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τ-tilting Theory – an Introduction
Hipolito Treffinger

2.1 Introduction

The term τ-tilting theory was coined by Adachi, Iyama and Reiten in [1] at the
beginning of the 2010s. In their paper, the authors created a fresh approach
to the study of two classical branches of the representation theory of finite
dimensional algebras, namely tilting theory and Auslander–Reiten theory. The
combination of these two subjects is clearly reflected in the name of this novel
theory, where the Greek letter τ represents the Auslander–Reiten translation
in the module category of an algebra while the reference to tilting theory is
obvious.

Our primary aim with these notes is to give a friendly introduction to
τ-tilting theory from a representation theoretic perspective. Here you can find
a compilation of many important results on the subject, giving a special em-
phasis on the close relation between τ-tilting theory and torsion theories. Some
background in representation theory and Auslander–Reiten theory is desirable
but not necessary to follow this exposition. We note that given the immense
amount of work that has been done in the last decade on τ-tilting theory, this
is not a complete survey on the topic. For instance, we do not cover the rich
connections that τ-tilting theory has with other branches of mathematics, such
as combinatorics or algebraic geometry.

This chapter can be divided into five different parts. In the first part, which
consists only of Section 2.2, we give a brief historic account of the events lead-
ing to the rise of τ-tilting theory in representation theory. We note that this
section is not necessary for the understanding of the rest of the chapter and
can be skipped. In the second part, which consists of Sections 2.3 and 2.4, we
give the basic definitions of the theory. We also describe some of the different
forms that τ-tilting can adopt, namely support τ-tilting modules, τ-tilting pairs,
functorially finite torsion classes and 2-term silting complexes. The third part,
corresponding to Sections 2.5–2.10, is dedicated to compiling general results
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on the subject, including the so-called τ-tilting reduction and the characterisa-
tion of τ-tilting finite algebras. The K-theory of τ-tilting theory is discussed
in the fourth part of the chapter, namely Sections 2.12 to 2.14. We finish these
notes in Section 2.15, where we show how we can associate to every algebra a
geometric object known as its wall-and-chamber structure and we explain how
this invariant encodes much of its τ-tilting theory.

We warn the reader that we do not include in these notes any proofs; these
can be found in the references given by each result. Given the short time that
has passed since the introduction of τ-tilting theory, to our knowledge, there
is not much material on the subject available other than the original research
papers, with the exception of [67]. For background material in representation
theory, we recommend the textbooks [9, 17, 95]. For survey materials on more
classical tilting theory, the reader is encouraged to see [7, 12].

2.1.1 Notation

In these notes A is always a basic finite dimensional algebra over a field K
that we assume is algebraically closed. For us mod A is the category of finitely
presented right A-modules and τ denotes the Auslander–Reiten translation in
mod A.

Given any A-module M, we denote by |M| the number of isomorphism
classes of indecomposable direct summands of M. Throughout this document
we assume that n is the number of isomorphism classes of simple A-modules.
Note that in this case |A|= n, since A =

⊕n
i=1 P(i), where P(i) denotes the i-th

indecomposable projective module.
Also, unless otherwise specified, every module is assumed to be basic,

meaning that the indecomposable direct summands of M are pairwise
non-isomorphic.
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2.2 Towards τ-tilting Theory

It can be argued that the modern study of representation theory started with
the parallel developments of almost split sequences by Auslander and Reiten
[20, 22, 23] (see also [91]) and the theory of quiver representations by Gabriel
[55, 56]. Gabriel showed two very important results using quivers. One of these
results says that the representation theory of every finite dimensional algebra
over an algebraically closed field can be understood using quiver representa-
tions. The formal statement is the following.

Theorem 2.1 [55] Let A be a finite dimensional algebra over an algebraically
closed field K. Then A is Morita equivalent to the algebra KQ/I, the path al-
gebra of the quiver Q bounded by an admissible ideal of relations I. Moreover
the quiver Q is uniquely determined by A.

In the literature, people refer to the quiver Q determined by the algebra as
the ordinary quiver or the Gabriel quiver or simply the quiver of the algebra.
In these notes we take the latter option. The reason to give it such names is that
one can associate to each finite dimensional algebra another quiver known as
the Auslander–Reiten quiver of the algebra, which encodes all the almost split
sequences in mod A. For more information about the Auslander–Reiten theory
of algebras, the reader is encouraged to see the course on this topic by Raquel
Coelho-Simões in this same series. See also [17, IV.5].

The second result of Gabriel we want to mention here is the classification of
hereditary algebras of finite representation type by means of Dynkin diagrams
as follows.

Theorem 2.2 [55] Let A be a connected hereditary representation-finite finite
dimensional algebra over an algebraically closed field K. Then A is Morita
equivalent to K~∆, where ~∆ is a quiver whose underlying graph is a Dynkin
diagram ∆ of type A,D or E. Moreover there is a one-to-one correspondence
between the indecomposable representations of A and the positive roots of the
root system associated to ∆.

When this result appeared, it came as a great surprise since many fundamen-
tal properties of the path algebra of a quiver depend on the orientations of the
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arrows. For instance, if we start with two quivers Q1,Q2 that correspond to two
different orientations of the same Dynkin diagram ∆ then the path algebra KQ1

is in general not isomorphic to the path algebra KQ2, not even as vector spaces.
Hence, there was no reason to believe that the number of indecomposable rep-
resentations should be the same.

Example 2.3 For instance, take the algebras A and A′ to be the path algebras
of the quivers

QA = 1 // 2 // 3 QA′ = 1 // 2 3oo

of type A3. A quick calculation shows that dimK A = 6 while dimK A′ = 5. The
Auslander–Reiten quivers of A and A′ can be found in Figure 2.1 and Fig-
ure 2.2, respectively. Here the arrows correspond to the irreducible morphisms
in the module category and the dashed lines correspond to the Auslander–
Reiten translation. In these figures we can see that the number of indecom-
posable representations of A and A′ coincide.

As a consequence, explaining this phenomenon became of significant inter-
est. The first explanation was given by Bernstein, Gelfand and Ponomarev in
[32] by constructing the so-called reflection functors.

Let Q be a quiver of type ∆ and denote by Q0 the set of vertices of Q. Since
every Dynkin diagram is a tree, there is at least one vertex x ∈ Q0 which is a
sink, i.e. a vertex such that all the arrows incident to that vertex are incoming
arrows. Now, we construct a quiver QA′ which is identical to QA, except for the
fact that now the vertex x is a source, which means that every arrow incident to
x is an outgoing arrow. One says that QA and QA′ are reflections of each other
at x. In Example 2.3, Q′ is the reflection of Q at the vertex 3. Then, Bernstein,
Gelfand and Ponomarev showed the existence of functors, which they called

3 2 1

2
3

1
2

1
2
3

Figure 2.1 The Auslander–Reiten quiver of A.
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Figure 2.2 The Auslander–Reiten quiver of A′.

reflection functors, between mod KQ and mod KQ′ that induce a one-to-one
correspondence between their indecomposable objects.

Some years after that, Auslander, Platzeck and Reiten [21] realised that these
functors were induced by a very specific object in mod KQ. To be more precise,
note that the simple module S(x) associated to the vertex x ∈ Q0 is projective
and it is not injective. This implies that the inverse Auslander–Reiten transla-
tion τ−1S(x) of S(x) is a non-zero indecomposable object of mod KQ. Then
they showed that the reflection functors described by Bernstein, Gelfand and
Ponomarev were equivalent to HomA(T,−) : mod A→mod A′, where T is the
module

T = τ
−1S(x)⊕

⊕
x 6=y∈Q0

P(y). (2.2.1)

Thus, T is the direct sum τ−1S(x) and the direct sum of all of the indecompos-
able projectives except S(x). Moreover, they showed that KQ′ is isomorphic to
EndKQ(T )op. In particular, this approach allowed them to show the existence
of reflection-like functors between the module category of any Artin algebra A
having a simple projective module and EndA(T ), even when A is not hereditary
or even when A is not the quotient of the path algebra of a quiver. Going once
again to our running example, the module described by Auslander, Platzeck

and Reiten in mod A is T = 2⊕
1
2
3
⊕ 2

3.

Some years later, Brenner and Butler went further and studied in [34] this
phenomenon axiomatically. In this paper they introduce the notion of tilting
modules as follows.

Definition 2.4 [34] Let A be an algebra and T be an A-module. We say that T
is a tilting module if the following holds:
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Y X

Figure 2.3 Torsion pairs and APR-tilting.

(i) pdAT 6 1, the projective dimension of T is at most 1.
(ii) T is rigid, that is Ext1A(T,T ) = 0.

(iii) There exists a short exact sequence of the form

0→ A→ T ′→ T ′′→ 0,

where T ′,T ′′ are direct summands of direct sums of T .

In this paper they show that any tilting A-module T acts as a sort of translator
between the representation theory of A and B := EndA(T )op, the opposite of the
endomorphism algebra of T .

The first thing that they have shown is that a tilting A-module T is also a
tilting B-module. Moreover they showed that T induced a torsion pair (T,F) in
mod A and a torsion pair (X,Y) in mod B such that the functors HomA(T,−) :
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1
2

13 2

2
3

Figure 2.4 The Auslander–Reiten quiver of B.

mod A→mod B and Ext1A(T,−) : mod A→mod B induce equivalences of cat-
egories between T and Y and between F and X, respectively. This result of
Brenner and Butler can be seen applied to our running example in Figure 2.3.
For the precise definition of torsion pair, see Definition 2.17. Also, a more de-
tailed treatment of the tilting theorem will be given in Section 2.5.

Since the module introduced by Auslander, Platzeck and Reiten was their
motivating example, one can expect that it satisfies Definition 2.4 (i)–(iii) and
indeed this is the case. In fact, nowadays this module is known as the APR-
tilting module. But, as the reader is already guessing, there are many more

examples of tilting modules. Take the module T = 3⊕
1
2
3
⊕ 1. One can verify that

T is indeed a tilting module. Firstly, the projective dimension of T is less than
or equal to one since A is hereditary. Secondly, one can check that T does not
admit self-extensions. Finally, the short exact sequence

0→ 3⊕ 2
3⊕

1
2
3
→ 3⊕

1
2
3
⊕

1
2
3
→ 1→ 0

is such that 3⊕
1
2
3
⊕

1
2
3
and 1 are direct summands of direct sums of copies of T .

Now, the algebra B = EndA(T ) is isomorphic to the path algebra of the
quiver

1 // 2 // 3

modulo the ideal generated by the composition of the two arrows. The
Auslander–Reiten quiver of B can be seen in Figure 2.4.

As we can see in this example, when we take an arbitrary tilting module
A the numbers of indecomposable representations in mod A and in mod B are
not the same. However, this is not a contradiction of the results of Brenner and
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Figure 2.5 The tilting theorem applied to a tilted algebra.

Butler since their result only says what happens inside the torsion pairs induced
by T in mod A and mod B. In this particular case, as we can see in Figure 2.5,
the indecomposable object 2

3 does not belong to either of the two subcategories
T and F induced by the tilting module T .

Although the categories mod A and mod EndA(T ) are not in general equiva-
lent, it was shown by Happel [62] (see also Rickard’s generalisation [92]) that
these two algebras are derived equivalent. Without going into the details, start-
ing from the module category of an algebra, one can construct a triangulated
category known as the derived category of the algebra that encodes a wealth
of homological information of the algebra. Then, the results of Happel and
Rickard state that the original algebra and the endomorphism algebra of the
tilting module have the same derived category, which implies that they share
many homological properties that we will not discuss here. For more informa-
tion about derived categories and their relationship with cluster algebras, we
refer the reader to the notes of Matthew Pressland in this series.
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Let us include a small parenthesis here that will be important later. The alge-
bra B is the smallest non-hereditary example of a so-called tilted algebra. Tilted
algebras were introduced by Happel and Ringel in [63] (see also Bongartz [33])
as the endomorphism algebras of tilting modules over hereditary algebras. The
main idea behind their introduction was to use all the information available on
hereditary algebras to understand a new class of algebras which had not been
studied systematically until that moment.

The study of tilted algebras has sparked a great deal of research which it
would be impossible to describe completely here. However, we need to mention
two famous developments.

Firstly, note that the tilting theorem of Brenner and Butler does not im-
pose any restriction on the algebra A. So, if we are able to understand some
of the representation theory of tilted algebras using the knowledge we have on
hereditary algebras, we can repeat the process and understand the representa-
tion theory of a new family of algebras using the knowledge we have on tilted
algebras via the tilting theorem. These algebras are known as iterated tilted
algebras. In [18], Assem and Skowroński classified all the iterated tilted alge-
bras of Dynkin type Ã in terms of their ordinary quiver and relations, which led
them to the definition of the so-called gentle algebras. Today, gentle algebras
constitute a highly active area of research, deepening our understanding of rep-
resentation theory of finite dimensional algebras and connecting this topic with
various other branches of mathematics such as group theory and Algebraic and
differential geometry.

The second is the characterisation of tilted algebras found independently
by Liu [74] and Skowroński [100] using the Auslander–Reiten quiver of an
algebra. They have shown that an algebra is tilted if and only if there is a struc-
ture with specific homological and combinatorial properties in their Auslander–
Reiten quiver. Inspired by this characterisation of tilted algebras many families
of algebras have been defined and determined by means of their Auslander–
Reiten quivers.

Some years later, at the beginning of the twenty-first century, Fomin and
Zelevinsky [31, 51, 52, 53] were studying the properties of the canonical bases
arising in Lie theory and this study led to the introduction of cluster
algebras.

These algebras are generated by a set of so-called cluster variables that are
produced inductively from an initial seed via a process called mutation that
produces new seeds. Even though the process of mutation is iterated an ar-
bitrary (finite) number of times, for some initial seeds there are only finitely
many cluster variables that can be constructed. In this case we say that a clus-
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ter algebra is of finite type. Moreover, for some of these algebras, known as
skew-symmetrisable cluster algebras, their combinatorial construction can be
expressed using quivers. One surprising result shown by Fomin and Zelevinsky
in the first of the series of papers where they introduced cluster algebras is the
following classification.

Theorem 2.5 [52] Let (Q,{x}) be the initial seed of a cluster algebra A. Then
A is of finite type if and only if Q is mutation equivalent to a quiver whose
underlying graph is a Dynkin diagram.

The resemblance of this result with Theorem 2.2 is striking and points to-
wards a deep relationship between cluster theory and representations of finite
dimensional algebras.

