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Abstract . We made a numerical study of the General Three-Body Problem in two dimensions, 
with the intention to obtain some statistical estimates of the outcome of the system after a long 
time. Two different sets of masses were used. In the first series of experiments we use masses in the 
ratio of 0.95, 0.04 and 0.01. In the second series, we use masses that are exactly in the Sun-Jupiter-
Saturn ratio. To facilitate the discussion, we use the names Sun, Jupiter and Saturn for the three 
masses, in both cases. In all our experiments, the orbit of Jupiter starts with zero eccentricity and 
with a unit radius. However, the orbit of Saturn varies in two ways: the initial value of the semi-
major axis varies from 1.1 to 3.5 and the eccentricity from 0.0 to 0.75. In total about 4000 cases 
were run for the two series of masses. All the numerical integrations were done with the method 
of recurrent power series of order 14, in a heliocentric frame of reference, integrating thus eight 
simultaneous first-order differential equations. All integrations were performed for a maximum of 
12,500 canonical units of time, corresponding to about 2000 revolutions of Jupiter. The cause of 
termination or type of catastrophe for the system has been determined in all cases. In most cases, 
this is a close approach of Saturn with Jupiter, followed by ejection of Saturn from the system. 

1. Numerical investigation of a typical planetary system 

(0-95 ,0 .04 ,0 .01) 

We first investigated the configuration with masses (0.95, 0.04, 0.01). In other words, 

the sun would have a mass m = 0.95, the planets τηχ, rri2 have the masses 0.04 and 

0.01, about in the Jupiter-Saturn ratio. We also assume that τηχ is the inner planet 

(the largest mass!) and ττΐ2 the outer planet. Our units of length are normalized in 

such a way that the initial value of the semi-major axis αχ of the inner planet are 

always equal to 1. 

As an initial rough estimate of the stability of this system (on the basis of the 

opening of the Hill zero-velocity curves), we computed the C2i£-value of several 

orbits to determine for which cases the relative equipotential lines would be closed 

or open, considering that in the case where these curves are open at the inner 

libration point LI, there is possible exchange or collision between the bodies. The 

critical value oiC2E is here -0.58820017E-4. All orbits with a value oïC2E larger 

than the critical value may have exchange. Note that the above number depends 

solely on the three masses. We find that the stability boundaries for Saturn are 

a — 1.18 and a — 2.58. When the semi-major axis a is less than 1.18, we have 

a satellite of Jupiter that can not escape. When α is larger than 2.58, we have a 

planet that can not have exchange with Jupiter. Here Ε represents the energy and 

C the angular momentum of the system (see Szebehely and Zare, 1977). 

To obtain more insight regarding the types of planetary systems that can be 

stable and survive for long periods of time, we planned a series of computer ex-

periments to give us a collection of data from which we might derive some initial 

statistical information and preliminary conclusions. 

The most important feature of the present set of computer runs is that we 

keep track, in a very systematic way, of the mode of termination of each run. In 
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other words, a set of codes (integer numbers) is defined for the different possible 

determinations. This code and the end condition for each simulation are saved on 

a summary file for later analysis. 

The experiment consists in the integration of a large number of so-called Sun-

Jupiter-Saturn systems, with a fixed set of masses. The integrations are performed 

in the heliocentric frame, with the sun at the origin (0,0). We limited ourselves 

to the two-dimensional (planar) case. The initial conditions for Jupiter are fixed 

(dj = 1.0, €j = 0.05) while the initial values for Saturn have been varied: a, from 1.1 

to 3.5 and et from 0 to 0.62 (where a— semi-major axis and e= eccentricity). 

There is thus a total of 3872 cases. Each of these cases was run with a maximum 

final time of 12,500 canonical units (about 2000 revolutions of Jupiter) and a max-

imum of 100,000 steps. Eighteen end-conditions are tested after every integration 

step. Figure 1 shows the set of initial conditions a,,e, that terminates with the 

codes 2 or 3. In other words these orbits reach the final allowed integration time or 

number of the integration steps. Therefore we will call these orbits stable, although 

this conclusion should be considered as preliminary at this point. Most of the orbits 

survive the total integration time. These orbits are the most stable. A few orbits 

had reached 100,000 integration steps. They seem to have close approaches between 

two of the three bodies and are thus not so stable. These orbits will be analyzed 

further. 

