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ABSTRACT. Ice sheets and smaller ice caps appear to behave in dynamically similar ways; both contain
slow-moving ice that is probably frozen to the bed, interspersed with fast-flowing ice streams and outlet
glaciers that terminate into the ocean. Academy of Sciences Ice Cap (Akademii Nauk ice cap;
5570 km2), Severnaya Zemlya, Russian High Arctic, provides a clear example of this varied flow regime.
We have combined satellite measurements of elevation change and surface velocity to show that
variable ice-stream dynamics dominate the mass balance of the ice cap. Since 1988, the ice cap has lost
58�16Gt of ice, corresponding to ��3% of its mass or 0.16mm of sea-level rise. The climatic mass
balance is estimated to be close to zero, and terminus positions have remained stable to within a few
kilometers, implying that almost all mass loss has occurred through iceberg calving. The ice-cap calving
rate increased from �0.6Gt a–1 in 1995 to �3.0Gt a–1 in 2000–02, but has recently decreased to
�1.4Gt a–1 due to a likely slowdown of the largest ice stream. Such highly variable calving rates have
not been reported before from High Arctic ice caps, suggesting that these ice masses may be less stable
than previously thought.

INTRODUCTION
Recent studies have shown that marine-terminating glacier
dynamics play a major role in the mass balance of outlet
glaciers in Antarctica, Greenland and Alaska. Outlet glaciers
on the Antarctic Peninsula have been observed to accelerate
after break-up of buttressing ice shelves (Scambos and
others, 2004), and warmer than usual ocean water is
believed to be one of the main drivers for the recent retreat
and acceleration of Greenland outlet glaciers (Holland and
others, 2008). Marine glacier basins in Greenland are
thinning about twice as fast as their land-terminating
neighbors (Sole and others, 2008). This trend has so far not
been observed for marine glaciers in the High Arctic
archipelagos, although they experience comparable climatic
and oceanic forcing (Gardner and others, 2011). In this
study, we use measurements of changes in glacier area,
velocity and surface elevation to infer glacier dynamics and
calving rates for the largest ice cap in the Russian Arctic,
Academy of Sciences Ice Cap.

Academy of Sciences Ice Cap, sometimes referred to as
Akademii Nauk ice cap (Fritzsche and others, 2005), is
located at 80.58N, 958 E on Komsomolets island in the
Severnaya Zemlya archipelago (Fig. 1). The region has a
cold, dry climate with a mean annual air temperature of
about –168C (Bassford and others, 2006). Precipitation
increases with altitude and has been measured to a long-
term average of 0.46mw.e. a–1 at the summit of Academy of
Sciences Ice Cap (Fritzsche and others, 2005). Time series of
in situ mass-balance measurements on Severnaya Zemlya
exist only for Vavilov Ice Cap, on neighboring October
Revolution Island (Fig. 1), over a limited number of years in
the 1970s–80s. They indicate a slightly negative climatic
mass balance (Bassford and others, 2006). Most iceberg
calving in the region occurs from the Matusevitch Ice Shelf
(Williams and Dowdeswell, 2001) and the fast-flowing ice

streams of Academy of Sciences Ice Cap. The total calving
flux of Academy of Sciences Ice Cap has previously been
estimated to be �0.6Gt a–1 (Dowdeswell and others, 2002),
based on ice thicknesses from airborne radio-echo sounding
and surface velocities from synthetic aperture radar (SAR)
interferometry (Fig. 2). There is no evidence of past surge
activity on Academy of Sciences Ice Cap and little for
glaciers in Severnaya Zemlya more generally (Dowdeswell
and Williams, 1997; Dowdeswell and others, 2002).

The morphology of Academy of Sciences Ice Cap is
relatively simple, with a single dome that rises to an
elevation of 750m (Fig. 3a). Airborne radio-echo sounding
shows that most of the north is grounded above sea level,
while most of the southeast and west is grounded below sea
level (Fig. 2a). In total, �50% of the ice cap is grounded
below sea level, and 200 km (50%) of the ice margin is
marine. The total ice-cap volume is �2200 km3 (Dowdes-
well and others, 2002).