It is very important to remark that for any seed (Q′,{x′}) the set of cluster
variables {x} always has the same number of elements, let’s call this number n.
Then, all the seeds of a cluster algebra can be arranged into an n-regular graph
where there is an edge between two seeds if one can be obtained from the other
performing a single mutation.

As it turns out, similar phenomena have been described in tilting theory.
For instance it was shown by Skowroński in [101] that every basic tilting
module has exactly n indecomposable direct summands. Also, Happel and
Unger have shown in [64] that every basic partial tilting module having n− 1
indecomposable direct summands can always be completed into a tilting mod-
ule and that there are at most two ways in which this can be done.

Hence, one would like to categorify all the cluster phenomena using tilting
theory, where the cluster variables are represented by indecomposable partial
tilting modules and tilting modules correspond to seeds. However, tilting theory
falls short in describing the cluster phenomena for at least two reasons. The first
is that there are some examples of almost complete tilting modules that can be
completed into a tilting module in exactly one way, which means that we can
not reproduce the process of mutation at some indecomposable direct summand
of this module.

The second reason, and maybe the most obvious, is that there are fewer
indecomposable partial tilting modules than cluster variables. For instance, a
hereditary path algebra of type An has exactly n(n−1)

2 indecomposable partial
tilting modules, while the number of cluster variables in a cluster algebra of
type An is n(n+1)

2 , i.e. there are exactly n more cluster variables than indecom-
posable partial tilting modules.

Then if one wants to categorify cluster algebras using tilting theory, it is
necessary to extend the latter in some way. That is exactly what Buan, Marsh,
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Figure 2.6 The Auslander–Reiten quiver of CA.

Reineke, Reiten and Todorov did in [39]. In this seminal paper, instead of
working with the module category of the algebra, they constructed a slightly
larger triangulated category that they called the cluster category where every-
thing works perfectly by the definition of the so-called (partial) cluster-tilting
objects.

See in Figure 2.6 the Auslander–Reiten quiver of the cluster category asso-
ciated to the algebra A of Example 2.3. The points that are tagged with the same
object in the Auslander–Reiten quiver of CA should be identified. In particular,
we see that the Auslander–Reiten quiver of the cluster category of an algebra
of type A3 is a Möbius strip. In fact the Auslander–Reiten quiver of the cluster
category of any algebra of type An is a Möbius strip for every n> 2.

One the one hand, they show that for any orientation of Dynkin quiver there
is a one-to-one correspondence between cluster variables and indecomposable
partial cluster-tilting objects; that there is a one-to-one correspondence between
clusters and cluster-tilting objects; that the mutation is well defined in all the
indecomposable direct summands of any cluster-tilting object; and that the mu-
tations of clusters and cluster-tilting objects are compatible. Note that these
results were later generalised to the general case [41, 43].

On the other, they showed that there is a natural inclusion of the module
category of the path algebra into the cluster category such that every (partial)
tilting module in the module category becomes a (partial) cluster-tilting object.
Moreover, they show that every possible mutation of tilting modules at the level
of the module category becomes a mutation of cluster-tilting modules at the
level of the cluster category.

We said before that Happel and Ringel showed that much of the represen-
tation theory of tilted algebras can be described from the information we have
about the representation theory of the hereditary algebras. Now, the cluster cat-
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egories associated to hereditary algebras have very nice properties, close to
the properties of the hereditary algebras they come from. So Buan, Marsh and
Reiten, emulating the construction of tilted algebras, introduced in [40] the
cluster-tilted algebras as the endomorphism algebras of cluster-tilting objects
in a cluster category. In this case, they showed that given a cluster-tilting ob-
ject T in CA, the functor HomCA(T,−) induces an equivalence of categories
between mod (EndCA(T ))

op and the quotient of CA by the ideal I(τT ) of all
the morphisms that factor through τT the Auslander–Reiten translation of T .

We have mentioned already that the module category of any hereditary al-
gebra A is naturally immersed in its cluster category CA. Moreover, if T is a
tilting object in mod A, it turns out that T becomes a cluster-tilting object in CA

when we apply the natural embedding. Then starting from T we can construct
a tilted algebra EndA(T ) and a cluster-tilted algebra EndCA(T ). The relation
between EndA(T ) and EndCA(T ) and their module categories was studied by
Assem, Brüstle and Schiffler in a series of papers [13, 14, 15, 16]. Firstly, they
showed that one can recover EndCA(T ) from EndA(T ) via a process that they
called relation extension, which bypasses the cluster category CA. Moreover,
they have shown that every cluster-tilted algebra is the relation extension of
a tilted algebra. They also have characterised all the tilted algebras that have
an isomorphic relation extension using particular structures that can be found
in the Auslander–Reiten quivers of cluster-tilted algebras which are deeply
related to the structures described by Liu [74] and Skowroński [100] for tilted
algebras.

In order to start the construction of the cluster category, Buan, Marsh,
Reineke, Reiten and Todorov assumed that the quiver in the initial seed of the
algebra is acyclic. However, there is no reason why one should start with an
acyclic quiver. From a cluster perspective, any quiver is equally valid, so it
was expected for a similar cluster category to exist regardless of the quiver we
chose at the start. The first problem with the more general quivers arising in
cluster theory is that they have cycles, so their path algebras are infinite dimen-
sional. Then in order to use something close to tilting theory, we need to form
the quotient of this path algebra by the correct ideal of relations. This prob-
lem was solved by Derksen, Weyman and Zelevinsky [48, 49] when they built
ideals arising from certain potentials associated to a quiver. They have shown
that associated to each quiver there exists a special potential, which they called
non-degenerate, such that one can categorify the cluster algebra associated to
the quiver using their decorated representations. Moreover, they went further
and showed that there exists a notion of mutation of non-degenerate potentials
that is compatible with the cluster mutations of the quivers. We note that the
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notion of decorated representation gives rise to a rich theory that is closely
related to that of τ-tilting theory and it can be considered as a precursor of the
latter.

Now that we have the correct algebras associated to the cyclic quivers in
cluster theory we would like to have their corresponding cluster categories. To
build these categories is not obvious. The main problem being that the construc-
tion of Buan, Marsh, Reineke, Reiten and Todorov uses heavily the structure of
the derived category of the algebra and some key properties used in their con-
struction fail when the algebra is not hereditary. This problem was overcome
by Amiot in [6], where she used the theory of Ginzburg dg-algebras developed
by Keller and Yang in [72] to construct a cluster category that is compatible
with the other notions of cluster categories existing at that moment.

All the phenomena of cluster algebras and the close parallelism with tilting
theory pointed to the existence of another extension of classical tilting theory
where we would be always allowed to perform mutations, this time without
extending the module category. For hereditary algebras, the construction of this
theory was performed by Ingalls and Thomas in [66], where they introduced
the so-called support tilting modules. To explain the notion of support tilting
module, let us come back to the limitations of classical tilting theory.

As we did before consider A to be the path algebra of the linearly oriented

A3 quiver. Then T =
1
2
3
⊕ 1⊕ 3 is a tilting module in mod A.

Ideally, given any choice M of an indecomposable direct summand of T ,
we would like to construct a new tilting module whose indecomposable direct
summands other than M are the same as those of T . In other words, we would
like to replace each indecomposable direct summand of T by another indecom-
posable in such a way that the resulting module is again tilting.

The summand 1 is replaceable, since we can change it by 2
3 to obtain

1
2
3
⊕ 2

3⊕ 3

which is tilting.
We can also mutate at the summand 3, because it can be replaced by 1

2 to

obtain the tilting module
1
2
3
⊕ 1

2⊕ 1.

However, we cannot replace
1
2
3

by any other indecomposable module to ob-

tain a new tilting module. This is a consequence of a classical result obtained
independently by Assem [11] and Smalø [103], which implies that every in-
decomposable projective-injective object in mod A is a direct summand of any

tilting module in mod A. In particular,
1
2
3

can not be replaced because it is a

projective-injective module in mod A.

The solution found by Ingalls and Thomas was to drop
1
2
3
from T altogether to

obtain T ′ = 1⊕ 3, which clearly is not tilting. However, it is tilting on its support
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algebra, which is constructed by taking a quotient of A by the ideal generated
by the idempotent included in the annihilator annT ′ of T ′.

More generally, they showed that for a hereditary algebra the mutation is
always possible if we allow our tilting modules not to be supported over every
vertex of the algebra.

Now, for more general algebras this construction fails again. For instance, if
we take the algebra A to be the path algebra of the quiver

2

��
1

@@

3oo

modulo the ideal generated by all paths of length 2, we have that A as a right
module over itself is isomorphic to 1

2⊕ 3
1⊕ 2

3. Note that in this case every inde-
composable projective is also injective. But at the same time we cannot drop
any of the direct summands since the sum of the two remaining projective mod-
ules is supported on every vertex of the algebra.

Something that we have not said before is that, by construction, in the cluster
category we have that

Ext1CA
(M,N)∼= HomCA(N,τM).

This isomorphism can actually be translated to the module categories of non-
hereditary cluster-tilted algebras. So, we can translate the cluster-tilting objects
of the cluster category to the module category of a cluster-tilted algebra to get
a series of modules that categorify perfectly the corresponding cluster algebra.
However, these objects are not in general partial tilting objects because they
might be of infinite projective dimension.

Then, Adachi, Iyama and Reiten introduced τ-tilting theory in [1], the object
of study of these notes, by dropping the restriction on the projective dimension
of the modules into consideration and replacing the classical rigidity with the
notion of τ-rigidity that we will introduce in the next section. In doing so, as we
will see in these notes, Adachi, Iyama and Reiten give a definition which can
be easily checked in the module category of every finite dimensional algebra.
Moreover, as particular examples of this definition we can find the classical
tilting modules and the modules over cluster-tilted algebras that we discussed
in the previous paragraph.

Before starting with the material of the lectures notes, we would like to
point out that many results of τ-tilting theory were developed independently
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by Derksen and Fei in [47], where they studied general presentations using
methods of a more geometric nature.

2.3 τ-tilting Theory: Basic Definitions

In this section we give the basic definitions of τ-tilting theory. We also mention
some of the basic relations between τ-tilting theory and classical tilting theory.
We start by giving the central definitions of this note: τ-rigid and (support)
τ-tilting modules.

Definition 2.6 [1, 26, 27] Let A be an algebra and M be an object in mod A.
We say that M is τ-rigid if HomA(M,τM) = 0.

Definition 2.7 [1] Let A be an algebra. A τ-rigid A-module M is τ-tilting if
|M|= n. We say that a τ-rigid A-module M is support τ-tilting if there exists an
idempotent e ∈ A such that M is a τ-tilting A/AeA-module, where AeA is the
two-sided ideal generated by e in A.

At first glance, τ-tilting and tilting modules have little to do with each other.
If we compare Definition 2.4 with Definition 2.7, the only thing that a tilting
and a τ-tilting module have in common is that both are A-modules. However,
there is a much deeper connection between the two concepts which follows
from the so-called Auslander–Reiten formulas. Recall that D(−) := Homk(−,k)
denotes the classical duality functor, IA(M,N) is the vector space of maps from
M to N that factor through the injectives A-modules and PA(M,N) is the vector
space of maps from M to N that factor through the projectives A-modules.

Theorem 2.8 Let A be an algebra and let M and N be two A-modules. Then
there are functorial isomorphisms

Ext1A(M,N)∼= D
Å

HomA(N,τM)

IA(N,τM)

ã
∼= D
Å

HomA(τ
−N,M)

PA(τ−N,M)

ã
.

A module M in mod A is said to be rigid if Ext1A(M,M) = 0. An immediate
corollary of the Auslander–Reiten formulas is the following.

Corollary 2.9 Let M be an A-module. If M is τ-rigid then M is rigid.

In fact this is the first of many other results relating tilting and τ-tilting
modules. In the following propositions we compile some properties relating
the two notions.

Proposition 2.10 Let A be an algebra and T be a partial tilting module. Then
T is τ-rigid. Moreover, if T is tilting then |T |= n.
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Proposition 2.11 [17] Let M be a τ-rigid module. Then the following hold.

1 There are at most n isomorphism classes of indecomposable direct
summands of M. In short, |M|6 n.

2 If the annihilator ann(M) of M is equal to the ideal {0} ⊂ A, then M is a
partial tilting module.

3 If the projective dimension pd M of M is at most one, then M is a partial
tilting module.

4 If |M|= n and ann(M) = {0}, then M is a tilting module.

Proposition 2.12 Let A be an algebra. Then an A-module M is tilting if and
only if M is τ-tilting and faithful.

Proposition 2.13 Let A be an algebra. Then an A-module M is tilting if and
only if M is τ-tilting and pd M 6 1.

The last result can be presented as evidence to the statement that τ-tilting
theory is a generalisation of tilting theory, which is independent of the projec-
tive dimension of the objects. Following this idea, in the last decade a series of
works appeared generalising classical results in tilting theory to τ-tilting theory.
Some of these results will be stated in Section 2.5.

However, one needs to be careful when giving such statements, since some
results on tilting theory do not hold in the context of τ-tilting theory. Also, be-
fore the definition of τ-tilting theory there was at least one other generalisation
of tilting theory to higher projective dimensions. We are referring to the gen-
eralised tilting modules introduced by Miyashita in [77]. They are defined as
follows.

Definition 2.14 [77] Let A be an algebra and T be an A-module and r be a
positive integer. We say that T is an r-tilting module if the following holds:

(i) pdAT 6 r, i.e. the projective dimension of T is at most r.

(ii) ExtiA(T,T ) = 0 for all 16 i6 r.

(iii) There exists a short exact sequence of the form

0→ A→ T (1)→ T (2)→ ··· → T (r)→ 0,

where T (i) is a direct summand of a direct sum of copies of T for all
16 i6 r.

We now give an example of all the support τ-tilting modules in the module
category of an algebra.
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Example 2.15 Let A be the path algebra given by the quiver

2

��
1

@@

3oo

modulo the second power of the ideal generated by all the arrows. The
Auslander–Reiten quiver of A can be seen in Figure 2.7.

Note that every module is represented by its Loewy series and both copies
of 3

1 should be identified, so the Auslander–Reiten quiver of A has the shape of a
Möbius strip. In the first two columns of Table 2.1 we give a complete list of the
support τ-tilting modules in mod A together with their associated idempotents.

