
JFP 29, e6, 12 pages, 2019. c© Cambridge University Press 2019 1
doi:10.1017/S0956796819000042

F U N C T I O N A L P E A R L

Folding left and right over Peano numbers

O L I V I E R D A N V Y
Yale-NUS College and School of Computing,
National University of Singapore, Singapore

(e-mail: danvy@acm.org)

1 Folding left and right over lists

The functionals fold_left_list and fold_right_list are virtually as old as functional
programming since Strachey discovered them in the early 1960s (Strachey, 1961; Danvy &
Spivey, 2007). Today these two functionals provide a convenient toolset to verify whether
a list-processing function is structurally recursive – if it can be expressed with either of
these two functionals, it is structurally recursive – and if so how to abstract and instan-
tiate its base case and its induction step (Section 1.1), in the presence or absence of an
accumulator (Section 1.2).

1.1 Abstraction and instantiation

Prototypically, fold_left_list and fold_right_list abstract the primitive-iterative
programming pattern over lists, in the presence and absence of an accumulator:

Definition fold_left_list (V W : Type) (n : W) (c : V -> W -> W) (vs : list V) : W :=
let fix loop vs a :=

match vs with
| nil => a
| v :: vs’ => loop vs’ (c v a)
end

in loop vs n.

Definition fold_right_list (V W : Type) (n : W) (c : V -> W -> W)(vs : list V) : W :=
let fix visit vs :=

match vs with
| nil => n
| v :: vs’ => c v (visit vs’)
end

in visit vs.

These two definitions are expressed in Gallina, the total functional programming lan-
guage of the Coq proof assistant (Bertot & Castéran, 2004). (The entirety of this pearl
is formalized in Coq.)

https://doi.org/10.1017/S0956796819000042 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000042
mailto:danvy@acm.org
https://doi.org/10.1017/S0956796819000042


2 O. Danvy

For example, consider the standard powerset function that maps the representation of a
set as the list of its elements (in any order and without repetition) to the representation of
its powerset:

Definition powerset (V : Type) (vs : list V) : list (list V) :=
let fix outer vs :=
match vs with
| nil => nil :: nil
| v :: vs’ => let powerset_vs’ := outer vs’

in let fix inner wss :=
match wss with
| nil => powerset_vs’
| ws :: wss’ => let c := inner wss’

in (v :: ws) :: c
end

in inner powerset_vs’
end

in outer vs.

This powerset function is listless (Wadler, 1984) in that all the lists it constructs are
part of the result (in other words, it creates no intermediate, transitory lists). It is also
structurally recursive and thus can be expressed using two instances of fold_right_list,
yielding du Feu’s definition (Gordon, 1979):

Definition powerset_right (V : Type) (vs : list V) : list (list V) :=
fold_right_list V

(list (list V))
(nil :: nil)
(fun v powerset_vs’ => fold_right_list (list V)

(list (list V))
powerset_vs’
(fun ws c => (v :: ws) :: c)
powerset_vs’)

vs.

Conversely, inlining fold_right_list in this definition yields the standard version of
powerset above.

1.2 Inequivalence in general

As first pointed out by Strachey (1961), fold_left_list and fold_right_list are not
equivalent in general, witness, e.g., Bird and Wadler’s duality theorems (1988). That said,
the order in the given lists may not matter, in which case either functional can be used.
For example, if a given list represents a set and the order of elements in this list does not
matter, one can replace each call to fold_right_list by a call to fold_left_list in du
Feu’s definition of the powerset function. Inlining fold_left_list yields the following
definition where the inner instance of fold_left_list is defined locally to the outer one:

Definition powerset_left_inlined (V : Type) (vs : list V) : list (list V) :=
let fix outer vs outer_a :=
match vs with
| nil => outer_a
| v :: vs’ => outer vs’ (let fix inner wss inner_a :=

match wss with
| nil => inner_a

https://doi.org/10.1017/S0956796819000042 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000042


Functional Pearls 3

| ws :: wss’ => inner wss’ ((v :: ws) :: inner_a)
end

in inner outer_a outer_a)
end

in outer vs (nil :: nil).

Since inner is tail-recursive, we can relocate the recursive call to outer to its base case,
using lightweight fusion (Ohori & Sasano, 2007). The result is a tail-recursive version with
an accumulator that one might be hard pressed to write by hand in the first place:

Definition powerset_left_inlined_and_fused (V : Type)(vs : list V) : list (list V) :=
let fix outer vs outer_a :=

match vs with
| nil => outer_a
| v :: vs’ => let fix inner wss inner_a :=

match wss with
| nil => outer vs’ inner_a
| ws :: wss’ => inner wss’ ((v :: ws) :: inner_a)
end

in inner outer_a outer_a
end

in outer vs (nil :: nil).

