\gamma_{1} \perp d \gamma_{1}\right)
\end{aligned}
$$

as desired.
Finally, assume that \mathbf{v}_{1} and $\mathbf{v}_{\mathbf{2}}$ are orthogonal and linearly independent. Then by [1, 2.2]:

$$
\begin{equation*}
\gamma \cong\left[e_{1}, f_{1}\right] \perp\left[e_{2}, f_{2}\right] \perp \gamma_{0} \tag{4}
\end{equation*}
$$

where $e_{i}=\gamma\left(\mathbf{v}_{i}\right), i=1,2, f_{1}, f_{2} \in K$ and γ_{0} is a K-form. Since $e_{1}+d e_{2}=\gamma\left(\mathbf{v}_{1}\right)$ $+d \gamma\left(\mathbf{v}_{2}\right)=c$, the form $\left[e_{1}, f_{1}\right] \perp d\left[e_{2}, f_{2}\right]$ represents $c \in k$. By [1,2.2] again, there exists $b, r, s \in K$ such that

$$
\begin{equation*}
\left[e_{1}, f_{1}\right] \perp d\left[e_{2}, f_{2}\right] \cong[c, b] \perp[r, s] \tag{5}
\end{equation*}
$$

From the equations (4) and (5) we have

$$
\begin{aligned}
\gamma \perp d \gamma & \cong\left(\left[e_{1}, f_{1}\right] \perp\left[e_{2}, f_{2}\right] \perp \gamma_{0}\right) \perp d\left(\left[e_{1}, f_{1}\right] \perp\left[e_{2}, f_{2}\right] \perp \gamma_{0}\right) \\
& \cong\left(\left[e_{1}, f_{1}\right] \perp d\left[e_{2}, f_{2}\right] \perp \gamma_{0}\right) \perp d\left(\left[e_{1}, f_{1}\right] \perp d\left[e_{2}, f_{2}\right] \perp \gamma_{0}\right) \\
& \cong\left([c, b] \perp[r, s] \perp \gamma_{0}\right) \perp d\left([c, b] \perp[r, s] \perp \gamma_{0}\right) \\
& \cong([c, b] \perp d[c, b]) \perp\left(\gamma_{1} \perp d \gamma_{1}\right)
\end{aligned}
$$

where $\gamma_{1}:=\left([r, s] \perp \gamma_{0}\right)$. This completes the proof of the lemma.
Remark 1.9.
(i) The forms $[a, b], a[1, a b]$ and $a\left[1, a^{2} b^{2}\right]$ are isometric because they are two dimensional forms representing a common element a and have the same Arf invariant (see [6, Lemma 4.4.(i), p. 341]).
(ii) Let $K=k(\sqrt{d}), a \in k$ and $b \in K$. By (i), $[a, b] \cong a\left[1, a^{2} b^{2}\right]$; hence is defined over k because $a^{2} b^{2} \in k$. So in the conclusion of Lemma 1.8, we may assume that both a and b are in k.
To complete the proof of Theorem 1.6, note that if $\gamma \perp d \gamma$ is defined over k, then it represents an element of k. By 1.8 and 1.9

$$
\gamma \perp d \gamma \cong([a, b] \perp d[a, b]) \perp\left(\gamma_{1} \perp d \gamma_{1}\right)
$$

where $a, b \in k$ and γ_{1} is a K-form. If $\operatorname{dim}(\gamma)=2$, then we are done. If $\operatorname{dim}(\gamma)>2$, then corollary 4 implies that $\gamma_{1} \perp d_{2} \gamma_{1}$ is defined over k. The assertion of the theorem follows by induction.

2. Witt kernels of bi-quadratic extensions

We start with the inseparable case first. One distinguishes between two types of inseparable bi-quadratic extensions: the purely inseparable case where $L=k\left(\sqrt{d_{1}}, \sqrt{d_{2}}\right)$ with $d_{1}, d_{2} \in k$; and the case L / k contains an intermediate separable extension. In the latter case, $L=k(\beta, \sqrt{d})$ for some non-square element $d \in k$ and $\beta \notin k$ such that $\beta^{2}-\beta=b \in k$.