Suppose that we are working with the algebra of the previous example and
we come across the module M = 1

2⊕ 1. After a quick calculation we can see
that this module is not only τ-rigid, but also support τ-tilting with e3 as its
associated idempotent. But at the same time, M is a direct summand of the
support τ-tilting module 1

2⊕ 1⊕ 3
1. So, with this notation we cannot distinguish

between the “complete” support τ-tilting module 1
2⊕ 1 and the “incomplete”

τ-rigid module 1
2⊕ 1.

This can be solved using the notions of τ-rigid and τ-tilting pairs. But before
we give their definition, recall that given an idempotent e ∈ A we have that the
right ideal eA is a projective module and that every projective arises this way.

Definition 2.16 Let A be an algebra, M be an A-module and P be a projective
module. We say that the pair (M,P) is τ-rigid if M is a τ-rigid module and
HomA(P,M) = 0. A τ-rigid pair is τ-tilting if |M|+ |P|= n.

3
1

3
1

1
2

13 2

2
3

Figure 2.7 The Auslander–Reiten quiver of A.
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Table 2.1 Support τ-tilting modules and τ-tilting pairs in mod A.

Support τ-tilting module Idempotent τ-tilting pair

1
2⊕ 2

3⊕ 3
1 ∅ (1

2⊕ 2
3⊕ 3

1,0)
1
2⊕ 2

3⊕ 2 ∅ (1
2⊕ 2

3⊕ 2,0)
1
2⊕ 3

1⊕ 1 ∅ (1
2⊕ 3

1⊕ 1,0)
2
3⊕ 3

1⊕ 3 ∅ (2
3⊕ 3

1⊕ 3,0)
3
1⊕ 3 e2 (3

1⊕ 3, 2
3)

3
1⊕ 1 e2 (3

1⊕ 1, 2
3)

1
2⊕ 1 e3 (1

2⊕ 1, 3
1)

1
2⊕ 2 e3 (2

3⊕ 3, 1
2)

2
3⊕ 3 e1 (2

3⊕ 3, 1
2)

2
3⊕ 2 e1 (2

3⊕ 2, 1
2)

1 e2 + e3 (1, 2
3⊕ 3

1)
2 e1 + e3 (2, 1

2⊕ 3
1)

3 e1 + e2 (3, 1
2⊕ 2

3)
0 e1 + e2 + e3 (0, 1

2⊕ 2
3⊕ 3

1)

As you would expect, these two notations are equivalent. Indeed, given a
support τ-tiling module M with associated idempotent e we have that (M,eA)
is a τ-tilting pair. Conversely, if (M,P) is a τ-tilting pair then we have that
P = eA for some idempotent e ∈ A. Then M is a support τ-tilting module with
associated idempotent e. The list of all τ-tilting pairs of the algebra in Exam-
ple 2.15 can be found in the third column of Table 2.1.

2.4 τ-tilting Pairs and Torsion Classes

In this section, after recalling the definition of torsion pairs and their basic
properties, we will investigate the deep relation existing between τ-tilting the-
ory and torsion classes.

2.4.1 Torsion Pairs and Torsion Classes

The notion of torsion pairs, also known as torsion theories, started almost with
the introduction of abelian categories as a generalisation of a well-known phe-
nomenon in the category of finitely generated abelian groups, one of the most
iconic examples of abelian categories.

A classical classification result states that a finitely generated abelian group,
up to isomorphism, has a unique torsion subgroup such that the resulting factor
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group is torsion-free. The extension of this fact to every abelian category was
done by Dickson in [50] as follows.

Definition 2.17 [50] Let A be an abelian category and let (T,F) be a pair of
subcategories of A. We say that (T,F) is a torsion pair in A if the following
holds.

1 HomA(X ,Y ) = 0 for all X ∈ T and Y ∈ F.
2 For all objects M ∈A there exists, up to isomorphism, a unique short exact

sequence

0→ tM→M→ f M→ 0

such that tM is an object of T and f M is an object of F.

If (T,F) is a torsion pair in A we say that T is a torsion class and F is a torsion-
free class. Moreover, for each object M of A, we say that

0→ tM→M→ f M→ 0

is the canonical short exact sequence of M and that tM is the torsion object of
M with respect to the torsion pair (T,F).

The previous definition is valid for an arbitrary abelian category. However, in
these notes we are interested in a particular class of abelian categories, namely
the categories of finitely generated modules over a finite dimensional algebra.
These categories have many extra properties (for example they are length cate-
gories) that allow us to describe the torsion pairs more precisely.

Proposition 2.18 Let A be an algebra. Then the following hold.

1 A subcategory T of mod A is a torsion class if and only if T is closed under
quotients and extensions. Moreover, in this case the torsion-free class
associated to T is

F = {Y ∈mod A | HomA(X ,Y ) = 0 for all X ∈ T}.

2 A subcategory F of mod A is a torsion-free class if and only if F is closed
under subobjects and extensions. Moreover, in this case the torsion-free
class associated to F is

T := {X ∈mod A | HomA(X ,Y ) = 0 for all Y ∈ F}.

Suppose that M is an A-module. Then we can ask the following: Is there
a minimal torsion class in mod A containing M? The following result answers
this question affirmatively.
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Proposition 2.19 Let A be an algebra. Then the intersection of arbitrarily
many torsion classes is a torsion class. Likewise, the intersection of arbitrarily
many torsion-free classes is a torsion-free class.

Then, by the previous proposition, the minimal torsion class containing a
given object M of mod A is simply the intersection of all torsion classes con-
taining M. Now, there is a more descriptive answer to this question, but to give
that answer we need to introduce some notation.

Let X be a subcategory of mod A. The category Filt(X) of objects filtered by
X is defined as the category of all the objects Y in mod A that admit a filtration

0 = Y0 ⊂ Y1 ⊂ ·· · ⊂ Yr−1 ⊂ Yr = Y

such that the successive quotients Yi/Yi−1 are objects in X. Note that Filt(X) is
the category of all the objects that can be constructed by making finitely many
extensions by objects in X. In other words, Filt(X) is the extension closure of X.

We define the category FacX as the category of objects Y such that there
exists an object X in X and an epimorphism p : X →Y → 0. Often in the notes,
the category X we will be the additive category add M additively generated by
a module M. In this case, by abuse of notation we will write FacM instead of
Fac(add M). Note that FacM can be described as

FacM = {Y ∈mod A | ∃ p : Mr→ Y → 0 for some r ∈ N}.

Now we are able to give a better description of the minimal torsion class
containing M. As far as we know, the following result was a part of folklore but
was first written down formally in [45].

Proposition 2.20 Let A be an algebra and M be an A-module. Then Filt(Fac M)

is the minimal torsion class containing M.

Remark Note that, in general, Fac(Filt M) is not a torsion class since it might
not be closed under extensions.

2.4.2 Functorially Finite Torsion Pairs and τ-tilting Theory

From the previous subsection we have that to get the minimal torsion class
containing M one needs to first calculate FacM and then take the extension
closure of this category. However, sometimes FacM is already closed under
extensions, which makes the second step of the construction superfluous.

The following theorem, originally proved by Auslander and Smalø in [26],
is arguably the first result on τ-tilting theory, even if this theory was formally
introduced thirty years later.
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Theorem 2.21 Let A be an algebra and M be an object in mod A. Then Fac M
is a torsion class if and only if M is τ-rigid. Moreover, in this case

M⊥ := {X ∈mod A | HomA(M,X) = 0}

is the torsion-free class such that (Fac M,M⊥) is a torsion pair in mod A.

As we just said, many years passed between the publication of this result and
the start of τ-tilting theory as an independent subject in representation theory.
However, this was not the only result that worked with τ-rigid objects. In fact,
a well-established technique used in classical tilting theory to determine if an
object is tilting was to show that the candidate M was a τ-rigid module such that
pd M 6 1 and |M|= n. The interested reader is encouraged to surf the literature
to look for such examples.

From a torsion theoretic point of view, the breakthrough made by Adachi,
Iyama and Reiten in [1] is that they showed that τ-tilting pairs characterised a
particular class of torsion classes, the functorially finite torsion classes.

Let X be a subcategory of an abelian category A and suppose that X is an
object of X and M is an arbitrary object of A. A morphism f : X →M is called
a right X -approximation of M if any map f ′ : X ′ → M with X ′ ∈ X factors
through f . Dually, a morphism g : M→ X is called a left X-approximation of
M if any map g′ : M → X ′ with X ′ ∈ X factors through g. We say that X is
contravariantly finite (resp. covariantly finite) if any object M in A admits a
right (resp. left) X-approximation. We say that X is functorially finite if it is
both contravariantly finite and covariantly finite.

An important consequence of the uniqueness up to isomorphism of the canon-
ical exact sequence of an object with respect to a torsion pair is the following.

Proposition 2.22 Let (T,F) be a torsion pair in an abelian category A and let
M be an object of A. If

0→ tM→M→ f M→ 0

is the short exact sequence of M with respect to (T,F) then the canonical in-
clusion i : tM → M is a right T-approximation and the canonical projection
p : M→ f M is a left F-approximation. In particular every torsion class in A is
contravariantly finite and every torsion-free class F in A is covariantly finite.

Given a τ-rigid module M, we know by Theorem 2.21 that FacM is a torsion
class. In fact, it turns out that FacM is functorially finite, as shown by Auslander
and Smalø in [26]. Before we give the precise statement of the theorem, we will
introduce some notation that will be useful in the rest of the chapter. Given a
subcategory X of mod A, we say that an object M in X is Ext-projective if
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Ext1A(M,X) = 0 for every object X in X. For every functorially finite torsion
class T of mod A we define P(T) to be P(T) := T 0

A ⊕T 1
A , where fA : A→ T 0

A
is the minimal left T-approximation of A as an object of mod A and T 1

A is the
cokernel of fA.

Theorem 2.23 [26] Let T be a functorially finite torsion class in mod A. Then
P(T) is an Ext-projective object in T such that T is an object in add(P(T)) for
all Ext-projective modules T in T. Moreover T = Fac P(T). In particular, P(T)
is a τ-rigid A-module.

This last result implies that every functorially finite torsion class is generated
by a τ-rigid module. This defines a well-defined map Φ : τ-rp-A→ ftors-A from
the set τ-rp-A of all τ-rigid pairs to the set ftors-A of functorially finite torsion
classes. The main contribution of [1] to this problem is the proof of the fact that
this map is a bijection if we consider restricting Φ to the set τ-tp-A⊂ τ-rp-A of
τ-tilting pairs. The precise statement is the following.

Theorem 2.24 [1] Let A be an algebra. Then the map Φ : τ-tp-A→ ftors-A
defined by

Φ(M,P) = Fac M

is a bijection. Moreover, the inverse Φ−1 : ftors-A→ τ-tp-A is defined as

Φ
−1(T) = (P(T),⊥PT),

where ⊥pT is a basic additive generator of the category of projective modules
P such that HomA(P,T ) = 0 for all T ∈ T.

2.5 A (τ-)tilting Theorem

We have mentioned in Section 2.2 that the term tilting theory was coined by
Brenner and Butler, who showed in [34] what is now known as the tilting the-
orem. In this section we give a precise statement of the tilting theorem. Af-
terwards we show how this result can be generalised to τ-tilting theory and
mention some of its limits.

2.5.1 A Tilting Theorem

We start by recalling the definition of a tilting module.

Definition 2.25 [34] Let A be an algebra and T be an A-module. We say that
T is a tilting module if the following holds:
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(i) pdAT 6 1, the projective dimension of T is at most 1.

(ii) T is rigid, that is Ext1A(T,T ) = 0.

(iii) There exists a short exact sequence of the form

0→ A→ T ′→ T ′′→ 0,

where T ′,T ′′ are direct summands of direct sums of T .

It follows from Proposition 2.10 that every tilting module T is τ-tilting. Then
we have that T has a torsion pair associated to it, namely (FacT,T⊥). Now, the
torsion class FacT can be characterised homologically as follows.

Proposition 2.26 Let T be a tilting module. Then

Fac M =
¶

X ∈mod A | Ext1A(T,X) = 0
©
.

Now, for every object M of mod A we have that EndA(M) is a finite dimen-
sional algebra. In this case, M has a natural structure of a left EndA(M)-module
structure. For the rest of the section we denote by B := EndA(T ) the endomor-
phism algebra of a tilting module T . The following proposition indicates the
importance of tilting objects.

Proposition 2.27 [34] Let T be a tilting A-module. Then T is tilting as a left
B-module. Moreover, T induces a torsion pair (X(T ),Y(T )) in the category
mod B of right B-modules where

X(T ) := {X ∈mod B | X⊗B T = 0},

Y(T ) := {Y ∈mod B | TorB
1 (Y,T ) = 0}.

We are now able to state the tilting theorem of Brenner and Butler.

Theorem 2.28 [34] Let A be an algebra, T be a tilting A-module and B =

EndA(T ). Then the following hold.

1 The algebra End op
B (T ) is isomorphic to A.

2 The functor HomA(T,−) : Fac T → Y(T ) is an equivalence of categories
with quasi-inverse −⊗B T : Y(T )→ Fac T .

3 The functor Ext1A(T,−) : T⊥→ X(T ) is an equivalence of categories with
quasi-inverse TorB

1 (−,T ) : X(T )→ T⊥.
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2.5.2 A τ-tilting Theorem

We have said in various places that τ-tilting theory can be seen as a generalisa-
tion of tilting theory. Hence, one would expect the existence of a generalisation
of the tilting theorem to τ-tilting theory. This was achieved in [105] building
on the results of [68] that we discuss in the next section. Before stating the re-
sult, we need to recall some basic facts. The first key observation is that if A
and C are algebras such that C is a quotient of A, then mod C is a full subcate-
gory of mod A. This implies immediately that EndA(M) ∼= EndC(M) for every
C-module M.

In this section, we fix a τ-tilting module T , we denote by annT the annihi-
lator of T and by C := A/annT the quotient algebra of A by annT .

Proposition 2.29 If T is a τ-tilting A-module, then T is a tilting C-module.

As a consequence of this proposition and Theorem 2.25 we have the exis-
tence of a torsion pair ((FacT )C,(T⊥)C) in mod C and a torsion pair (X(T ),
Y(T )) in mod B and equivalences of categories between them. Now, we would
like to compare the torsion pair ((FacT )A,(T⊥)A) induced by T in mod A with
(X(T ),Y(T )) in mod B. The main ingredient to do that comes from the follow-
ing two results.

Proposition 2.30 [1] Let T be a τ-tilting module. Then T⊥ = Sub(τT ).

