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1. Introduction. Let ?l be an associative algebra over the field Ĵ ~ and let 
© be the group of all automorphisms and anti-automorphisms of 2Ï which leave 

jF~ elementwise invariant. A function F with domain 35 and range contained in 
31 is called an intrinsic function on 35 if (i) Œ35 = 3) for each 0 in ® and 
(ii) ^(QZ) = QF(Z) for every Z in 35. 

Rinehart (5) has introduced and motivated the study of the class of intrinsic 
functions on 31, and has characterized these functions for the cases in which SI 
is the algebra Q of real quaternions, the algebra ^n oin X n complex matrices, 
or the algebra S%n of n X n real matrices (5; 6). The algebras listed above, 
along with the algebra £xn of n X n quaternion matrices, constitute the full list 
of possibilities for the simple direct summands of any semi-simple algebra over 
^ ? o r ^ ; s e e (2). 

In (2), Cullen attempted to characterize intrinsic functions on Qw, but, as 
pointed out in (1), there are some flaws in that characterization. Our aim in the 
present paper is to provide the above-mentioned characterization. 

We denote the generators of O by 1, i\, i2, H (ii2 = i^ = —1,^2 = —i<di = û) 
and do not distinguish between the real field Si and the subfield of Q generated 
by 1, nor do we distinguish between the complex field *$ and the subfield of Q 
generated by 1 and i\. 

The usual notions of eigenvectors and eigenvalues (characteristic roots) for 
matrices over a field have been extended to £ln by Lee (4). Specifically, )i f ? 
is an eigenvalue of A 6 £ln if there exists a non-zero n X 1 quaternion matrix 
X (the eigenvector associated with X) satisfying 

AX = XX. 

Lee (4) has shown that the eigenvalues of A occur in conjugate pairs and are 
precisely the eigenvalues, in the classical sense, of the 2n X 2n complex 
matrix 

where A1 and A 2 are the unique n X n complex matrices satisfying 

A = Ax + i2A2. 
The mapping 0, defined above, is known to be an isomorphism of Ow into *é\n 

(see 4) and has been used by Wiegmann (8) to establish an analogue of the 
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Jordan canonical form for Qn . A corollary to Wiegmann's result asserts that for 
every A £ £ln there exists a non-singular matrix P f QB such that 

(1.2) p-iAP = J = dg(Ju J2) e ^n 

is in Jordan canonical form, where J\ has only real elements and the eigenvalues 
of J2 (the diagonal elements) all have positive imaginary parts (1). I t follows 
from the results of Lee (4) mentioned above that the uniqueness of the eigen
values of 4>(A) implies the uniqueness of the eigenvalues of A. Thus, the 
canonical matrix J is uniquely determined up to rearrangements of the diagonal 
blocks of J\ and of J2. The eigenvalues of the complex matrix J will be called 
the principal eigenvalues of A and the characteristic polynomial of J will be 
called the principal polynomial of A. The characteristic polynomial of A is 
defined to be the characteristic polynomial of the 2n X 2n complex matrix 
d g ( / , J ) ; s e e (8). 

2. The induced function. Since portions of the paper are concerned with 
continuity of functions, limits and neighbourhoods, it is necessary to define a 
topology on Qn . For any Z = (ztj) in £ln we define 

\\Z\\ = - m a x \Zij\, 

where \ztj\ = ( s^ . , ) 1 7 2 . With this definition, £ln becomes a normed ring, and 
hence a topological space with the topology induced by the norm. 

Let F be an intrinsic function on Q n and let A be in the domain of F. From 
(1, Theorem 6) we know that F (A) = LA(A), where LA(x) is a uniquely 
determined real polynomial in x of degree less than the degree of the real 
minimum polynomial of A. If X G ^ is an eigenvalue of A, there exists an 
w X l matrix X 9e 0 (with quaternion elements) such that AX — XX and 

LA(A)X = (atA* + at^A1-^ + . . . + axA + a0I)X 
= atA

lX + at.1A
t-^X + . . . + axAX + a0X 

= X(at\
l + a^X'-1 + . . . + ai\ + a0) 

= X(LA(X)). 