The next important question is, of course: how about all the other orbits? An 

analysis of the termination codes shows that in almost all cases we have a close 

approach between Jupiter and Saturn, usually followed by an ejection of Saturn 

from the system. 

Figure 1 seems to indicate a gap in the group of stable orbits, a, =2 .4 (and 

for all eccentricities). This gap divides thus the collection of stable orbits in two 

groups. The largest group has a, > 2,4 while there is a smaller stable group with 

2.2 < as < 2.4. There also are a few isolated stable orbits near at = 2.0 and 

et = 0 . 1 5 , which will be studied in more detail. 

An even more interesting diagram is given in figure 2. It shows the final value 

of the Saturn semi-major axis and eccentricity. This collection of points could be 

considered a sample of nearly random initial values that lead to stable orbits. We 

also see a few isolated stable orbits with high eccentricities: near a, = 1.3 and 

et — 0.50. We are in process of studying these results in more detail. 

2. The location of the perihelion of Saturn 

A series of experiments was made to determine the motion of the perihelion of the 

smallest planet (Saturn). It is very important to know if the perihelion "librates" or 

"circulates". It is very important to know the region of space where the perihelion is 

located because this is intimately related to the existence of resonances. Therefore 

we made a few computer runs for the sole purpose of plotting the location of the 

perihelion of the smallest planet in physical #t/-space. The perihelion distance being 

a(l — e), the coordinates of the instantaneous (osculating) perihelion locations are 

xp = a(l — e) cos a>;yp = a(l — e) sin ω. 

The plots are remarkably instructive because they visualize the interaction of 
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three important orbit elements simultaneously (a, e,u>). In figure 3, we show an 

example of a plot giving the location of the perihelion of Saturn, plotted with 

isolated dots, at the rate of one dot per integration step. We clearly see that the 

perihelion is confined to and librates in a well-defined small region of the plane. 

3. The Sun-Jupiter-Saturn system with masses 

( 0 . 9 9 8 7 6 1 1 6 6 , 0 .00095360 , 0 .000285230) 

The critical C2E- value is -0.95543E-9, for the masses of Jupiter and Saturn. For the 

initial values of the real semi-major axis and eccentricity that we used, the actual 

value of the C 2 2£-parameter is -0.98988 E-9, which is slightly lower (by about 4%). 

The conclusion of these numbers is that Saturn must always remain a planet of 

the system: it cannot become a satellite of Jupiter (and form a close binary with 

Jupiter). However, escape of the planet Saturn from the system is still not excluded! 

The stability boundaries for Saturn are a2 = 1.007 and a2 = 1.31. In other words, if 

the Saturn semi-major axis value were within these two boundaries, we would have 

possible exchange of type of motion: the bottleneck of the Hill curves is open and 

Saturn could become a satellite of Jupiter or remain a planet in orbit around the 

sun. An object at a distance a2 from 1.0 to 1.007 is a satellite of Jupiter and cannot 

escape. An object with a value of a2 greater than 1.31 can only be in a planetary 

orbit and can never be captured by Jupiter. This is the case for the real Saturn 

which is at a2 = 1.835. We will report later on the detailed numerical explorations. 
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Discussion 

CI.Froeschle - Concerning computations of LCEs do you use another method than 

the Benettin-Galgani-Strelcyn, which appeared to us very efficient. 

R.A.Broucke - I basically follow the standard method which consists in integrat-

ing the linearized equations of motion and performing a Gram-Schmidt re-ortho-

gonaliza-tion at regular time intervals. However, I use a matrix which is of smaller 

dimension than in classical approach. I eliminate the time and I use the energy 

equation to reduce the order of the system of variational equations. For instance, 

in the Lorenz system or in the restricted problem of three bodies, I work with a 

(2 χ 2)-matrix, which gives me the two non-trivial Lyapunov exponents. The zero 

Lyapunov exponent is not computed. 
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