Proposition 2.31 Let C be a quotient algebra of A and let M be a C-module.
Then the Auslander–Reiten translation τCM of M in mod C is a submodule of
the Auslander–Reiten translation τAM of M in mod A.

Hence, if T is a τ-tilting A-module we have that the torsion pair (FacT,T⊥)
in mod A coincides with the torsion pair (FacT,T⊥) in mod C if and only if
τAM ∼= τCM. Then a τ-tilting version of the tilting theorem of Brenner and
Butler reads as follows.

Theorem 2.32 [105] Let A be an algebra, T be a τ-tilting A-module, B =

EndA(T ) and C = A/annT . Then the following hold.

1 The algebra Endop
B (T ) is isomorphic to C.

2 The functor HomA(T,−) : Fac T → Y(T ) is an equivalence of categories
with quasi-inverse −⊗B T : Y(T )→ Fac T .

3 The functor Ext1A(T,−) : T⊥→ X(T ) is an equivalence of categories with
quasi-inverse TorB

1 (−,T ) : X(T )→ T⊥ if and only if τAT ∼= τCT .

Remark We note that there are examples of τ-tilting pairs such that τAT ∼=
τCT , such as the so-called τ-slices introduced in [105].
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We also note that there is another generalisation of the tilting theorem of
Brenner and Butler for 2-term silting objects proved by Buan and Zhou in [42].

2.6 τ-tilting Reduction

In the last section we explained the deep relationship between τ-tilting pairs
and torsion pairs. In this section we will consider the problem of completing a
τ-rigid pair, which we consider in two steps. In the first subsection we will show
that there are two torsion pairs which are naturally associated to every τ-rigid
pair. In the second subsection we give a characterisation of all the completions
of a τ-rigid pair developed in [68]. We finish this section by mentioning some
bijections between the torsion classes of different categories.

2.6.1 The Bongartz Completion of a τ-rigid Pair

The choice of taking τ-rigid modules to develop τ-tilting theory is arbitrary. In
fact, using τ−1-rigid modules, that is, modules N such that HomA(τ

−1N,N)=0,
we can develop a completely dual τ−1-tilting theory. See [1]. In this case, the
dual of Theorem 2.21 reads as follows.

Theorem 2.33 [26] Let A be an algebra and N be an object in mod A. Then
the category

SubN := {Y ∈mod A | ∃ i : 0→ Y → Nr for some r ∈ N}

is a torsion-free class if and only in N is τ−1-rigid. Moreover, in this case

⊥N := {X ∈mod A : HomA(X ,N) = 0}

is the torsion class such that (⊥N,SubN) is a torsion pair in mod A.

Now, take a non-projective τ-rigid module M. Then it is easy to see that τM
is τ−1-rigid. Indeed,

HomA(τ
−1

τM,τM) = HomA(M,τM) = 0.

Hence there are two torsion classes naturally associated to M, namely FacM
and ⊥τM. In the following theorem we give some results regarding the relation
between these two torsion classes and M, all of which appeared already in [1].

Theorem 2.34 [1] Let A be an algebra and M be a τ-rigid A-module. Then the
following holds.

1 Fac M ⊂ ⊥τM.
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2 The torsion classes Fac M and ⊥τM coincide if and only if M is τ-tilting.

3 Suppose that T is a functorially finite torsion class. Then M is a direct
summand of P(T) if and only if Fac M ⊂ T ⊂ ⊥τM.

From the previous theorem we have that ⊥τM is the maximal torsion class
having M as an Ext-projective, which makes the τ-tilting module P(⊥τM) spe-
cial enough to have a name. We say that P(⊥τM) is the Bongartz comple-
tion of M. This name was chosen because P(⊥τM) plays an analogous role in
τ-tilting theory to that of the Bongartz completion in the classical tilting theory.
To be more precise, Bongartz showed in [33] that if T is a partial tilting mod-
ule, then P(⊥τT ) is a tilting module having T as a direct summand. In other
words, Bongartz showed that every partial tilting module can be completed to
a tilting module.

If we use the language of τ-rigid pairs instead of τ-rigid modules we can be
more precise in our statements. From now on, by abuse of notation, we say that
a τ-rigid pair (M,P) is a direct summand of (M′,P′) if M is a direct summand
of M′ and P is a direct summand of P′.

Theorem 2.35 [1] Let A be an algebra and (M,P) be a τ-rigid pair in mod A.
Then the following hold.

1 ⊥τM∩P⊥ is a torsion class and Fac M ⊂ ⊥τM∩P⊥.

2 The torsion classes M⊥ and ⊥τM∩P⊥ coincide if and only if (M,P) is a
τ-tilting pair.

3 Suppose that T is a functorially finite torsion class. Then (M,P) is a direct
summand of Φ−1(T) if and only if Fac M ⊂ T ⊂ ⊥τM∩P⊥.

As for τ-rigid modules, we say that Φ−1(⊥τM∩P⊥) is the Bongartz com-
pletion of (M,P). But now we can also compute the τ-tilting pair Φ−1(FacM),
which is the τ-tilting pair generating the smallest torsion class containing M.
In this case, we say that Φ−1(FacM) is the Bongartz cocompletion of (M,P).

2.6.2 τ-tilting Reduction and Torsion Classes

In this subsection we consider the problem of finding all τ-tilting pairs having
a given τ-rigid pair (M,P) as a direct summand. This problem was solved by
Jasso in [68] using a procedure that is now known as τ-tilting reduction. Here
we give a brief summary of that process.

By Theorem 2.35 one knows that (M,P) yields the torsion classes FacM and
⊥(τM)∩P⊥. Moreover, Theorem 2.35 states the existence of a τ-tilting pair of
the form (M⊕M′,P) such that Fac(M⊕M′) = ⊥(τM)∩P⊥.
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Now define B(M,P) = EndA(M⊕M′) to be the endomorphism algebra of
M⊕M′. In the algebra B(M,P) = EndA(M⊕M′), there is an idempotent element
e(M,P) associated to the B(M,P)-projective module HomA(M⊕M′,M). We define
the algebra B̃(M,P) as the quotient of B(M,P) by the ideal generated by e(M,P),
that is,

B̃(M,P) := B(M,P)/B(M,P)e(M,P)B(M,P).

Now we are able to state one of the main results of [68].

Theorem 2.36 [68] Let (M,P) be a τ-rigid pair in mod A. Then the functor

HomA(M⊕M′,−) : modA→modB(M,P)

induces an equivalence of categories

F : M⊥∩⊥τM∩P⊥→mod B̃(M,P)

between the perpendicular category M⊥∩⊥τM∩P⊥ of (M,P) and the module
category mod B̃(M,P).

As a direct consequence of Theorem 2.36 and Theorem 2.35 we obtain the
following result.

Theorem 2.37 [68] Let (M,P) be a τ-rigid pair in mod A and B̃(M,P) as above.
Then the functor

HomA(M⊕M′,−) : modA→modB(M,P)

induces a bijection between the torsion classes T in mod A such that Fac M ⊂
T ⊂ ⊥τM∩P⊥ and the torsion classes in mod B̃(M,P).

In particular the functor

HomA(M⊕M′,−) : modA→modB(M,P)

induces a bijection between the τ-tilting pairs in mod A having (M,P) as a
direct summand and the τ-tilting pairs in mod B̃(M,P).

Remark Note that Theorem 2.37 does not give a specific number of comple-
tions of a given τ-rigid pair (M,P). This is due to the fact that the number of
τ-tilting pairs in two algebras might differ hugely.

2.6.3 Bijections of Torsion Classes

Note that the perpendicular category M⊥ ∩ ⊥τM ∩P⊥ defined by Jasso is at
the intersection of the torsion class ⊥τM∩P⊥ with the torsion-free class M⊥.
Moreover, in this case M⊥∩⊥τM∩P⊥ is what is called a wide subcategory of
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mod A. A subcategory X is called wide when it is closed under kernels, cok-
ernels and extensions. In particular, this implies that X is an abelian category.
Then Asai and Pfeiffer found in [10] the following generalisation of Theo-
rem 2.37.

Theorem 2.38 [10] Let (T1,F1) and (T2,F2) be two torsion pairs in mod A
such that T1 ⊂ T2. Suppose moreover that T2 ∩F1 is a wide subcategory of
mod A. Then there is a bijection between the torsion classes T in mod A such
that T1 ⊂ T ⊂ T2 and the torsion classes in T2∩F1 given by map T 7→ T∩T1.

Note that the intersection of a torsion class with a torsion-free class is not al-
ways a wide subcategory. However, it does always have some structure, namely
that of a quasi-abelian subcategory [104]. The definition of quasi-abelian sub-
categories is a bit technical and it will be skipped.

However, it is worth mentioning that Tattar showed in [104] that there is a
well-defined notion of torsion classes in quasi-abelian subcategories. Moreover
he showed that Theorem 2.37 can be generalised to this setting as follows.

Theorem 2.39 [104] Let (T1,F1) and (T2,F2) be two torsion pairs in mod A
such that T1 ⊂ T2. Then there is a bijection between the torsion classes T in
mod A such that T1 ⊂ T ⊂ T2 and the torsion classes in T2∩F1 given by map
T 7→ T∩T1.

2.7 Torsion Classes, Wide Subcategories and Semibricks

We have seen already a bijection between τ-tilting pairs and functorially fi-
nite torsion classes. In this section we will see the relation of τ-tilting theory
with two other notions, namely wide subcategories and semibricks, which were
described by Marks and Stovicek [75] and Asai [8], respectively.

2.7.1 Torsion Classes and Wide Subcategories

We start this subsection by recalling the definition of wide subcategories.1

Definition 2.40 A subcategory W of mod A is said to be wide if it is closed
under extensions, kernels and cokernels.

1 We give here the definition of wide subcategories as usually known in the context of
representation theory of algebras. We warn the reader that in algebraic topology the same
terminology has a different meaning.
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The idea of this section is to describe maps between the set tors-A of torsion
classes in mod A and set wide-A of wide subcategories in mod A. Going from
wide-A to tors-A, the map that we take is quite natural. Indeed we define

T (−) : wide-A→ tors-A,

where T (W) is the minimal torsion class in mod A containing W. We recall
from Proposition 2.20 that T (W) = Filt(FacW). Actually this map has a really
nice property.

Proposition 2.41 [75] The map T (−) : wide-A→ tors-A is injective.

On the other direction we need to build a map α(−) : tors-A→ wide-A.
Given a torsion class T we define the subcategory α(T) of mod A as follows.

α(T) := {X ∈ T | ker f ∈ T for all f ∈ HomA(Y,X) with Y ∈ T}.

Proposition 2.42 [75] Let T be a torsion class in mod A. Then α(T) is a wide
subcategory of mod A.

Inside tors-A there is the subset ftors-A of functorially finite torsion classes,
that we have already discussed before. Likewise, inside wide-A there we have
the subset of fwide-A of wide subcategories W of mod A such that they are
functorially finite and such that T (W ) is a functorially finite torsion class. The
following theorem indicates what happens if we restrict the maps α(−) and
T (−) to these distinguished subsets.

Theorem 2.43 [75] The map T (−) : fwide-A→ ftors-A is a bijection between
the set fwide-A and ftors-A with inverse α(−) : ftors-A→ fwide-A.

As an immediate consequence of the previous theorem and Theorem 2.24
we obtain the following corollary.

Corollary 2.44 For every algebra A there is a one-to-one correspondence be-
tween the set τ-tp-A of τ-tilting pairs and the set fwide-A of functorially finite
wide subcategories of mod A.

2.7.2 Semibricks

Let us recall the classical notion of bricks and the more novel notion of semi-
bricks introduced by Asai in [8].

Definition 2.45 We say that an object B in mod A is a brick if its endomorphism
algebra EndA(B) is a division ring. A set {B1, . . . ,Bt} of bricks in mod A is said
to be a semibrick if HomA(Bi,B j) = 0 if i is different from j.
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The classical example of a semibrick is the set {S(1), . . . ,S(n)} of non-
isomorphic simple A modules. Indeed, the classical Schur’s lemma implies that
{S(1), . . . ,S(n)} is a semibrick. In fact, this is a particular case of a more gen-
eral phenomenon. Recall that an object M in a subcategory X of mod A is said
to be relatively simple if the only submodules of M that are in X are 0 and M.

Let W be a wide subcategory of mod A and let B be a relative simple object
in W. Then it is easy to see that S is necessarily a brick. Indeed, if f ∈ EndA(S)
then im f is a subobject of B which is in W because W is wide. Hence f is
either the zero morphism or an isomorphism. A similar argument shows that
the set

S(W) = {B | B is relative simple in W}

is a semibrick. On the other hand, one can see that given a semibrick S the
category Filt(S) is wide. In the following result sbrick-A denotes the set of all
semibricks in mod A.

Theorem 2.46 [8] The map

S(−) : wide-A→ sbrick-A

is a bijection with inverse

Filt(−) : sbrick-A→ wide-A.

Inside of sbrick-A there are semibricks S such that the minimal torsion class
T (S) containing S is functorially finite. We denote the set of all such semi-
bricks by fsbrick-A. Combining the last theorem with the results of the previous
subsection we obtain the following.

Theorem 2.47 There are bijections between the sets τ-tp-A, ftors-A, fwide-A
and fsbrick-A.

There are several things that are worth mentioning here. Firstly, the bijec-
tions established in Theorem 2.47 are a very small subset of the existing bi-
jections of interesting representation theoretic objects. A very nice paper that
covered many of these bijections is the survey article [38] by Brüstle and Yang.
We choose to mention these here (and we will mention some other bijections
later) because they were shown after the latest update of [38] and are not in-
cluded there.

We also want to emphasise that in the development of τ-tilting theory a
choice was made of working with the Auslander–Reiten translation τ and tor-
sion classes in mod A, instead of working with the inverse Auslander–Reiten
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translation τ− and torsion free classes. However, the corresponding dual state-
ments for these results hold. In particular this adds many more bijections to this
theory.

Finally, it is worth mentioning that Asai showed in [8] an explicit bijection
between fsbricks-A and τ-tp-A. This result was later recovered in [107] using
the notions of c-vectors that will be discussed in a later section.

2.8 The Poset Tors-A

The set tors-A of all torsion classes in mod A has a natural poset structure,
where the order is given by inclusion. In other words, given a pair of torsion
classes T and T′ we say that T 6 T′ if T ⊂ T′. In this section we show some of
the basic properties of this poset.