Thus, LA(\) is an eigenvalue of LA(A) = F {A). As remarked above, the 
eigenvalues of the quaternion matrix A = Ai + i2A2 are precisely the eigen
values of the complex matrix 

•*>-& i l l 
and, since <j> is an isomorphism, we have that LA{<t>(A)) = <j>(LA(A)). I t now 
follows from well-known theorems about the eigenvalues of polynomial func
tions of complex matrices that the 2n eigenvalues of F (A) are given by 

(2.1) \t[F(A)] = Z*(X,[4]), * = 1, 2, . . . , 2«, 

where, in general, \i[M] denotes an eigenvalue of M. The intrinsic function F, 
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thus, induces a mapping of the set of 2n eigenvalues of A onto the set of 2n 
eigenvalues of F (A), given by 

(2.2) \t[A] - • \t[F(A)] = LA(\t[A]), i = 1, 2, . . . , 2». 

The set of 2n points which forms the image under (2.2) is dependent upon the 
set of 2n eigenvalues of the matrix A and upon the matrix having that set of 
eigenvalues. 

The 2n eigenvalues of A (and F (A)) occur in n pairs, where each pair 
consists of a principal eigenvalue and its complex conjugate. If Xi[A] is mapped 
into LA(\i[A]), then \i[A] is mapped into LA(\t[A]) = LA(\f[A]) since LA(x) 
is a real polynomial. Thus, the eigenvalue mapping induced by F can be 
described in terms of a mapping of the n pairs of eigenvalues of A onto the 
n pairs of eigenvalues of F {A). This mapping is completely determined by the 
mapping of the n principal eigenvalues of A, although the principal eigenvalues 
of A do not in general map into the principal eigenvalues of F {A). 

For any matrix B which is similar to A (B = P~lAP), F(B) is defined and 
F(B) = LB(B), where LB(x) is a real polynomial. Since F is intrinsic we have 
that 

LB(B) = F(B) = F(P~lAP) = P~1F(A)P = 

P-iLA(A)P = LA(P~iAP) = LA(B). 

Since LA(x) and LB(x) are unique and A and B have the same minimum 
polynomial, it follows that LA(x) = LB(x). From (2.2) we now observe that 
similar matrices (which of necessity have the same set of eigenvalues) have 
the same eigenvalue mapping. 

If A has distinct principal eigenvalues, any matrix with the same set of 
principal eigenvalues is similar to A. Thus, in this case, the induced eigenvalue 
mapping is dependent only upon the set of principal eigenvalues and not upon 
the matrix with those eigenvalues. If, however, A has repeated principal 
eigenvalues, then the induced mapping will depend upon the matrix chosen. 
However, if the domain of F includes a non-derogatory (its Jordan matrix is 
non-derogatory when considered as a matrix in ^ w ) matrix B with the same set 
of principal eigenvalues as A, we define the mapping of this set of n pairs of 
eigenvalues to be the mapping determined by F(B), i.e., 

(2.3) \t[A] = \t[B] -> HF(B)) = LB{\t[B]), i = 1, 2, . . . , 2». 

If there exists no non-derogatory matrix B in the domain of F with the same 
set of principal eigenvalues as A, we shall say that the induced eigenvalue 
mapping is undefined at A. The necessity of defining the induced eigenvalue 
mapping in terms of non-derogatory matrices is made apparent later. Since two 
non-derogatory matrices with the same set of principal eigenvalues are similar, 
the mapping (2.3) is independent of the choice of the non-derogatory matrix B 
in the domain of F. 