Theorem 2.1. Let L / k be an inseparable bi-quadratic extension over k. Let q be an anisotropic non-singular k-form such that q is hyperbolic over L.
(i) If $L=k\left(\sqrt{d_{1}}, \sqrt{d_{2}}\right)$ with $d_{1}, d_{2} \in k$, then q is Witt equivalent to a form of the shape

$$
\left(q_{1} \perp d_{1} q_{1}\right) \perp\left(q_{2} \perp d_{2} q_{2}\right)
$$

for some k-forms q_{1} and q_{2}.
(ii) If $L=k(\beta, \sqrt{d})$ where $d \in k-k^{2}, \beta \notin k$ and $\beta^{2}-\beta=b \in k$, then q is Witt equivalent to a form of the shape

$$
\left(c_{1}[1, b] \perp \ldots \perp c_{r}[1, b]\right) \perp\left(q_{0} \perp d q_{0}\right)
$$

for some $c_{i} \in k(i=1, \ldots, r)$ and a k-form q_{0}.
Proof: For (i), let $K=k\left(\sqrt{d_{1}}\right)$. If q is hyperbolic over K, the theorem follows immediately from $[\mathbf{1}, 2.8]$. So, assume q_{K} is not hyperbolic. Let φ denote the anisotropic part of q over K. By proposition, φ is defined over k. Since q is hyperbolic over $L=K\left(\sqrt{d_{2}}\right), \varphi_{L}$ is hyperbolic; hence there exists a K - form q_{2} such that $\varphi \cong q_{2} \perp d_{2} q_{2}$. By Theorem 1.6, we may assume that q_{2} is a k-form. Consider the k-form $\alpha:=q$ $\perp-\left(q_{2} \perp d_{2} q_{2}\right)$. Over K, the form α is hyperbolic because (in $\left.W(K)\right)\left[\alpha_{K}\right]=\left[q \perp-\left(q_{2}\right.\right.$ $\left.\left.\perp d_{2} q_{2}\right)_{K}\right]=[\varphi \perp-\varphi]=0$. So, by $[1,2.8], \alpha$ is Witt equivalent (over k) to $q_{1} \perp d_{1} q_{1}$ for some k-form q_{1}. Therefore in the Witt ring of k we have

$$
\left[q \perp-\left(q_{2} \perp d_{2} q_{2}\right)\right]=\left[q_{1} \perp d_{1} q_{1}\right] ;
$$

or equivalently,

$$
[q]=\left[\left(q_{2} \perp d_{2} q_{2}\right) \perp\left(q_{1} \perp d_{1} q_{1}\right)\right]
$$

as desired.
For (ii), we let $K=k(\beta)$. If q_{K} is hyperbolic, then we are done by 1.1. So, assume that q_{K} is not hyperbolic and let φ be its anisotropic part. As in part (i), it follows that $\varphi \cong q_{0} \perp d_{2} q_{0}$ for some k-form q_{0} and the k-form $\alpha:=q \perp q_{0} \perp d_{2} q_{0}$ is hyperbolic over K. Proposition 1.1 implies that α is Witt equivalent (over k) to $c_{1}[1, b] \perp \ldots \perp c_{r}[1, b]$ for some $c_{i} \in k(i=1, \ldots, r)$. Therefore q is Witt equivalent to ($\left.c_{1}[1, b] \perp \ldots \perp c_{r}[1, b]\right)$ $\perp\left(q_{0} \perp d q_{0}\right)$

Using an argument similar to that in the proof of Theorem 2.1 (or similar to [3, Proposition 2.12] together with Theorem 1.5) we get

Theorem 2.2. Let $L=k(\alpha, \beta)$ be a (separable) bi-quadratic extension over k with $\alpha^{2}-\alpha=a \in k$ and $\beta^{2}-\beta=b \in k$. Let q be an anisotropic non-singular k-form. If q is hyperbolic over L, then q is Witt equivalent to a form of the shape

$$
\left(e_{1}[1, a] \perp \ldots \perp e_{r}[1, a]\right) \perp\left(f_{1}[1, b] \perp \ldots \perp f_{s}[1, b]\right)
$$

for some $e_{i}, f_{j} \in k(i=1, \ldots, r ; j=1, \ldots, s)$.

We conclude this note by an example which shows that the Witt equivalence in the conclusions of Theorems 2.1 and 2.2 above cannot be strengthened to isometry.
Example. Let k_{0} be a fixed field of characteristic two. Let $k=k_{0}(r, s, t, u)$ where r, s, t, u are algebraically independent elements over k_{0} and set

$$
q \cong[1, r] \perp t[1, s] \perp u[1, r+s]
$$

Let α, β (in the algebraic closure of k) be such that $\alpha^{2}-\alpha=r$ and $\beta^{2}-\beta=r+s$. Then
(i) The form q is anisotropic over k because r, s, t, u are algebraically independent elements over k_{0} (see [5, ex. l p. 273]).
(ii) Over the fields $K_{1}=k(\sqrt{t}), K_{2}=k(\sqrt{u}), K_{3}=k(\alpha)$ and $K_{4}=k(\beta)$, the form q is isotropic and have Witt index 1 . We see this as follows: First over $K_{1}, t \in K_{1}^{2}$ and $[1, r] \perp t[1, s] \cong[1, r] \perp[1, s] \cong \mathbb{H} \perp[1, r+s]$ (see (ii) of Remark 1.2). Therefore

$$
\begin{equation*}
q_{K_{1}} \cong \mathbb{H} \perp[1, r+s] \perp u[1, r+s] \tag{6}
\end{equation*}
$$

Since $r+s$ and u are algebraically independent over $k_{0}(\sqrt{t})$, the form $[1, r+s] \perp u[1, r+s]$ is anisotropic over K_{1}, and therefore $q_{K_{1}}$ has Witt index 1 . Similarly, we can show that $q_{K_{2}}$ also has Witt index 1 .