2.8.1 tors-A is a Complete Lattice

The aim of this subsection is to explain its title. In order to do that we need to
recall the definitions of a lattice and a complete lattice.

Definition 2.48 A poset P is a lattice if any two elements x,y ∈ P admit a
greatest common lower bound x∧ y, known as the meet of x and y, and a least
common upper bound x∨ y, known as the join of x and y. A lattice P is said
to be complete if every subset S of P admits a lowest common greater bound∨

x∈S x (i.e. a join) and a greatest lower bound
∧

x∈S x (i.e. a meet).

There has been a lot of work studying the lattice theoretic properties of the
set tors-A for an algebra A. One of the most important results in this direction
was obtained by Demonet, Iyama, Reading, Reiten and Thomas in [46].

Theorem 2.49 [46] The set tors-A is a complete lattice for every algebra A.
In this case, given a subset S⊂ tors-A the meet and the join of S are defined as
follows. ∧

T∈S

T :=
⋂
T∈S

T

∨
T∈S

T := T

(⋃
T∈S

T

)
Remark We note that the union of torsion classes is not always a torsion class
since in general this union is not closed under extensions or quotients. That is
why we need to consider the minimal torsion class containing the union.
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Now, suppose that C is a quotient algebra of A. The following theorem tells
us how tors-A and tors-C are related.

Theorem 2.50 If A is an algebra and C is a quotient of A, then there is an
epimorphism of lattices p : tors-A→ tors-C. In other words, the lattice tors-C
is a quotient of the lattice tors-A.

One of the main ingredients of the proof of this theorem is the so-called
brick labelling that we will discuss in the next subsection.

2.8.2 The Hasse Quiver of tors-A

We now shift the focus of our attention to the Hasse diagram of tors-A. In order
to do that, let us recall the notion of the Hasse quiver of a poset.

Definition 2.51 Given a poset P, the Hasse quiver H(P) of P is an oriented
graph whose vertices correspond to the elements of P and there is an arrow
x→ y if y6 x such that y6 z6 x implies that x = z or y = z.

In particular the arrows of the Hasse quiver H(tors-A) of tors-A correspond
to the maximally included torsion classes. That is, for two torsion classes T and
T′ we say that T is maximally included in T′ if T ⊂ T′ and T ⊂ T′′ ⊂ T′ implies
that T′′ = T or T′′ = T′. It turns out that maximal inclusions of torsion classes
have a very nice characterisation, as shown by Barnard, Carrol and Zhu in [28].

Theorem 2.52 [28] Let T and T′ be two torsion classes such that T is max-
imally included in T′. Then there exists a brick B in mod A such that T′ =
Filt(T ∪{B}). In this case, we say that B is the minimal extending module of
the inclusion T ⊂ T′.

A direct consequence of this result is the following corollary, which is usu-
ally known as the brick labelling of H(tors-A).

Corollary 2.53 There is a well-defined labelling of the arrows of H(tors-A)
by bricks in mod A, where we label each arrow T′→ T of H(tors-A) with the
minimal extending module corresponding to the inclusion T ⊂ T′.

Remark We note that brick labelling of H(tors-A) (or parts of it) can also be
deduced as a consequence of several independent works that appeared simulta-
neously, namely [8, 36, 46, 107].

We have that the set of functorially finite torsion classes ftors-A is a subset
of tors-A. So the question is how their Hasse quivers H(ftors-A) and H(tors-A),
respectively, are related. In order to answer that question we need to know what

https://doi.org/10.1017/9781009093750.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009093750.004


78 Hipolito Treffinger

happens when we have a maximal inclusion of torsion classes T ⊂ T′ such that
either T or T′ are functorially finite. A complete answer to this question is a
consequence of the work of Demonet, Iyama and Jasso [45].

Theorem 2.54 [45] Let T ⊂ T′ be a minimal inclusion of torsion classes in
tors-A. Then T is functorially finite if and only if T′ is functorially finite.

A direct consequence of the previous theorem is the following.

Corollary 2.55 The Hasse quiver H(ftors-A) of ftors-A and the Hasse quiver
H(tors-A) of tors-A are locally isomorphic.

2.9 Mutations of τ-tilting Pairs and Maximal
Green Sequences

As we said in in the introduction of these notes, τ-tilting theory was conceived
with the goal of completing the classical tilting theory with respect to mutation.
In this section we start by discussing the notion of mutation from a torsion
theoretic perspective. We finish it by speaking about the notion of maximal
green sequences.

2.9.1 Mutations of τ-tilting Pairs

In order to speak about mutation we need to introduce a bit of notation.

Definition 2.56 We say that a τ-rigid pair (M,P) is almost complete if |M|+
|P|= n−1. Given two τ-tilting pairs (M1,P1) and (M2,P2), we say that (M1,P1)

is a mutation of (M2,P2) if there is an almost complete τ-rigid pair (M,P)
which is a direct summand of (M1,P1) and (M2,P2). By abuse of notation we
also say that FacM1 is a mutation of FacM2 if (M1,P1) is a mutation of (M2,P2).

The main result about mutation of τ-tilting pairs is the following theorem
shown by Adachi, Iyama and Reiten in [1], that can be considered the most
important result in τ-tilting theory.

Theorem 2.57 [1] Let (M,P) be a τ-tilting pair where M =
⊕k

i=1 Mi and P =⊕n
j=k+1 Pj are basic modules.
Then for every indecomposable direct summand Ml of M the almost com-

plete τ-rigid pair (
⊕

i6=l Mi,P) can be completed to a τ-tilting pair different
from (M,P) in a unique way.

Likewise, for every indecomposable direct summand Pl of P the almost com-
plete τ-rigid pair (M,

⊕
j 6=l Pj) can be completed to a τ-tilting pair different

from (M,P) in a unique way.

https://doi.org/10.1017/9781009093750.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009093750.004


2 τ-tilting Theory – an Introduction 79

Remark We note that we can recover Theorem 2.57 as a consequence of The-
orem 2.37. Indeed, one can verify that for all almost complete τ-rigid pairs
(M,P) the algebra B̃(M,P) is local, which implies that there is only one isomor-
phism class of simple modules in mod B̃(M,P). As a consequence of this, if S is
a simple module in mod B̃(M,P) we have that HomB̃(M,P)

(X ,S) = 0 implies that
X is isomorphic to zero.

Let S be a simple module in mod B̃(M,P) and let T be a torsion class in
mod B̃(M,P). Then we have two options: either S ∈ T or S 6∈ T. If S ∈ T, then
X ∈ T for all X ∈mod B̃(M,P) since torsion classes are closed under extensions.
Otherwise, we have that T = {0} by the argument above.

This shows that every local algebra, no matter how complicated its repre-
sentation theory, has exactly two torsion classes in its module category, which
are the trivial torsion classes. In particular, this implies that there are exactly
two τ-tilting pairs in mod B̃(M,P) if (M,P) is an almost complete τ-rigid pair.
Hence Theorem 2.57 follows from Theorem 2.37.

Another important consequence of the previous argument is the following.

Proposition 2.58 [1] Let (M1,P1) and (M2,P2) be τ-tilting pairs that are mu-
tations of each other and let (M,P) be the almost complete τ-rigid pair which
is a direct summand of both. Then either Fac M1⊂ Fac M2 or Fac M2⊂ Fac M1.
In particular, Fac M1 6= Fac M2. Moreover, if Fac M1 ⊂ Fac M2 then Fac M1 =

Fac M and Fac M2 =
⊥τM∩P⊥.

Remark From Theorem 2.57 it follows that, given a τ-tilting pair (M,P) and
a choice (M′1,P

′
1) of an indecomposable direct summand of (M,P), there is a

unique τ-tilting pair (M1,P1) with the same indecomposable direct summands
as (M,P) except (M′1,P

′
1). We say that (M1,P1) is the mutation of (M,P) at

(M′1,P
′
1).

Moreover, if (M′1,P
′
1) and (M′2,P

′
2) are distinct indecomposable direct sum-

mands of (M,P), then the mutations (M1,P1) and (M2,P2) of (M,P) at (M′1,P
′
1)

and (M′1,P
′
1), respectively, are different. In particular, this implies that for every

τ-tilting pair (M,P) there are exactly n τ-tilting pairs which are a mutation of
(M,P) (see [1]).

In fact, there are explicit homological formulas to construct (M1,P1) from
(M2,P2) and back but we will not explain them here. The interested reader is
encouraged to see [1] for more details on the matter.

We now state a result by Demonet, Iyama and Jasso showing how the muta-
tion of τ-tilting pairs can be seen at the level of torsion theories.

Theorem 2.59 [45] Let A be an algebra, (M,P) be a τ-tilting pair and T be a
torsion class in mod A. Then the following hold.
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1 If T ( Fac M then there exists a mutation (M′,P′) such that
T ⊂ Fac M′ ( Fac M.

2 If Fac M ( T then there exists a mutation (M′′,P′′) such that
Fac M ( Fac M′′ ⊂ T.

Using the notion of mutation of τ-tilting pairs, one can construct a graph
τ-tp-A where the vertices are the τ-tilting pairs in mod A and there is an edge
between two τ-tilting pairs if and only if they are mutations from each other.
Using the results of this section and Theorem 2.24 we can prove the following
result.

Proposition 2.60 The graph τ− t p−A is isomorphic to the undirected graph
underlying H(ftors-A). In particular, H(ftors-A) is an n-regular quiver.

2.9.2 Maximal Green Sequences

In the module category of any algebra A there are always at least two torsion
classes, sometimes called the trivial torsion classes, which are the whole of
mod A and the torsion class {0} containing only the objects that are isomorphic
to the zero object. Both of these torsion classes are functorially finite and it is
not hard to see that Φ(A,0) = mod A and Φ(0,A) = {0}.

Clearly {0}(mod A. So we can apply Theorem 2.59.1 and obtain a τ-tilting
pair (M1,P1) which is a mutation of (A,0) such that {0} ⊂ FacM1 ( mod A.
If FacM1 is not equal to {0} we can repeat the process to obtain a mutation
(M2,P2) of (M1,P1) such that {0} ⊂ FacM2 ( FacM1 ( mod A. We can repeat
this process inductively to obtain a decreasing chain of torsion classes

{0} ⊂ ·· ·( FacM3 ( FacM2 ( FacM1 ( mod A,

which in general can continue forever. However, in some cases this process
stops. This leads to the following definition.

Definition 2.61 A maximal green sequence of length t in mod A is a finite set of
τ-tilting pairs {(Mi,Pi) : 06 i6 t} such that (M0,P0) = (A,0), (Mt ,Pt) = (0,A)
and (Mi,Pi) is a mutation of (Mi−1,Pi−1) and FacMi ⊂ FacMi−1. Equivalently,
a maximal green sequence is a finite chain of torsion classes

{0}= T0 ( T1 ( · · ·( Tt−1 ( Tt = mod A

such that Ti−1 is maximally included in Ti for all 16 i6 t.

Maximal green sequences were originally introduced by Keller in [69] in the
context of cluster algebras to give a combinatorial method to calculate certain
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geometric invariants known as Donaldson–Thomas invariants. The interpreta-
tion of maximal green sequences in terms of chains of torsion classes was first
used by Nagao in [84]. The definition given here can be considered as a gener-
alisation to the setting of τ-tilting theory of the original definition, since there
are many examples of algebras which do not have a cluster counterpart, which
first appeared in [36].

We have previously discussed in Section 2.7 that given a maximal inclu-
sion T ⊂ T′ of torsion classes T,T′ there is a brick B in mod A such that
T′ = Filt(T∪{B}). Then, applying this argument inductively we can see that if
we have a maximal green sequence

{0}= T0 ( T1 ( · · ·( Tt−1 ( Tt = mod A,

we have a set of bricks B = {B1,B2, . . . ,Bt} such that mod A = Filt(B). As it
is, this is not a significant result since a small argument shows that all simple
modules belong to B regardless of our starting maximal green sequence, and
we know that simple modules filter every object in mod A. However, one can
show that the filtrations given in this way are unique in the following sense.

Theorem 2.62 Let {0} = T0 ( T1 ( · · · ( Tt−1 ( Tt = mod A be a maximal
green sequence in mod A and let B= {B1,B2, . . . ,Bt} be the set of bricks asso-
ciated to it. Then for every non-zero object M of mod A there is a filtration

0 = M0 ⊂M1 ⊂ ·· · ⊂Ms−1 ⊂Ms = M

such that s6 t, M j/M j−1 ∈ Filt(B ji) and j1 < j2 < · · ·< js−1 < js. Moreover,
this filtration is unique up-to-isomorphism.

Remark The previous result is a consequence of two works that appeared in-
dependently, namely [70] and [106]. In the appendix of [70], Demonet showed
that the set B is what he calls an I-chain and showed that every I-chain induces
a unique filtration in every object of mod A.

A more general approach to this problem was given in [106], where it was
shown that every chain of torsion classes induces a unique filtration for every
object in mod A. In that paper, this filtration was called the Harder–Narasimhan
filtration induced by the chain of torsion classes since it generalises the Harder–
Narasimhan filtrations induced by stability conditions. See also [37].

Remark Note that the word green in the name maximal green sequence does
not make reference to any mathematician of name Green. Instead this word
makes reference to the classical colouring in traffic lights. The reason for this
is that in cluster algebras there is no evident reason to say that a mutation is
going forwards or backwards. However, Keller [69] needed to impose such a
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direction to mutations in order to get the desired calculation. Then, he came up
with a colouring of the vertices of the quiver associated to the cluster algebra
in which a vertex is either green or red, which indicates if we are allowed to
mutate at the given vertex or not, respectively. In this colouring, every vertex in
the quiver of the initial seed is green and we are allowed to mutate at one green
vertex at a time. The process finishes if after a finite number of mutations all
the vertices in the quiver are red. To learn more about this rich subject, see [70].

2.10 τ-tilting Finite Algebras

To finish this part of the notes we speak about a new class of algebras that orig-
inated with the study of τ-tilting theory, the so-called τ-tilting finite algebras.
They were introduced by Demonet, Iyama and Jasso as follows.

Definition 2.63 [45] An algebra A is τ-tilting finite if there are only finitely
many τ-tilting pairs in mod A.

Even though the class of τ-tilting finite algebras has been recently intro-
duced, they have received a lot of attention. In the following theorem we com-
pile a series of characterisations of τ-tilting finite algebras.

Theorem 2.64 Let A be an algebra. Then the following are equivalent.