The principal polynomial of a matrix A in Q n , 

det(xl - J) = xn - ^ [ i ] / - 1 + . . . + ( - l y - V » - ^ ] * + (-l)nan[A] 
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(where P~lAP = J is given in (1.2)), determines a unique set of 2n points 
P{: (\i[A], <ri[A]f . . . , <rn-i[A]) in complex w-space, Vn(

<^)1 where 
\t[A], i = 1, 2, . . . , 2w, are the 2^ eigenvalues of A. Conversely, any point 
P: (X, ci, <r2, . . . , o-n_i) in F w ( ^ ) uniquely determines a corresponding poly
nomial 

C(x, P) = xn - en*"-1 + . . . + (-1)W-VW_!X + ( - l ) X , 

where o-w is chosen so that X or X, whichever has non-negative imaginary part, 
is a zero of C(x, P). If there exists in the domain of the intrinsic function F a 
non-derogatory matrix A with C(x, P) as principal polynomial, then every 
non-derogatory matrix in Ow with principal polynomial C(x, P) is in the 
domain of F, and F induces a unique mapping of a subset of Vn(f€) into ^ 
defined by 

(2.4) fiUA], a1[A],..., ^ i ^ ] ) = HF(A)] = LA(\t[A])> * = 1, 2 , . . . , 2n. 

This mapping clearly has the following symmetry property for i = 1, 2 , . . . , 2n, 
namely 

(2.5) f(MZ], *iUL . . . , an^[A)) = ^ [ 4 ] , ^ ] U ^ D , 

and is independent of the non-derogatory matrix 4̂ with principal poly
nomial C(x, P). We summarize the above discussion by means of the following 
theorem which is an extension of (6, Theorem 2.2). 

THEOREM 2.1. An intrinsic function F on a domain 35 in Qw induces a single-
valued function /(X, ci, c2, . . . , <rn-i) mapping a subset of Vni^) into *&. The 
function f is defined at any point P°: (X°, ai°, . . . , o-n_i°) for which there exists a 
non-derogatory matrix A in 35 with X° as an eigenvalue and with principal 
polynomial 

p(x) = xn - o-iV*-1 + . . . + (- l )"-1*».!0* + ( - l ) V / . 

JTze value off at P° is independent of the choice of the non-derogatory matrix A in 3) 
and is given by /(X°, ai°, . . . , <rn-i°) = X°[F(A)] = LA(X°), ^/zere .LA 0*0 is the 
unique real polynomial of lowest degree such that LA(A) = F(A). If 

f(\°, <n°, . . . , an^) 

is defined, thenf(\°, exi0, a2°, . . . , (rn-i°) is also defined and 

/ (X° , (71 , . . . , Orw_i ) = / ( X ° , (7i°, . . . , Or„_i°). 

3. The case of distinct eigenvalues. Let F be an intrinsic function with 
domain 35 £ Ow and let A 6 2) have distinct principal eigenvalues 

Xi, X2, . . . , Xw, 

where Xi, . . . , Xr are real. In this case, the canonical matrix (1.2) is 

J = P-*AP = dg{\l9 . . . , Xr, Xr+1, . . . , X»}. 

Now let/(X, ci, . . . , (Tn-i) be the induced function from Vn(^é) to ^ described 
in Theorem 2.1 and denote X>y fA{z) the function from *$ to fé7 given by 
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(3.1) fA(z) =f(z,a1[Al...,crn_1[A]). 

Let LA(x) be the unique real polynomial of degree less than 2n — r, the degree 
of the real minimum polynomial of A, such that LA(A) = F (A). 

From § 2 we know that the eigenvalues of F (A) are given by 

HF(A)] =LA(HA]) =fA(HA]), i = 1, 2, . . . , 2n. 

Thus, the polynomial LA(x) is a polynomial of degree less than 2n — r which 
agrees with the function fA (z) at the 2n — r distinct points 

Xl, . . . , Xr, Xr+l, . . . , \n, \n+l = Xr+i, . . . , \2n-r = Xw. 

T h i s polynomial is un ique and is given b y the well-known Lagrange in terpola
t ion formula 

2n~r . 
x (3.2) LA(x) E 

3=1 

n x 
11 
• A , 

JA(\J). 

Now LA (A ), where LA (x) is given in (3.2), is precisely the classical definition of 
the value of the primary function fA(Z) with stem function fA(z) ; see (4). 