SURFACE VELOCITIES AND DRAINAGE BASINS
Extraction of ice-surface velocities from satellite data is
difficult in regions like Severnaya Zemlya due to frequent
cloud cover and low visual contrast in optical imagery, as
well as rapid temporal decorrelation of amplitude and phase
in SAR acquisitions over snow and ice. The only semi-
complete map of surface velocities on Academy of Sciences
Ice Cap is from single-look SAR interferometry (InSAR)
during the 1 day tandem phase of European Remote-sensing
Satellites-1 and -2 (ERS-1/2) in 1995 (Dowdeswell and
others, 2002). Surface deformation could only be detected
in the satellite look direction (northeastward; Fig. 2b), and a
digital elevation model (DEM) had to be used to decompose
look-angle vectors into assumed downslope movement. This
is only feasible for angles within �708 of the look direction,
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elevation-change rates has been estimated as 0.34ma–1 in
similar terrain in Svalbard (Moholdt and others, 2010b). The
temporal trend in ICESat inter-campaign biases is likely to be
<0.02m a–1 (Zwally and others, 2011). The DEM was
corrected for a bias of 1.8m as determined from ICESat over
surrounding land surfaces, but we allowed for an error in this
bias of 2m (i.e. �BIAS = 2/18ma–1 = 0.11ma–1) since the land
morphology is different from the ice cap. The error due to
unknown density changes in the firn pack is probably small
since almost all mass loss is caused by glacier dynamics.
Using these methods and assumptions, we estimate an ice-
cap mass balance of –0.55� 0.16mw.e. a–1 (–3.1Gt a–1) for
1988–2006 and –0.19�0.05mw.e. a–1 (–1.1Gt a–1) for
2003–09 (Table 1). The mass losses are dominated by
basins B–D.

We did not calculate any mass balances for the 1988–97
period (DEM–RES) because of the large uncertainty of the
RES surface-elevation data. The mean elevation difference
at crossover points between RES profiles is 6.9�4.9m
(Dowdeswell and others, 2002), while the corresponding
precision of campaign-wise ICESat crossovers is better than
1m (Moholdt and others, 2010b). The RES data are
susceptible to elevation biases due to the retracking of the
surface return, radar-signal penetration in dry snow/ice and
local pressure fields that influence the pressure-altimeter
recordings (Bassford, 2002; Moholdt, 2010). We adjusted
all RES elevations by +9m to account for a potential bias
that we determined over basin north where elevation
changes are expected to be small. Figure 4a should therefore
only be used to interpret large-scale spatial patterns in
elevation change.

CLIMATIC MASS BALANCE
Analysis and modeling of an ice-core record from the
summit indicate that Academy of Sciences Ice Cap has been
growing until modern times, with an average accumulation
rate of 0.46mw.e. a–1 between 1956 and 1999 (Fritzsche
and others, 2005). The whole ice core was cold, but
meltwater percolation and refreezing were evident through
most of the 60m deep firn layer. Surface melting and
ponding can also be seen in many of the summer Landsat
scenes, especially at the lowermost elevations in basins A, C
and D (Fig. 3). In situ mass-balance measurements and
modeling conducted at the more southerly Vavilov Ice Cap
(Fig. 1) indicate a slightly negative climatic mass balance of
–0.02mw.e. a–1 between 1974 and 1988, with an average
equilibrium-line altitude of 500m (Bassford and others,
2006). They found that 40% of the total net accumulation
occurred as refreezing of meltwater in the firn pack, thus
limiting the potential for meltwater to penetrate to the bed in
the accumulation area.

In this study, we use basin north as an analogue for the
climatic mass balance of the ice cap. This can be justified
since the northern part of the ice cap seems to be
dynamically inactive (Fig. 2b), with no significant mass loss
from iceberg calving. The geodetic mass balances for basin
north indicate a slightly positive climatic mass balance for
both periods, but only the 2003–09 period is significantly
positive (Table 1). Due to the small magnitude of the
climatic mass-balance signal and the uncertainty in extrapo-
lating it to the more dynamic basins, we simply set the
climatic mass balance of the ice cap to a constant of
0mw.e. a–1 when calculating calving fluxes. This assumes

no strong directional gradients in climatic mass balance,
similar to those observed on the ice caps of Austfonna in
northeastern Svalbard (Schuler and others, 2007; Moholdt
and others, 2010a) and Flade Isblink in northeastern
Greenland (Rinne and others, 2011).