1 A is τ-tilting finite.

2 There are finitely many indecomposable τ-rigid objects in mod A.

3 [45] There are finitely many torsion classes in mod A.

4 [46] There are finitely many bricks in mod A.

5 [97] The lengths of bricks in mod A are bounded.

6 [8] There are finitely many semibricks in mod A.

7 [75] There are finitely many wide subcategories in mod A.

8 [99] Every brick in ModA is a finitely presented A-module.

Remark Note that by Theorem 2.64.3 we have that all torsion classes in the
module category of a τ-tilting finite algebra are functorially finite.

As we can see in Theorem 2.64, τ-tilting finite algebras have module cate-
gories that are somehow manageable from a torsion theoretic perspective, even
if they are wild. As a consequence, there is an ongoing informal programme
that aims to classify all the τ-tilting finite algebras. This problem has been at-
tacked by several people in different families of algebras. The following is a
list of families of algebras where some progress in understanding the problem
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has been made. Note that this list is not exhaustive nor efficient, since some
families are included in others.

• [55] Hereditary algebras.

• [2] Nakayama algebras.

• [40, 52] Cluster-tilted algebras.

• [1] Radical squared zero algebras.

• [109] Auslander algebras.

• [78] Preprojective algebras.

• [89, 90] Gentle algebras.

• [3] Brauer graph algebras.

• [98] Special biserial algebras.

• [19] Contraction algebras.

• [81] Non-distributive algebras.

2.11 Brauer–Thrall Conjectures and τ-tilting Theory

The systematic study of the representation theory of finite dimensional alge-
bras, one can argue, started around the 1940s. At that time it was already known
that every A-module can be written as a direct summand of indecomposable
A-modules in essentially one way. As a consequence, people started to clas-
sify the algebras in two types, representation finite and representation infinite,
depending on their number of isomorphism classes of indecomposable mod-
ules. Much of the motivation in the early days of representation theory of finite
dimensional algebras stems from this quest of determining algebras of finite
representation type with an important role being played by the first and second
Brauer–Thrall Conjectures, which were proved subsequently by Roı̆ter [93] and
Auslander [20] for the first and by Nazarova and Roı̆ter [87] and Bautista [30]
for the second. For a historical survey on Brauer–Thrall conjectures and their
influence in representation theory, see [61]. Their statement is the following.

Conjecture 2.1 (First Brauer–Thrall Conjecture) [20, 93] Let A be an algebra.
Then A is of finite representation type if and only if there is a positive integer d
such that dimK(M)6 d for every indecomposable A-module M.

Conjecture 2.2 (Second Brauer–Thrall Conjecture) [30, 87] If A is an algebra
of infinite representation type, then there is an infinite family of positive integers
{di | i ∈ N} such that for every di there is an infinite family of indecomposable
A-modules {Mdi

j } where dimK(M
di
j ) = di for all j.
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Then using the characterisation of τ-tilting finite algebras given in Theo-
rem 2.64.4 one can state a τ-tilting analogue of the first Brauer–Thrall Conjec-
ture by restricting the universe of modules to consider from indecomposable
to bricks. The statement of the conjecture, which was proven for every finite
dimensional algebra over a field in [97], is the following.

Theorem 2.65 (First τ-Brauer–Thrall Conjecture) [97] Let A be an algebra.
Then A is τ-tilting finite if and only if there is a positive integer d such that
dimK(M)6 d for every brick M in mod A.

The statement of this conjecture appeared independently in [98] and [80].
We note that recently a new proof of the validity of this conjecture was given
in [82].

One can see immediately that the τ-tilting version of the first Brauer–Thrall
conjecture is a direct translation of the original. However, one can not do the
same in the case of the second Brauer–Thrall conjecture, since there are τ-
tilting infinite algebras having finitely many infinite families of bricks. The
τ-tilting version of the second Brauer–Thrall conjecture is the following.

Conjecture 2.3 (Second τ-Brauer–Thrall Conjecture) If A is a τ-tilting finite
algebra, then there is a positive integer d and an infinite family of bricks {Md

j }
in mod A such that dimK(Md

j ) = d for all j.

This conjecture is still open in general. However, it has been verified for
gentle algebras in [90], special biserial algebras in [80, 98] and for distributive
algebras in [81].

Remark We note that if an algebra satisfies the second τ-Brauer–Thrall con-
jecture then it also satisfies the second Brauer–Thrall conjecture by a result of
Smalø [102].

Remark We also note that there are many examples of τ-tilting finite algebras
that are of infinite representation type, such as preprojective algebras [78] or
contraction algebras [19], to name just a few.

2.12 Dimension Vectors and g-vectors

In the introduction of these notes we said that many developments that occurred
in representation theory in the twenty-first century, including τ-tilting theory,
were aiming to categorify cluster algebras to some extent.

In loose terms, the term categorification refers to the process of explaining
some combinatorial phenomena by showing the existence of some underlying
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categorical phenomena. For instance, the bijection between the indecompos-
able τ-rigid modules in the module category of a hereditary algebra of Dynkin
type and the non-initial variables in the cluster algebra of the corresponding
Dynkin type is a categorification of cluster variables.

But as there is a process of categorification, there is also a process of de-
categorification, a process where you start with a category and you find some
combinatorial or numerical data that reflect the phenomena occurring at the
categorical level.

From now on, we shift our focus to a different decategorification of τ-tilting
theory of an algebra using integer vectors.

2.12.1 The Grothendieck Group of an Algebra

The most classical decategorification using integer vectors of the representation
theory associated to an algebra is the Grothendieck group of a category. We start
by recalling the definition in the case of arbitrary abelian categories.

Definition 2.66 Let A be an abelian category. The Grothendieck group K0(A)

of A is the quotient of the free abelian group generated by the isomorphism
classes [M] of all objects M ∈A modulo the ideal generated by the short exact
sequences as follows.

K0(A) =
〈[M] |M ∈A〉

〈[M]− [L]− [N] | 0→ L→M→ N→ 0〉
.

In these notes we are interested only in the module categories mod A of finite
dimensional algebras A over an algebraically closed field. By abuse of notation,
the Grothendieck group K0(mod A) of mod A will be denoted by K0(A) and we
will refer to it as the Grothendieck group of A. As an immediate consequence of
the Jordan–Hölder theorem for module categories we have the following result.

Theorem 2.67 Let A be an algebra. Then K0(A) is isomorphic to Zn, where n
is the number of isomorphism classes of simple modules in mod A.

From now on, we fix a complete set {[S(1)], . . . , [S(n)]} of isomorphism
classes of simple A-modules. Clearly, {[S(1)], . . . , [S(n)]} forms a basis of
K0(A). However, this is not the only basis of K0(A). In these notes, when we
speak about the Grothendieck group of A we always assume that the basis cho-
sen to represent our vectors is the basis given by the simple modules with a
fixed order.
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Theorem 2.68 Let A be an algebra and K0(A) be its Grothendieck group hav-
ing as canonical basis the set {[S(1)], . . . , [S(n)]} of isomorphism classes of
simple A-modules. Then for every object M ∈mod A, we have that

[M] = (dimK(HomA(P(1),M)), . . . ,dimK(HomA(P(n),M))),

[M] = (dimK(HomA(M, I(1)), . . . ,dimK(HomA(M, I(n))))),

where P(i) and I(i) are the projective cover and the injective envelope of the
simple S(i), respectively, for all 16 i6 n.

The previous result justifies that the element of the Grothendieck group [M]

associated to M is often called the dimension vector of M, terminology that we
adopt in these notes as well.

Sometimes in the literature one finds the notation dimM for the dimension
vector, reserving [M] for the abstract class of M in the Grothendieck group with
no preferred basis of K0(A).

Remark In the previous result we are actually using the hypothesis that A is
an algebra over an algebraically closed field. Otherwise, the result is not true
in general. We warn the reader that this remark is also valid for several other
results in this section.

2.12.2 g-vectors

Another set of integer vectors that can be associated to the category of finitely
presented A-modules is the set of g-vectors.

Although the idea of g-vectors has been around for several decades, their
systematic study is rather recent since the main motivation behind their study,
as the reader might be guessing already, lies in the categorification of cluster
algebras.

In fact, the name g-vector itself comes from cluster theory. The g-vectors
were introduced by Fomin and Zelevinsky in [53], where they conjectured that
cluster variables could be parametrised using g-vectors. Later on, it was shown
that g-vectors encoded the projective presentation of τ-rigid A-modules. Their
definition is the following.

Definition 2.69 Let M be an A-module. Choose the minimal projective presen-
tation

P1 −→ P0 −→M −→ 0

of M, where P0 =
n⊕

i=1
P(i)ai and P1 =

n⊕
i=1

P(i)bi . Then the g-vector of M is de-

fined as
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gM = (a1−b1,a2−b2, . . . ,an−bn).

The g-vector of a τ-rigid pair (M,P) is defined as gM−gP.

Remark Recently, Nakaoka and Palu introduced in [86] the notion of extri-
angulated categories. These categories are a generalisation of abelian where
the notion of conflations replaces and generalises the notion of short exact se-
quences. So, one can define the Grothendieck group of any extriangulated cat-
egory as we did in Definition 2.66, replacing the short exact sequences by the
conflations in this category. In the following section we will see that g-vectors
can be thought of as the elements of the Grothendieck group of an extriangu-
lated category denoted by K[−1,0](proj A).

2.13 τ-tilting Theory and 2-term Silting Complexes

Associated to any finite dimensional algebra A there is a triangulated category
known as the homotopy category of bounded complexes of finitely generated
projective A-modules usually denoted by Kb(proj A). The theory of homotopy
categories is very rich, but out of the scope of these notes. The interested reader
is encouraged to see [76] for a detailed account on that matter.

In this section we first introduce an abstract category associated to every al-
gebra A that we call K[−1,0](proj A) because it can be identified with a full sub-
category of Kb(proj A). Later on, we explain the relation between K[−1,0](proj A)
and τ-tilting theory.

2.13.1 The Category K[–1,0](proj A)

As one usually does when defining a category, let us start by defining its objects.

In this case, an object P of K[−1,0](proj A) is a complex of the form P := P−1
f−→

P0, where P0 and P−1 are two projective A-modules and f ∈ HomA(P−1,P0).

Now, given two objects P := P−1
f−→ P0 and Q := Q−1

f ′−→Q0 in K[−1,0](proj A)
we define g ∈ HomK[−1,0](proj A)(P,Q) as a pair g := (g−1,g0) such that
gi ∈ HomA(Pi,Qi) making the following diagram commutative

P−1
f //

g−1

��

P0

g0

��

h

}}
Q−1

f ′ // Q0
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modulo the equivalence relation given by if g,g′ ∈ HomK[−1,0](proj A)(P,Q), we
impose that g is equal to g′ if there exists a map h : P0→Q−1 such that f ′h = g0

and h f = g−1.
We note that in this category one can associate to every pair of objects P,Q∈

K[−1,0](proj A) an abelian group EK[−1,0](proj A)(P,Q), known as the group of
conflations of P by Q. This group is defined as the group of maps
t ∈ HomA(P−1,Q0) up to homotopy, where t, t ′ ∈ HomA(P−1,Q0) coincide in
this category if there are maps ti ∈ HomA(Pi,Qi) such that t− t ′ = f ′h1−h0 f .

P−1
f //

t

��

h1

||

P0

h0~~
Q−1

f ′ // Q0

The notion of a conflation in an extriangulated category is a generalisation of
that of short exact sequences in abelian categories and distinguished triangles
in triangulated categories. As such, a conflation t ∈ EK[−1,0](proj A)(P,Q) can be
realised as

Q
a
� Et

b
� P,

where a ∈ HomK[−1,0](proj A)(Q,Et), b ∈ HomK[−1,0](proj A)(Et,P) and Et is in

K[−1,0](proj A). The existence of conflations and their realisation endow the
category K[−1,0](proj A) with the structure of an extriangulated category, a no-
tion very recently introduced by Nakaoka and Palu in [86]. This follows from
the fact that K[−1,0](projA) is equivalent to an extension-closed subcategory of
the triangulated category Kb(projA). See [88] for more details.

One can then define the notion of a projective in K[−1,0](proj A) as an ob-
ject P ∈ K[−1,0](proj A) such that EK[−1,0](proj A)(P,Q) = 0 for every object Q ∈
K[−1,0](proj A). Likewise, an injective object in K[−1,0](proj A) is an object
I∈K[−1,0](proj A) such that EK[−1,0](proj A)(Q,I)= 0 for every object Q∈K[−1,0]

(proj A). As it turns out, the projective and injective objects of K[−1,0](proj A)
can be described explicitly as follows.

projK[−1,0](proj A) =
{

0
0−→ P | P ∈ proj A

}
,

injK[−1,0](proj A) =
{

P
0−→ 0 | P ∈ proj A

}
.

As we said before, we want to relate the category K[−1,0](proj A) with the
τ-tilting theory of A. To do that, we first need to know how one can go from
mod A to K[−1,0](proj A) and back.
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In fact, one can see mod A inside K[−1,0](proj A). This comes from the fact
that, by definition, mod A is the category of finitely presented A-modules. This

means that every A-module M admits a minimal projective presentation P−1
f−→

P0 −→M −→ 0, which induces a map P(−) : mod A→ K[−1,0](proj A) defined as

P(M) = P−1
f−→ P0 on the objects. We note that P(−) is not a functor in general.

On the other direction, there is functor H0(−) : K[−1,0](proj A)→ mod A,
usually known as the 0-th homology, which in this case consists of H0(P) =

coker f , where P = P−1
f−→ P0. In fact, one can show that the kernel of the func-

tor H0 corresponds to the ideal 〈A−→ 0〉 generated by the injective objects of
K[−1,0](proj A).

mod A∼=
K[−1,0](proj A)
〈A−→ 0〉

It was noted by Gorsky, Nakaoka and Palu [59] that for every finite dimensional
algebra A, the category K[−1,0](proj A) is hereditary. In other words, they have
shown that for every object M∈K[−1,0](proj A) there is a conflation of the form

P1� P0�M,

where P0 and P1 are projectives in K[−1,0](proj A). This fact is highly surpris-
ing, since the global dimension of the module category of an algebra is arbi-
trary. Moreover, this and the results that we state in the following subsection
give a partial explanation of the good behaviour of τ-tilting theory for every
algebra.