We have established the following theorem. 

THEOREM 3.1. Let F be an intrinsic function on 2) c Qn and let 

f(z, <Ti, (72, . . . , ^ . i ) 

be the induced function of Theorem 2.1. Let A Ç © te>e distinct principal 
eigenvalues and let fA(z) denote the function of z only given by (3.1). Then 
F (A) = fA(A)t where fA(Z) is the primary function with stem function fA(z). 

4. The case of repeated eigenvalues. We now seek an extension of 
Theorem 3.1 to argument matrices with repeated principal eigenvalues. Such 
an extension will require certain restrictions on the intrinsic function F. First, 
however, several preliminary results are needed. 

Thus far we have been concerned with three mappings involving Qw, a 
subset of Vnifé'), and fé\ We shall have need of two additional mappings. To 
better illustrate the mappings involved, we include the following diagram. 

Vn(V) 
/ ( X , (71, . . . , (7n_l) = LA(\) 

FIGURE 1 

file:///2n-r
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In Figure 1, 7MS an intrinsic function,/(X, ai, . . . , (7w_i) is the induced function 
of Theorem 2.1, A' is the multiple-valued mapping of £tn onto the complex 
plane mapping each matrix into its 2n eigenvalues. The two additional 
mappings to be defined are A and/(Z, c i [Z ] , . . . , <rn_i[Z]). The characterization 
of F involves conditions under which the diagram in Figure 1 is commutative. 

We now introduce the 2n-valued mapping A of Q„ into a subset of F „ ( ^ ) 
defined by 

(4.1) A(A) = (UA], <n[A]9 . . . , <r»_i[il])f i = 1, 2, . . . , 2», 

where 4̂ is in Gn , X*|yl] is an eigenvalue of A, and ci[^4], . . . , o-n_i[i4] are the 
first n — 1 symmetric functions of the principal eigenvalues of A (the 
coefficients in the principal polynomial of A ). 

I t is clear that A(On) is a proper subset of Vn{^). In particular, 

(X, a — bii, o-2, . . . , cn_i), 

where 6 > 0 is not in A(QW). 
The subset A(QW) of complex ^-space F n ( ^ ) can be made into a topological 

space by defining the open sets of A(Gn) to be the intersection with A(GW) of 
the open sets in Vn(^) (relative topology). The concepts of neighbourhood and 
open set are now well-defined in A(G«). 

THEOREM 4.1. The 2n-valuedmapping A(Z) = (X*[Z], ci[Z], . . . , crn_i[Z]) w 
a continuous open map of Ow ow/o A(On). 

Proof. I t follows from the isomorphism (1.1) and from familiar theorems 
about complex matrices that the eigenvalues of a matrix in Q n are continuous 
functions of the elements of the matrix, and hence that the symmetric functions 
(7i[Z], 0-2[Z], . . . , <rn_i[Z] are continuous functions of the principal eigenvalues 
of Z, hence of Z also. Thus, each coordinate X*[Z], <ri[Z], . . . , cn_i[Z] is a 
continuous function of Z; hence, A(Z) is continuous. 

We next show that A(Z) is an open map. Let S be any open set in Ow and let 
i V (X, ci, . . . , (Jn-i) be any point in A(5), the image of S in A(On). There 
exists a matrix Z0 in 5 such that one image point of Z0 is P 0 . We can assume 
that Z0 is non-derogatory since any neighbourhood of Z0 contains a non-
derogatory matrix with the same set of eigenvalues as Z0. Since S is open, there 
exists a real number 8 > 0 such that the open sphere 

S1= {Z e G „ ; | | Z - Z o | | < ô } 

is contained in S. 
Since Zo is non-derogatory, its Jordan canonical matrix (1.2) is a non-

derogatory complex matrix which, by elementary linear algebra, is known to be 
similar to a companion matrix Co. I t follows that Z0 is also similar to Co; 
therefore, let P be a non-singular matrix in Ow such that 
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P-'ZOP = 

L(-i) 
where Co is the companion matrix similar to Z0. 