ICEBERG CALVING FLUX
The difference between geodetic and climatic mass balance
has previously been used to estimate the calving flux of
Kronebreen, Svalbard (Nuth and others, 2012). If the
climatic mass balance and the mass change from terminus
fluctuations are negligible, then the iceberg calving flux will
simply equal the geodetic mass balance. The geodetic mass
balance of basin A is slightly positive for all periods (Table 1).
The terminus was dynamically stagnant in 1995 and has
maintained a fairly stable position since the early 1960s.
Hence, we conclude that iceberg calving is negligible for
this basin despite the surge-like geometric-change pattern
and the high upstream velocities in 1995. For the remaining
ice streams (basins B–D), we estimate the calving flux by
multiplying the area-averaged geodetic mass balances by
their respective basin areas (Table 1). Assuming that the
other slow-moving termini of the ice cap calve at a total rate
of �0.1Gt a–1 (Dowdeswell and others, 2002), we obtain a
total calving flux of �3.2Gt a–1 for 1988–2006 and �1.4
Gt a–1 for 2003–09.

Most existing calving estimates in the Arctic are based on
surface-velocity measurements across a fixed flux gate with
known width and depth (e.g. Dowdeswell and others, 2008;
Williamson and others, 2008; Błaszczyk and others, 2009).
Dowdeswell and others (2002) used the lowermost extent of
the 1995 InSAR velocities (Fig. 2b) to estimate the ice flux
through gates with ice thicknesses determined from RES.
They derived a total calving flux of �0.6Gt a–1, which is
several times lower than the long-term estimates derived
from basin-wide elevation changes. The InSAR-derived
calving estimate can potentially be biased too low due to
unresolved glacier movement perpendicular to the SAR look
angle (Fig. 2b), but the elevation-change maps in Figure 4 do
not suggest any major dynamic activity outside the four
detected ice streams.

The Landsat-derived velocities from 2000–02 are re-
stricted to the crevassed zones of ice streams B–D (Fig. 3c
and d). Although these measurements lack the spatial
coverage of the InSAR data, they have the advantage of
capturing surface velocities close to the termini where
calving occurs. If we assume the same flux gates as for the
1995 InSAR data, we can use the Landsat velocities to infer
calving fluxes for the years 2000–02. Ice streams B and C
have velocity data around their flux gates (Fig. 3c and d), so
we used the average velocity within a 1 km buffer of each
gate (671 and 685ma–1, respectively) to estimate calving
fluxes (Table 1). Ice stream D does not have any data close to
its flux gate, so we had to expand the buffer to 5 km and
assume that the frontal velocities are representative of the
upstream gate. All these flux estimates should be treated with
caution since the Landsat velocity fields do not span the full
width of the ice streams (Fig. 3c and d). It is likely that
the gate-averaged velocities are slightly too high because the
matching points are spatially biased towards the center of the
ice streams (ice streams B and C) or the front (ice stream D)
where velocities are expected to be higher. On the other
hand, glacier acceleration might have widened the ice
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streams with respect to the 1995 flux gates, thus allowing a
larger ice flux and more calving. In any case, most of the ice
flux is confined to the central bedrock troughs where the ice
streams are thickest, so the error due to these unknown
factors is likely to be <0.5Gt a–1 in total. We are therefore
confident that there has been a sharp increase in calving
between 1995 and 2000–02 (�0.6Gt a–1 versus�3.0Gt a–1).
This is further confirmed by the independent calving
estimates derived from elevation changes (Table 1).

DYNAMIC IMPLICATIONS
The results of this study highlight the temporal variability of
iceberg calving as a consequence of ice-stream instability on
a large Arctic ice cap. Ice-stream calving rates of up to
1Gt a–1 are not unheard of in the Arctic archipelagos, but
they are typically associated with short-lived advances and
calving events caused by glacier surging (e.g. Dowdeswell
and others, 1991). The ice streams of Academy of Sciences
Ice Cap do not appear to fit into a simple surge or non-surge
classification. Basin A is the only one that has a typical post-
surge geometry, with a large low-gradient lobe at low
elevations (Dowdeswell, 1986). The observed pattern of
high-elevation thinning and low-elevation thickening could
support the interpretation of a surge, but the total changes
since 1988 are only on the order of �30m, with no clear
signs of surface crevassing. The terminus position has been
stable since the 1960s, so the potential surge lobe must have
formed before that.