It follows from the results in this section that the Grothendieck group
K0(K[−1,0](proj A)) of K[−1,0](proj A) is isomorphic to Zn, where the set [P(i)]=
[0→ P(i)] form a natural basis to this Grothendieck group. In particular we
have that the g-vector gM of any M ∈ mod A is the class [P(M)] of P(M) ∈
K[−1,0](proj A) written in the basis {[P(1)], . . . , [P(n)]}.

2.13.2 τ-tilting Theory in K[–1,0](proj A)

As we pointed out before, the objects of mod A can be seen as objects of
K[−1,0](proj A). In this subsection we see how the τ-tilting theory of an al-
gebra A can be studied in K[−1,0](proj A). For this we start with the following
definition.

Definition 2.70 Let A be an algebra and P be an object in K[−1,0](proj A).
We say that P is presilting if EK[−1,0](proj A)(P,P) = 0. Moreover, we say that
P is silting if the number of isomorphism classes of indecomposable direct
summands of P is equal to |A|.
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Remark We said before that K[−1,0](proj A) can be identified with a full sub-
category of K[b(proj A). Under this identification, the previous definition coin-
cides with a characterisation of 2-term silting objects in Kb(proj A) given by
Adachi, Iyama and Reiten in [1].

We now state the main result of this section, where we denote by 2-silt(A)
the set of silting objects in K[−1,0](proj A).

Theorem 2.71 [1] Let A be an algebra. Then there is a bijection

P(−) : τ-tp-A→ 2-silt(A)

between the set τ-tp-A of τ-tilting pairs in mod A and the set 2-silt(A) of silting
objects in K[−1,0](proj A), where the map is defined as

P(M,P) := P(M)⊕ (P−→ 0).

In particular, if (M,P) is a τ-rigid pair, then P(M,P) is a presilting object in
K[−1,0](proj A) with the same number of isomorphism classes of indecompos-
able direct summands.

Remark In Section 2.3 we have discussed the problems that one has to define
the basic objects of τ-tilting theory in module categories. However, we can see
that τ-tilting pairs adopt a very natural form in a category K[−1,0](proj A) since
we don’t need to distinguish between τ-rigid modules and projective modules
in the second entry of the pair. This is one of the arguments supporting the idea
that K[−1,0](proj A) is the natural environment to study τ-tilting theory. Even if
we support this idea, we made the decision of writing this note in terms of τ-
tilting pairs to emphasise the relationship of τ-tilting theory and classical tilting
theory.

2.14 g-vectors and τ-tilting Theory

In general there are many A-modules having the same projective presentation,
which implies that g-vectors are in some sense ambiguous. However this am-
biguity disappears when we restrict ourselves to τ-tilting theory.

Theorem 2.72 Let A be an algebra and let M and M′ be two τ-rigid A-modules.
Then gM = gM′ if and only if M is isomorphic to M′.

Although the spirit of the previous result can be found already in the work
of Auslander and Reiten [24], the first appearance of this result stated in these
terms was in the work on 2-Calabi–Yau categories of Dehy and Keller [44].
Later, this result was adapted to the context of τ-tilting theory in the works of
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Adachi, Iyama and Reiten [1] and later extended by Demonet, Iyama and Jasso
in [45] as follows.

Theorem 2.73 [45] Let A be an algebra and let M and M′ be two τ-rigid A-
modules. Suppose that (gM)i 6 (gM′)i for 1 6 i 6 n. Then M is a quotient of
M′. In particular gM = gM′ if and only if M is isomorphic to M′.

In order to state the next result we need to fix some notation. Given a τ-
tilting pair (M,P) we fix a decomposition M =

⊕k
i=1 Mi and P =

⊕n
j=k+1 Pj of

M and P, respectively.

Theorem 2.74 [1] Let (M,P) be a τ-tilting pair. Then the set

{gM1 , . . . ,gMk ,−gPk+1 , . . . ,−gPn}

forms a basis of Zn.

2.14.1 g-vectors, Dimension Vectors and the Euler Form

Given a finite dimensional algebra A, one can always associate to it a square
matrix known as the Cartan matrix of the algebra as follows.

Definition 2.75 Let A be an algebra and {P(1), . . . ,P(n)} be a complete set of
non-isomorphic indecomposable projective A-modules. The Cartan matrix CA

of A is the n×n matrix

CA := ([P(1)]|[P(2)]| . . . |[P(n)]),

where the i-th column is the dimension vector [P(i)] of P(i) for 16 i6 n.
The Euler characteristic of A is a Z-bilinear form

〈−,−〉A : K0(A)×K0(A)→ Z,

defined as 〈[M], [N]〉A = [M]T C−1
A [N], where [M] and [N] are thought of as col-

umn vectors.

An important property of the Euler characteristic of an algebra is that it pro-
vides useful homological information, as shown in the following proposition.

Proposition 2.76 Let A be an algebra of finite global dimension s and let M,N
be two A-modules. Then

〈[M], [N]〉A =
s

∑
i=0

(−1)i dimK(ExtiA(M,N)),
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where Ext0A(M,N) stands for HomA(M,N). In particular, if A is a hereditary
algebra we have that

〈[M], [N]〉A = dimK(HomA(M,N))−dimK(Ext1(M,N)).

Remark The proof of the previous proposition relies on the fact that
{[P(1)], . . . , [P(n)]} forms a basis of Zn when A is of finite global dimension.

The following theorem was proven at the beginning of the 1980s by Auslan-
der and Reiten in [24] but went unnoticed for several decades. Recently, with
the development of τ-tilting theory this result came to light again and it is play-
ing a key role in some of the latest developments of this theory. To state the
theorem, we denote by 〈−,−〉 : Rn×Rn→ R the classical dot product in R.

Theorem 2.77 [24] Let M and N be modules over an algebra A. Then

〈gM, [N]〉= dimK(HomA(M,N))−dimK(Hom(N,τM)).

As a direct consequence of the previous result and the classical Auslander–
Reiten formula we have the following corollary.

Corollary 2.78 Let A be a hereditary algebra and let M and N be two
A-modules. Then

〈gM, [N]〉= 〈[M], [N]〉A.

Based on this last corollary, the author is of the opinion that the pairing
between g-vectors and dimension vectors of modules is a τ-tilting version of
the Euler form of the algebra.

Remark We note that Theorem 2.77 establishes a natural pairing

〈−,−〉 : K0(K
[−1,0](proj A))×K0(mod A)−→ Z

between K0(K[−1,0](proj A)) and K0(mod A). This suggests that the extriangu-
lated category K[−1,0](proj A) can be thought of as a sort of “dual” category for
mod A. We will discuss further this duality in Section 2.15.

2.14.2 c-vectors

We have seen in Theorem 2.74 that the set of g-vectors of the indecompos-
able direct summands of a τ-tilting pair (M,P) forms a basis of Zn. This fact,
together with the so-called tropical duality of cluster algebras [49, 53, 85], in-
spired Fu to introduce in [54] the notion of c-vectors for finite dimensional
algebras using τ-tilting theory.
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Definition 2.79 [54] Let (M,P) be a τ-tilting pair and let {gM1 , . . . ,gMk ,

−gPk+1 , . . . ,−gPn} be the corresponding basis of g-vectors of Zn. Define the
g-matrix G(M,P) of (M,P) as

G(M,P) =
(
gM1 , . . . ,−gPn

)
=

Ö
(gM1)1 . . . (−gPn)1

...
. . .

...
(gM1)n . . . (−gPn)n

è
.

Then the c-matrix C(M,P) of (M,P) is defined as C(M,P) = (G−1
(M,P))

T . Each col-
umn of C(M,P) is called a c-vector of A. Moreover, we say that the i-th column
of C(M,P) is the i-th c-vector associated to (M,P).

In the same paper, Fu showed that the c-vectors of certain families of al-
gebras correspond to the dimension vector of bricks. These results were later
generalised in [107] to every finite dimensional algebra over an algebraically
closed field as follows.

Theorem 2.80 [107] Let (M,P) be a τ-tilting pair with C-matrix C(M,P). Then
there exists a brick Bi in mod A and εi ∈ {0,1} such that (−1)εi [Bi] = ci is
equal to the i-th c-vector associated to (M,P). Moreover, [Bi] = ci if and only
if Bi ∈ Fac M. Dually, −[Bi] = ci if and only if Bi ∈M⊥.

Remark Note that a direct consequence of this theorem is that every c-vector
has either only non-negative coordinates or it has only non-positive entries.
This is usually known as sign-coherence of c-vectors. If a c-vector c has only
non-negative entries we say that c is a positive c-vector. Otherwise, we say that
c is a negative c-vector.

In the previous result we have seen that the sign of the c-vectors associated
to a τ-tilting pair is connected with the torsion theory of (M,P). In fact, this
connection is very deep, as it can be seen in the following result.

Theorem 2.81 [8, 107] Let (M,P) be a τ-tilting pair and let B(M,P) be the set
of bricks

{Bi | [Bi] = ci for some 16 i6 n}.

Then B(M,P) is the unique semibrick in mod A such that T (B(M,P)) = Fac M.

Remark An interesting consequence of the previous result is that one can label
the Hasse quiver H(ftors-A) of ftors-A using (positive) c-vectors. This is com-
patible with the brick labelling discussed in Section 2.9. Indeed, the labelling
of c-vectors consists simply of taking the dimension vector of each brick in the
brick labelling of ftors-A.
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In Section 2.9 we spoke about the fact that we can associate to each maximal
green sequence

{0}= T0 ( T1 ( · · ·( Tt−1 ( Tt = mod A

a set B = {B1, . . . ,Bt} of bricks in mod A. One can show that the dimension
vector [Bi] of Bi is a positive c-vector of (Mi,Pi), where (Mi,Pi) is the unique τ-
tilting pair such that Ti = FacMi. As a consequence, we can associate to every
maximal green sequence a sequence [B] = {[B1], . . . , [Bt ]} of positive c-vectors
in mod A. The following result was first shown by Garver, McConville and
Serhiyenko for cluster-tilted algebras in [57, 58] and later generalised in [106]
to any algebra over an algebraically closed field.

Theorem 2.82 [57, 58, 106] Every maximal green sequence {0}= T0 ( T1 (
· · · ( Tt−1 ( Tt = mod A is determined by its associated sequence [B] of
c-vectors.

2.15 The Wall-and-chamber Structure of an Algebra

In this final section of the chapter we introduce a geometric invariant for every
algebra A, usually known as the wall-and-chamber structure of A, and we ex-
plain its relation with the τ-tilting theory of the algebra. In particular, we will
see that τ-tilting theory recovers much, if not all, of the stability conditions on
the algebra.

2.15.1 Stability Conditions

The study of stability conditions in algebraic geometry started with the intro-
duction of geometric invariant theory by Mumford [83]. In [73], King applied
this theory to module categories leading to the following definition of stability
conditions. In what follows, we always assume that the Grothendieck group
K0(A) of the algebra A is isomorphic to Zn where the canonical basis of K0(A)
is given by the set {[S(1)], . . . , [S(n)]}. Moreover, by abuse of notation, we
identify [M] with the corresponding vector of Zn using the previous isomor-
phism. Recall that we denote by 〈−,−〉 : Rn×Rn→ R the classical dot product
in R.

Definition 2.83 [73] Let M be an A-module with dimension vector [M] and v
be a vector in Rn. We say that M is v-semistable if 〈v, [M]〉= 0 and 〈v, [L]〉6 0
for every module L of M different from 0 or M. Similarly, we say that M is
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v-stable if 〈v, [M]〉= 0 and 〈v, [L]〉< 0 for every module L of M different from
0 or M.

Later, Rudakov generalised this definition in [94]. Although Rudakov’s no-
tion of stability conditions is outside the scope of this note, we now state some
of the algebraic consequences that he deduced in that paper.

Theorem 2.84 [94] Let v be a vector in Rn. Then the full subcategory modv
ssA

of all the v-semistable modules in mod A is a wide subcategory of mod A.

It is not difficult to see that the v-stable modules correspond to the relative
simple modules in modv

ssA. The following result shows that every v-semistable
module can be built by successive extensions of v-stable modules.

Proposition 2.85 [94] Fix a vector v in Rn. Then for every v-semistable module
M there is a filtration

0 = M0 ⊂M1 ⊂ ·· · ⊂Mt−1 ⊂Mt = M

where Mi/Mi−1 is a v-stable module. Moreover, all such filtrations have the
same length.

Remark If the previous proposition reminds the reader of the classical Jordan–
Hölder theorem for the categories of A-modules, this is not a coincidence. We
will see later that, for some specific vectors v, these filtrations correspond ex-
actly with the filtrations by simple modules of an object in the module category
of a smaller algebra that we can associate to v.

In fact, one can show that stability conditions have two naturally associated
torsion pairs. This result, first shown by Baumann, Kamnitzer and Tingley in
[29], reads as follows.

Proposition 2.86 [29] Let v be a vector in Rn. Then there are two torsion pairs
(T>0,F<0) and (T>0,F60) where:

• T>0(v) := {X ∈mod A | 〈v, [Y ]〉> 0 ∀X → Y → 0}∪{0},
• T>0(v) := {X ∈mod A | 〈v, [Y ]〉> 0 ∀X → Y → 0}∪{0},
• F60(v) := {X ∈mod A | 〈v, [Z]〉6 0 ∀0→ Z→ X}∪{0},
• F<0(v) := {X ∈mod A | 〈v, [Z]〉< 0 ∀0→ Z→ X}∪{0}.

Moreover the category modv
ssA = T>0(v)∩F60(v).
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2.15.2 The wall-and-chamber Structure of an Algebra

As with many other notions in representation theory introduced since the turn
of the century, one can find the origins of wall-and-chamber structures in cluster
theory.

In this case, the wall-and-chamber structure of an algebra is inspired from
the notion of scattering diagrams introduced by Gross, Hacking, Keel and
Kontsevich in [60] to study cluster algebras from a geometric perspective. The
main idea is that one can associate to any cluster algebra A a geometric object
(its scattering diagram) that encodes much of the algebraic properties of A. As
we have already mentioned, cluster algebras can be categorified by the repre-
sentation theory of the Jacobian algebras of quivers with potentials. Based on
this connection, Bridgeland showed in [35] that scattering diagrams associated
to cluster algebras with an acyclic initial seed can be constructed using the sta-
bility conditions of the module category of the corresponding Jacobian algebra.
This result was later extended by Mou in [79] for any cluster algebra having a
green-to-red sequence.