Let Zi be the matrix defined as follows: 

0 1 • 
0 0 1 

0 1 
\n— 1 • • 0"lJ 

— Co, 

0 
0 

1 • 
0 1 

P^ZtP = 

-(-irv . 
0 1 

ith Z\ we associate the points 

(X,[Zi], (TI'[Z i ] , . . . , <jn-\ '[Zi]), * = 1,2, 

= G. 

, 2». 
Then 

\\Zi - Zo|| = HPdP- 1 - PCoP^W = ||P(Ci - C»)P-I\\ g 
| |P | | • | | d - Coll • HP"1!! = | |P | | • HP-1!! (l/n)max< |«r/ - fft\. 

Since the wth symmetric function of Z is a continuous function of the 
principal eigenvalues of Z (hence of Z also), it follows that the matrix Z\ 
with image point (Xz[Zi], o-/[Zi], . . . , an-i[Z]) can be made to satisfy 
||Zi — Z0 | | < ô if (Xj[Zi], o-i[Zi], . . . , <rn-i[Zi]) is sufficiently close to P 0 . 
Hence, P 0 is an interior point of A(Ow) and the proof is complete. 

COROLLARY 4.1.1. If a set V of points in A(On) w dense at (X°, o-i0,. . . , o-n_i°), 
then the set of pre-images of T under A is dense at any Z° mapping into 
(X°, o-i0, . . . , o-w_i°) under A. 

COROLLARY 4.1.2. Le£ F be an intrinsic function defined on an open set 
2) £ O n . r/^e/z ^ e induced scalar function /(X, o-i, . . . , <rn_i) is defined on an 
open set A (S3) in A(Ow). 

An important result proved in (6) is the following theorem. 

THEOREM 4.2. Let (X°, o-i0, . . . , <rn_i°) fo a ^ w ^ 0/ A(On) C Vn(&) and let 
<rn° in the equation 

xn - enV- 1 + . . . + ( - l ) V n ° = 0 

be so determined that X° (or X°, whichever has non-negative imaginary pari) is a 
root. Then there exists a deleted open disk, K, 0 < |X — X°| < ô, of the complex 
plane, such that for all X in K the equation 

xn _ aiOxn-! + # . . + (-l^-V^O + (-1)VW° = 0, 

with <rn° determined such that X is a root, has distinct roots. 
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Our final result before extending Theorem 3.1 (with appropriate additional 
hypotheses) to matrices with repeated principal eigenvalues is the following 
theorem. 

THEOREM 4.3. If the intrinsic function FonQ C Qw is defined in a neighbour-
hood of and is continuous at a matrix A G 3), then the induced function 
f(z, ai, . . . , <Tn-i) is defined in a neighbourhood of and is continuous at each point 
(\t[A], *i[A], . . . , an-i[A]) of A ( O J . 

Proof. Let F be an intrinsic function defined in a neighbourhood 5 of A. 
Then the induced function f(z, <TI, c2, . . . , <rn-i) is defined in a neighbourhood 
A, of Pt: (\t[A], cn[i4], . . . , <Jn-i[A}) (Corollary 4.1.2). 

If {Tm,j} is any sequence of points in A;- approaching P j , then there is in S a 
corresponding sequence {ZmJ} of non-derogatory matrices approaching A. For 
Z in S, f(\j[Z], <ri[Z], . . . , <rw_i[Z]) = \j[F(Z)]. The eigenvalues of F(Z) are 
continuous functions of the elements of F(Z), which are, in turn, continuous 
functions of the elements of Z at Z = A. Hence, 

Km f(Tmtj) = lim f(Xj[Zmtj], <n[Zmtj], . . . , an^[Zm>j]) = 
Tm,j-*P Zm,j->A 

lim \,[F(Zm,,)] = \j[A] = fihUl *i[A], . . . , Tn-i[A}). 
Zm, j-$A 

Thus, f(z, cri, . . . , <rn-i) is continuous at Py and the proof is complete. 

We are now able to generalize Theorem 3.1 to matrices with repeated 
eigenvalues. 