Now over $K_{3}=k(\alpha)$, the form $[1, r]$ is isotropic and $[1, r+s] \cong \cong_{K_{3}}[1, s]$ (for they have the same Arf invariant over K_{3} and represent 1). Therefore, over K_{3},

$$
\begin{equation*}
q_{K_{3}} \cong \mathbb{H} \perp t[1, r+s] \perp u[1, r+s] \tag{7}
\end{equation*}
$$

and $t[1, s] \perp u[1, s]$ is anisotropic over K_{3} because s, t and u are algebraically independent over $k_{0}(\alpha)$. Therefore, $q_{K_{3}}$ has Witt index 1 . Likewise, $q_{K_{4}}$ has Witt index 1.
(iii) The form q is hyperbolic over the fields $L_{1}=k(\sqrt{t}, \sqrt{u}), L_{2}=k(\sqrt{t}, \beta)$ and $L_{3}=k(\alpha, \beta)$:

Note that $u \in L_{1}^{2}$ and therefore the form $[1, r+s] \perp u[1, r+s] \cong[1, r+s]$ $\perp[1, r+s] \cong 2 \mathbb{H}$. Since $K_{1} \subset L_{1}$, we have from equation (6) above that

$$
q_{L_{1}} \cong \mathbb{H} \perp[1, r+s] \perp u[1, r+s] \cong 3 \mathbb{H}
$$

That is, $q_{L_{1}}$ is hyperbolic.
Since β belongs to L_{2} and $L_{3},[1, r+s] \cong \mathbb{H}$ over L_{2} and L_{3} because $\beta^{2}+\beta+(r+s)=0$. Therefore the form $[1, r+s] \perp u[1, r+s]$ (respectively, $t[1, r+s] \perp u[1, r+s]$) is hyperbolic over L_{2} (respectively, L_{3}). Therefore equation (6) (respectively, equation (7)) implies that $q_{L_{2}}$ (respectively, $q_{L_{3}}$) is hyperbolic.
(iv) Theorems 2.1 and 2.2 imply that over k the form q is Witt equivalent to forms of the shape
(a) $\left(q_{1} \perp t q_{1}\right) \perp\left(q_{2} \perp u q_{2}\right)$.
(b) $\left(q_{1} \perp t q_{1}\right) \perp\left(c_{1}[1, r+s] \perp \ldots \perp c_{n}[1, r+s]\right)$.
(c) $\quad\left(b_{1}[1, r] \perp \ldots \perp b_{m}[1, r]\right) \perp\left(c_{1}[1, r+s] \perp \ldots \perp c_{n}[1, r+s]\right)$.
where $b_{j}, c_{i} \in k$ and q_{1} and q_{2} are non-singular k-forms. This Witt equivalence cannot be improved to isometry. For if q is isometric to (a), (b) or (c), then by comparing dimensions we have either $\operatorname{dim} q_{1} \geqslant 2, \operatorname{dim} q_{2} \geqslant 2, m \geqslant 2$ or $n \geqslant 2$. This respectively imply that the Witt index over K_{1}, K_{2}, K_{3} or K_{4} is $\geqslant 2$; contradicting part (ii) of this example.

References

[1] H. Ahmad, 'On quadratic forms over inseparable quadratic extensions', Arch. Math. 63 (1994), 23-29.
[2] R. Baeza, 'Quadratic forms over semilocal rings', Lecture Notes in Mathematics 655 (Springer-Verlag, Berlin, Heidelberg, New York 1978).
[3] R. Baeza, 'Ein teilformensatz für quadratische formen in charakteristik 2', Math. Z. 135 (1974), 175-184.
[4] R. Elman, T.Y. Lam and A. Wadsworth, 'Amenable fields and Pfister extensions', in Conf. Quad. Forms, 1976, (G. Orezech, Editor), Queens Papers on Pure and App. Math. 46, 1977, pp. 445-492.
[5] T.Y. Lam, The algebraic theory of quadratic forms (Benajmin, Cummings Publ. Co., Reading, MA, 1973).
[6] W. Scharlau, Quadratic and hermitian forms (Springer-Verlag, Berlin 1985).

Department of Mathematical Sciences
Saginaw Valley State University
University Center, MI 48710
United States of America
e-mail: hyahmad@svsu.edu