Ice streams B–D were flowing relatively fast in 1995
(Fig. 2b), and surface velocities on the order of 50–100ma–1

are only possible through basal sliding. Given that the beds
of these ice streams lie mainly below sea level, it is likely
that their bases are made up of deformable marine
sediments that support semi-permanent sliding. Plumes of
suspended sediment are sometimes observed in the waters
in front of the termini in Landsat imagery. Oscillations in fast
flow can be caused by changes in thermal or hydrological
conditions at the bed or by changes in driving stresses. We
do not have the data to investigate this, but our observations
suggest that the dynamic regime of the ice cap is more
complicated than the typical on/off switching associated
with glacier surging. This is in line with a century-scale
modeling study of the similar-sized Austfonna ice cap,
which found that some basins exhibited oscillatory surge
flow whereas others behaved like ice streams with time-
variable fast flow (Dunse and others, 2011a).

Drainage of surface meltwater to the bed has been linked
with glacier speed-up events on the Greenland ice sheet
(Zwally and others, 2002). Recent studies have shown that
these accelerations are mostly short-lived and do not
contribute to increased calving (Sundal and others, 2011).
We have no data on surface melting of Academy of Sciences
Ice Cap, but the lack of seasonal variation in ice-stream
thinning (Fig. 6) suggests that it is of relatively little
importance for the large-scale dynamics of the ice cap.
Submarine melting rates at the termini are not known, but
could potentially be important if relatively warm water
reaches the calving fronts (Holland and others, 2008).
However, we have not observed any substantial retreat along
the more stagnant ice fronts around the ice cap, indicating
that submarine melting is probably small. The dynamic
impact from terminus fluctuations is probably also small
because the ice fronts have maintained a relatively stable

position over the last �50 years. The lack of clear external
forcing mechanisms suggests that the observed dynamic
instabilities of the ice cap are of an intrinsic nature rather
than being linked to climate change.

Recent studies have shown that variations in ice-stream
dynamics play a major role in the mass balance of the West
Antarctic ice sheet (e.g. Joughin and Tulaczyk, 2002;
Pritchard and others, 2009; Jenkins and others, 2010).
Although much smaller in scale, Academy of Sciences Ice
Cap shows similar patterns of ice-stream flow, with mass
balance being determined largely by variability in glacier
dynamics and calving. The timescales of ice-stream speed-
ups and slowdowns are probably different between ice
sheets and ice caps, but the processes that drive them may
be similar. High Arctic ice caps can serve as an analogue
for larger ice sheets, being much more manageable to
model due to their smaller size and the easier acquisition of
input data.

CONCLUSIONS
Academy of Sciences Ice Cap is highly dynamic, with a large
temporal variability in ice-stream flow and calving. The
mass balance of the ice cap during the last three decades is
largely related to variations in calving from the three most
active ice streams. The climatic mass balance of the ice cap
is slightly positive or close to zero given the small rates of
surface elevation change in non-active glacier basins.
Elevation changes across the whole ice cap indicate an
overall mass balance of –3.06� 0.86Gt a–1 for 1988–2006
and –1.05�0.25Gt a–1 for 2003–09. The recent decrease in
negative mass balance is mainly due to a slowdown of the
largest ice stream.

Marine ice-terminus positions have remained stable to
within �2 km since the 1960s, probably because the ice
streams tend to form floating tongues that break up
intermittently into tabular icebergs (e.g. Williams and
Dowdeswell, 2001). The ice-cap calving rate is therefore
governed mainly by ice-stream flow. The three most active
ice streams were all flowing much faster in 2000–02 than in
1995, leading to an increase in glacier calving from
�0.6Gt a–1 to �3.0Gt a–1 over less than a decade. Recent
elevation-change measurements from ICESat indicate that at
least one of these ice streams has slowed down such that the
current calving rate is �1.4Gt a–1. New and future satellite
missions (e.g. CryoSat-2 and ICESat-2) will be essential for
monitoring the future mass balance of the ice cap.

This study demonstrates that iceberg calving in the High
Arctic is not necessarily a linear process with time. Academy
of Sciences Ice Cap has been out of balance for several
decades, unlike the short-term mass losses that are typical
for surging glaciers. The observed ice-stream instabilities are
also relevant for ice-sheet dynamics, calling for more
research in order to understand the processes behind ice-
stream flow variability.
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