More precisely, Bridgeland showed in [35] that one can construct a scatter-
ing diagram for any finite dimensional algebra and that this scattering diagram
is isomorphic to the cluster scattering diagram of [60] if the algebra is heredi-
tary. The complete description of scattering diagrams will be skipped. Instead,
we will define now the support of the scattering diagram of an algebra, which
is now called the wall-and-chamber structure of an algebra. Its definition is as
follows.

Definition 2.87 The stability space D(M) of a module M is the set of vectors

D(M) := {v ∈ Rn |Misv− semistable}.

A chamber C is an open connected component of the set

Rn \
⋃

0 6=M∈mod A

D(M)

of all vectors v in Rn such that there is no non-zero v-semistable module. A
wall is a stability space D(M) of codimension 1, that is, a stability space D(M)

such that the smallest subspace of Rn containing it is a hyperplane.

Remark It follows from the previous definition that the wall-and-chamber
structure is completely determined by its walls (see [9, 36]). Also, note that
every wall is the stability space of a brick in the module category. However, it
is not true that every finite brick determines a wall. Also, it follows from the
definition that the wall-and-chamber structure of an algebra is always a fan.
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Remark We would like to emphasise that the wall-and-chamber structure of
a hereditary algebra is equivalent to its semi-invariant picture introduced by
Igusa, Orr, Todorov and Weymann in [65]. They based their construction on the
notion of semi-invariant of quivers, a notion of stability condition introduced
by Schofield in [96] which is based on the Euler form of the quiver instead of
the canonical inner product of Rn.

2.15.3 The g-vector Fan of the Algebra

Recall from Section 2.13 that g-vectors correspond to the elements of the
Grothendieck group K0(K[−1,0](proj A)) of K[−1,0](proj A) with respect to the
basis given by the elements {[0→P(1)], . . . , [0→P(n)]}. As such, this group is
isomorphic to Zn. However, in this section we want to relate g-vectors with sta-
bility conditions. Hence, we will see every g-vector gM as a vector in Rn, where
Rn = K0(K[−1,0](proj A))⊗ R where the canonical basis is given by {[0 →
P(1)], . . . , [0→ P(n)]}.

The aim of this subsection is to study the distribution in Rn of the g-vectors
of the indecomposable τ-rigid objects. In order to do that, we start by associ-
ating a cone in Rn to each τ-rigid pair. For that, recall that we are assuming
that both M and P are basic objects that can be written as M =

⊕k
i=1 Mi and

P =
⊕t

j=k+1 Pj.

Definition 2.88 Let A be an algebra and let (M,P) be a τ-rigid pair whose set
of g-vectors is

{gM1 , . . . ,gMk ,−gPk+1 , . . . ,−gPt}.

Then we define the cone C(M,P) to be the set

C(M,P) =

{
k

∑
i=1

αig
Mi −

t

∑
j=k+1

α jg
Pj | αi > 0 for every 16 i6 t

}
.

Similarly, we denote by C◦(M,P) the interior of C(M,P), that is,

C◦(M,P) =

{
k

∑
i=1

αig
Mi −

t

∑
j=k+1

α jg
Pj | αi > 0 for every 16 i6 t

}
.

Remark We know from Theorem 2.74 that {gM1 , . . . ,−gPt} are linearly in-
dependent. In particular, this implies that the cone C(M,P) is of codimension
n− t.

Given two τ-rigid pairs (M1,P1) and (M2,P2), we have by definition that
C(M1,P1) ∩C(M2,P2) always contains the origin 0 ∈ Rn. Suppose that (M,P) is a
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τ-rigid pair which is a direct summand of two different τ-rigid pairs (M1,P1)

and (M2,P2). Then it is clear that C(M,P) ⊂ C(M1,P1) and C(M,P) ⊂ C(M2,P2). In
particular C(M1,P1) ∩C(M2,P2) 6= {0}. The following result by Demonet, Iyama
and Jasso in [45] states that this is the only way in which this can happen.

Theorem 2.89 [45] Let A be an algebra and let (M1,P1) and (M2,P2) be two
τ-rigid pairs. Then C(M1,P1)∩C(M2,P2) 6= {0} if and only if there is a τ-rigid pair
(M,P) which is a direct summand of both (M1,P1) and (M2,P2). Moreover, if
(M,P) is the maximal common direct summand of (M1,P1) and (M2,P2) then
C(M1,P1)∩C(M2,P2) = C(M,P).

An important consequence of the previous result is that the g-vectors of
indecomposable τ-rigid pairs have a geometrical structure known as polyhedral
fan. Hence, it is common to refer to the set of all g-vectors of indecomposable
τ-rigid pairs as the g-vector fan of the algebra.

In particular, the g-vector fan of a τ-tilting finite algebra has finitely many
cones associated to its τ-rigid pairs. Moreover, these cones of g-vectors fit to-
gether very well, as was shown by Demonet, Iyama and Jasso in [45].

Theorem 2.90 [45] Let A be an algebra. Then A is τ-tilting finite if and
only if

Rn =
⋃

(M,P) τ-rigid

C(M,P) =

Ñ ⋃
(M,P) τ-rigid

C◦(M,P)

é
∪{0}.

2.15.4 τ-tilting Theory and Stability Conditions

In Section 2.14 we have seen that there is a natural pairing between g-vectors
and dimension vectors that provides interesting homological information. For
the convenience of the reader, we recall Auslander and Reiten’s result here.

Theorem 2.91 [24] Let M and N be modules over an algebra A. Then

〈gM, [N]〉= dimK(HomA(M,N))−dimK(Hom(N,τM)).

Using this pairing as their main tool, it was shown in [36] and, indepen-
dently, in [108] that we can recover the torsion classes FacM and ⊥τM ∩P⊥

associated to a τ-rigid pair (M,P) from its g-vectors. The formal statement is
the following.
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Theorem 2.92 [36, 108] Let (M,P) be a τ-rigid pair and let v ∈ C◦(M,P).

Then T>0(v) = Fac M and T>0(v) = ⊥τM∩P⊥. In particular, modv
ssA = M⊥∩

⊥τM∩ P⊥.

Combining this result with Theorem 2.36 we obtain the following corollary.

Corollary 2.93 [36] Let (M,P) be a τ-rigid pair and let v ∈ C◦(M,P). Then the
category modv

ssA of v-semistable modules is equivalent to the module category
of the τ-tilting reduction of (M,P). In particular, the number of isomorphism
classes of v-stable modules is n−|M|− |P|.

2.15.5 From τ-tilting Theory to the Wall-and-chamber Structure

An important fact that follows from Corollary 2.93 is that the category of
v-semistable objects is constant in a given cone C◦(M,P). In this subsection we
explore some consequences of this result in the wall-and-chamber structure of
an algebra.

The first thing to notice is that modv
ssA = {0} for every vector v ∈ C◦(M,P)

if and only if (M,P) is a τ-tilting pair. Then, it is easy to see that C◦(M,P) is a
chamber in the wall-and-chamber structure of A. This fact was first noticed in
[36] and it was later shown by Asai in [9] that this is actually a bijection. The
formal statement is the following.

Theorem 2.94 [9, 36] Let (M,P) be a τ-tilting pair. Then C◦(M,P) is a chamber
in the wall-and-chamber structure of A. Moreover, every chamber arises this
way. In particular, there is a one-to-one correspondence between the set of
functorially finite torsion classes in mod A and the set of chambers of the wall-
and-chamber structure of A.

One can also see that for every τ-tilting pair (M,P) the set C(M,P) \C◦(M,P)
coincides with the union

⋃
16i6nC(Mi,Pi) of the cones C(Mi,Pi) associated to the

n almost-complete τ-rigid pairs {(M1,P1), . . . ,(Mn,Pn)} that are a direct sum-
mand of (M,P). Now, it follows from Theorem 2.92 that there exists exactly
one brick Bi which is v-stable for every 1 6 i 6 n and every v ∈ C◦(Mi,Pi)

. Then
we have built a set {B1, . . . ,Bn} of bricks in mod A associated to (M,P) using
stability conditions. In the following result we show that we have encountered
this set before.

Theorem 2.95 [107] Let (M,P) be a τ-tilting pair, v ∈ C◦(M,P) and let
{B1, . . . ,Bn} as above. Then the c-matrix C(M,P) of (M,P) is equal to

C(M,P) = (sgn(〈v, [B1]〉)[B1] | . . . | sgn(〈v, [Bn]〉)[Bn]).
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In particular, this implies that we can recover the semibrick associated to
(M,P) directly from the wall-and-chamber structure of A, since it is exactly the
set {Bi : 〈v, [Bi]〉> 0} for any v ∈ C◦(M,P).

Given two chambers C1 and C2, we say that they are neighbouring each
other if C1 ∩C2 is a set of codimension 1 in Rn. In other words, we say that
C1 and C2 are neighbours if they are separated by a wall. Another interesting
consequence of Theorem 2.94 is the following.

Proposition 2.96 [36] Let (M,P) and (M′,P′) be two τ-tilting pairs. Then
(M,P) is a mutation of (M′,P′) if and only if the chambers C◦(M,P) and C◦(M′,P′)
associated to (M,P) and (M′,P′) respectively, are neighbours.

Note that we can construct a dual graph to the wall-and-chamber structure
of an algebra, where the vertices correspond to the chambers and there is an
edge between two vertices if and only if the two corresponding chambers are
neighbouring each other. Then the previous proposition is equivalent to the
following.

Proposition 2.97 The dual graph of the wall-and-chamber structure of an al-
gebra is isomorphic to the underlying graph H(ftors-A), the Hasse quiver of
functorially finite torsion classes in mod A.

In particular, this result implies that crossing a wall in the wall-and-chamber
of A corresponds to a mutation of τ-tilting pairs. Hence, one can realise any
finite series of mutations of τ-tilting pairs as paths in the wall-and-chamber
structure of A. Then, in particular, every maximal green sequence in mod A can
be realised as a path in the wall-and-chamber structure of A, which solves the
original motivating question of [36].

Given a cone σ in a fan Σ, the star star(σ) of σ is the set of all the cones σ ′

in Σ having σ as a face, that is, all the cones in Σ such that σ ⊂ σ ′. The follow-
ing result due to Asai [9] shows that τ-tilting reduction can be also realised at
the level of wall-and-chamber structures.

Theorem 2.98 [9] Let (M,P) be a τ-rigid pair in mod A. Then the wall-and-
chamber structure of the τ-tilting reduction B̃(M,P) is isomorphic as a fan to
star(C(M,P)) of the cone C(M,P) associated to (M,P).

2.15.6 Examples

In this subsection we give a couple of examples illustrating the results of this
section.
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C(P(1)⊕P(2),0)C(P(2),P(1))

C(P(1)⊕S(1),0)

C(S(1),P(2))C(0,P(1)⊕P(2))

D(S(1))

D(S(1))

D(S(2))

D(P(1))

D(S(2))

C(P(1),0)

C(P(2),0)

C(0,P(1))

C(0,P(2)) C(S(1),0)

Figure 2.8 Wall and chamber structure for A2.

Example 2.99 Consider the path algebra A2 = kQ of the quiver Q= 1 // 2 .
Its Auslander–Reiten quiver is as follows:

P(2)

P(1)

S(1)

A quick calculation shows that all indecomposable τ-rigid pairs in mod A are

{(P(2),0),(P(1),0),(S(1),0),(0,P(2)),(0,P(1))}

and that the complete list of τ-tilting pairs in mod A is

{(P(1)⊕P(2),0),(P(1)⊕S(1),0),(S(1),P(2)),(0,P(1)⊕P(2)),(P(2),P(1))} .

In Figure 2.8 we have drawn the wall-and-chamber structure of A indicating the
cones associated to the indecomposable τ-rigid pairs and the chambers associ-
ated to each τ-tilting pair.
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Example 2.100 We now take the algebra A that we considered in Example 2.15.
That is the path algebra of the quiver

2

��
1

@@

3oo

modulo the second power of the ideal generated by all the arrows. The complete
list of τ-tilting pairs in mod A can be found in Table 2.1. The wall-and-chamber
structure of A is in R3 since the rank of K0(A) is equal to 3. For the sake of
readability, we choose to draw in Figure 2.9 a stereographic projection of it
from a vector in the first orthant.

One can see there that all chambers in the wall-and-chamber structure of
A are delimited by exactly three walls. In red we indicate the image of the g-
vectors of the indecomposable τ-rigid pairs. One can obtain the τ-tilting pair
inducing a particular chamber from the g-vectors situated in the corners of that
chamber. For instance, the chamber C7 is induced by the τ-tilting pair (2

3⊕ 3, 1
2).

This particular stereographic projection of the wall-and-chamber of A is par-
ticularly useful to obtain the c-vectors associated to a given τ-tilting pair, since
the convexity of each of the walls indicates the sign of the corresponding c-
vector as follows: If the wall is convex when regarded from inside the chamber,
then the c-vector corresponding to this wall is a negative c-vector and it is a
positive c-vector otherwise. Using again the chamber C7, one can see that the
c-vectors associated to (2

3⊕ 3, 1
2) are {[0,1,0], [0,0,1], [−1,0,−1]}. In particular,

this allows us to conclude that the semibrick associated to (2
3⊕ 3, 1

2) is {2⊕ 3}.
Finally, note that there are two walls incident to the g-vector g3, while there

are three which are incident to the g-vector g
1
2. This is due to the fact that the

τ-tilting reduction of (3,0) is isomorphic to A1×A1 while that of (1
2,0) is iso-

morphic to A2.

2.15.7 Characterisations of τ-tilting Finite Algebras

We conclude this note by adding to Theorem 2.64 several characterisations of
τ-tilting finite algebras that include the notions we have discussed in this last
section.

Theorem 2.101 Let A be an algebra. Then the following are equivalent.

1 A is τ-tilting finite.
2 There are finitely many indecomposable τ-rigid objects in mod A.
3 [45] There are finitely many torsion classes in mod A.
4 [46] There are finitely many bricks in mod A.
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Figure 2.9 The stereographic projection of the wall-and-chamber structure of A.

5 [97] The lengths of bricks in mod A are bounded.
6 [8] There are finitely many semibricks in mod A.
7 [107] There are finitely many c-vectors in mod A.
8 [75] There are finitely many wide subcategories in mod A.
9 [99] Every brick in ModA is a finitely presented A-module.

10 [45] The g-vector fan of A spans the whole Rn.
11 [36] The number of walls in the wall-and-chamber structure of A is finite.
12 [36] The number of chambers in the wall-and-chamber structure of A is

finite.
13 [108] The number of different v-semistable subcategories of mod A is

finite.
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