THEOREM 4.4. Let F be an intrinsic function on 3) £ Q n , and let A G 3). 
Letf(z, ci, (72, . . . , (Tn-i) be the function from A(Ow) ^ ^ induced by F. LetfA{z) 
be the function of z only, fA(z) = f(z, (ri[A], . . . , an-i[A]). Then F(A) must be 
given by the primary function value fA{A) = f(A, (ri[A], . . . , crn_i[^4]) (see 5) 
if either 

Case I. A has distinct principal eigenvalues; 
Case II. A has repeated principal eigenvalues, A is an interior point of 3), and 

fA (z) is analytic in a z-neighb our hood of the repeated principal eigenvalues of A 
and their conjugates. 

Proof. Case I is simply Theorem 3.1. In Case II, if A is interior to ©, then 
by Theorem 4.3 the points 

Pf. (XjlAla^A],... ,an^[A]), 

j = 1, 2, . . . , 2n, are interior to the domain A(3)) of f(z, <n, . . . , o-n_i) in 
A(Ow). Let>Si, S2, . . . , St be a collection of spheres in A(Qn) such that each St 

is in A(3)) and encloses just one of the t distinct Pj. By Theorem 4.2, the Si can 
be taken sufficiently small so that for all points (z, <ri[A], . . . , o-n_i[^4]) (with 
the last (n — 1) coordinates fixed as above) which are within St, except 
possibly Pj, the pre-images Z have distinct principal eigenvalues. Let 'ffl 
be the subset of matrices of 3) which are mapped by A into these particular 
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points, (2, ci[-4], . . . , c7w_i[4]) of the 5*. The set of points of the type 
(z, ai[A], . . . , o-n_i[4]) is dense at P;-; hence,W is dense at A in £ln (Corollary 
4.1.1). By the continuity of F at A, liniz^AF(Z) exists, and, in particular, 
limz_AF(Z) = Umw^FiW), where W G W. 

Since each W has distinct eigenvalues, F(W) = LW(W), where Lw(z) is 
given in (5) as 

which is real since the eigenvalues occur in conjugate pairs. NOWT, Lw(z) 
determines the value oîfA(z) = /(g, en[^4], . . . , <rn_i|y4]) at Xi[W], . . . , K[W], 
K+i[W] = XTTW], • • • , ^n[W] = K\W], where X ^ ] , . . . , K[W] are the 
distinct principal eigenvalues of W (since o-*[W] = ai[A],i = 1 ,2 , . . . ,n — 1). 
Theorem 4.3 guarantees the continuity olfA(z) at z = \j[A],j = 1, 2, . . . , 2n. 
I t is shown in (7) that if a function/^(z) is continuous at X [̂A], j = 1 , 2 , . . . , 2n, 
and is analytic in a neighbourhood of the repeated \j[A ], then Lw(z) approaches 
a unique limiting polynomial HA(z), as the interpolation points X*[PF] approach 
the \t[A] through distinct values. HA(z) is the Lagrange-Hermite interpolation 
polynomial, 

(4.1) HA(z)=è{ll (?- «O'f £' ±(z- a^H^} , 
y=i \i^j Lm=o ml J ; 

where 

/Aw n (*-«*r 
and where ai, a2, . . . , at are the distinct values among the X* with respective 
multiplicities st in the real minimum polynomial of A. Since, for each W, Lw(z) 
is a real polynomial in z and Lw(z) -^ HA(z) as W-^> A, HA(0) is also real. This 
implies that/<*> (a,) = f<k)(aj), where j = 1, 2, . . . , /, fe = 0, 1, 2, . . . , Sj - 1. 

As W£ ^ a p p r o a c h e s ' , the eigenvalues Xi[W] approach the Xt[A] through 
distinct values. Hence, 

lim F(Z) = lim F{W) = lim LW(W) = lim [LW(W) - HA(W)] + \imHA(W). 
Z-^A W^A W->A W^A W-^A 

The difference LW(W) — HA(W) approaches zero, since 

\imw_>A[Lw(z) - HA(z)] = 0 

and HA(W), being a polynomial with fixed coefficients, approaches the limit 
HA(A). But HA(A) is precisely the value fA(A) of the primary function with 
stem function fA (z) (see 4) and the proof is complete. 

5. w-ary functions on £in. Conversely, let f(z, <n, . . . , <rn-i) be a function 
from VnCiû) to *$ with domain 3) such that (z, <rlt . . . , o-w_i) is in Qf if 
(0, cri, . . . , o-n_i) is in 3). The function/(z, en, . . . , o-n_i) can be extended to a 
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function on Qw by denning the value f (A, <TI[A], . . . , an-i[A]) to be the value 
of the primary function extension of the stem function 

fA(z) = f(z, <n[A], . . . y(Jn-i[A]). 

This value is given by 

(5.1) fA(A) = f(A, 0l[A], . . . , *n-i[A]) = PfA{J)P-\ 

where 

(5.2) fA(j) = iIn (J-«jy* 
k=0 K\ 

Hk.J — iJ dzKl 

and 

fA(z) n (z - «*n 1 . 
where «i, a2, . . . , at are the distinct zeros of multiplicity $i, s2, . . . , st, 
respectively, in the minimum polynomial of A. I t is clear from the definition of 
a primary function (4) that fA(A) as given in Theorem 4.2 coincides with 
/A(A) as given by (5.1). The domain of definition oifA(A) of (5.1) includes all 
matrices A such that 

1. A U ) = J0wL4], <ri[A], . . . , <rn-i[A]),i = 1 ,2 , . . . , 2^} is contained in 5) ; 
2. fA (z) = f(z, <7i[i], . . . o-w_i[̂ 4]) is analytic at each \t[A] of multiplicity 

greater than zero in the minimum polynomial of A and 

fA(k)(HA)) = U*>(.\t[A]), 

i = 1, 2, . . . , t; k = 0, 1, . . . , Si — 1, where Xt[A] is of multiplicity st in the 
minimum polynomial of A. 

The function defined by (5.1) subject to conditions (1) and (2) above is 
called an n-ary function on £in with stem function f(z, o-i, . . . , <jn-i). The 
primary functions are special cases of w-ary functions. 

Since the polynomial in / given by (5.2) is real, it follows that an n-ary 
function on £ln is a poly-function; hence, from (3), we have the following 
theorem. 

THEOREM 5.1. An n-ary function on 3) C £in is intrinsic. 

As a consequence of Theorem 4.2 and (5.1) we have the following theorem. 

THEOREM 5.2. An intrinsic function on 35 C Q n , subject to the conditions of 
Theorem 4.2, is an n-ary function. 

REFERENCES 

1. R. E. Carlson and C. G. Cullen, Commutativity for matrices of quaternions, Can. J. Math. 20 
(1968), 21-24. 

2. C. G. Cullen, Intrinsic functions of matrices of real quaternions, Can. J. Math. 15 (1963), 
456-466. 



146 R. E. CARLSON AND C. G. CULLEN 

3. C. G. Cullen and C. A. Hall, Functions on semi-simple algebras. Amer. Math. Monthly 74 
(1967), 14-19. 

4. H. C. Lee, Eigenvalues and canonical forms of matrices with quaternion coefficients, Proc. Roy. 
Irish Acad. Sect. A 52 (1949), 253-260. 

5. R. F . Rinehart, Elements of a theory of intrinsic functions on algebras, Duke Math. J. 27 
(1960), 1-19. 

6. Intrinsic functions on matrices, Duke Math. J. 28 (1961), 291-300. 
7. J. L. Walsh, Interpolation and approximation, Amer. Math. Soc. Colloq. Publ., Vol. 20 

(Amer. Math. Soc, Providence, R.I., 1935). 
8. N. A. Wiegmann, Some theorems on matrices with real quaternion elements, Can. J. Math. 7 

(1955), 191-201. 

University of Pittsburgh, 
Pittsburgh, Pennsylvania 