2 Folding left and right over Peano numbers

The functionals fold_left_nat and fold_right_nat are the analogues of fold_left_list
and fold_right_list over Peano numbers, i.e., natural numbers in base 1. They too pro-
vide a convenient toolset to verify whether a numerical function is structurally recursive –
if it can be expressed with either of these two functionals, it is structurally recursive – and
if so how to abstract and instantiate its base case and its induction step (Section 2.1), in the
presence or absence of an accumulator (Section 2.2).

2.1 Abstraction and instantiation

Each of fold_left_nat and fold_right_nat abstracts the primitive-iterative program-
ming pattern over Peano numbers, in the presence and absence of an accumulator:

Definition fold_left_nat (V : Type) (z : V) (s : V -> V) (n : nat) : V :=
let fix loop n a :=

match n with
| O => a
| S n’ => loop n’ (s a)
end

in loop n z.

Definition fold_right_nat (V : Type) (z : V) (s : V -> V) (n : nat) : V :=
let fix visit n :=

match n with
| O => z
| S n’ => s (visit n’)
end

in visit n.

These two definitions are particularly simple to write in Gallina where natural numbers are
represented as Peano numbers, i.e., are either O or the successor S of a natural number.

https://doi.org/10.1017/S0956796819000042 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000042


4 O. Danvy

For example, the addition of two natural numbers can be defined tail-recursively with
an accumulator or non-tail-recursively with no accumulator:

Definition add_acc (n m : nat) : nat :=
let fix loop n a :=
match n with
| O => a
| S n’ => loop n’ (S a)
end

in loop n m.

Definition add (n m : nat) : nat :=
let fix visit n :=
match n with
| O => m
| S n’ => S (visit n’)
end

in visit n.

The first definition is an instance of fold_left_nat and the second of fold_right_nat:

Definition add_left (n m : nat) : nat :=
fold_left_nat nat m S n.

Definition add_right (n m : nat) : nat :=
fold_right_nat nat m S n.

Inlining fold_left_nat and fold_right_nat in the definitions of add_left and add_right
yields the definitions of add_acc and add.

2.2 Equivalence in general

As it happens, fold_left_nat and fold_right_nat are equivalent in general:

Theorem equivalence_of_left_fold_nat_and_right_fold_nat :
forall (V : Type) (z : V) (s : V -> V) (n : nat),
fold_left_nat V z s n = fold_right_nat V z s n.

Therefore, add_left and add_right are formally equivalent, and as a corollary, add_acc
and add are formally equivalent too.

This equivalence theorem hinges on either of the following master lemmas:

Lemma about_fold_left_nat :
forall (V : Type) (z : V) (s : V -> V) (n : nat),
fold_left_nat V (s z) s n = s (fold_left_nat V z s n).

Lemma about_fold_right_nat :
forall (V : Type) (z : V) (s : V -> V) (n : nat),
fold_right_nat V (s z) s n = s (fold_right_nat V z s n).

N.B.: The analogue of about_fold_right_nat holds for lists but not the list analogue of
about_fold_left_nat.

The intuition here is that applying fold_left_nat z s or fold_right_nat z s to a
number n yields the same result as applying the n-fold composition of s to z:

s(s(. . . s(
︸ ︷︷ ︸

n

z) . . .))

https://doi.org/10.1017/S0956796819000042 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000042


Functional Pearls 5

In this light, fold_left_nat accumulates the result of applying s iteratively, whereas
fold_right_nat applies s recursively. In both cases, s is applied n times.

Since fold_right_nat is the functional counterpart of Church numerals (1941), the
theorem sheds some light on the oft-mentioned (Goldberg, 2014) equivalence of the
two definitions of the Church successor function, λn.λz.λs.s (n z s) and λn.λz.λs.n (s z) s.
(Whether z comes before or after s in a Church numeral, like whether z comes before or
after s in the definition of fold_left_nat and fold_right_nat, is a matter of taste. In
practice, one tends to use the same order as in the definition of the corresponding data
type. And in an induction proof, one tends to consider the base case(s) before the inductive
step(s).)

2.3 Application to computing a power of 2

Revisiting the powerset example to compute its cardinality, we can morph the definition
of powerset_right in Section 1 from lists to natural numbers to compute powers of 2:

Definition exp2_right (n : nat) : nat :=
fold_right_nat nat 1 (fun exp2_i => fold_right_nat nat exp2_i S exp2_i) n.

The third argument of fold_right_nat adds its argument to itself, i.e., it multiplies its
argument by 2:

Definition times2 := fun n => fold_right_nat nat n S n.

Theorem soundness_and_completeness_of_times2 : forall n : nat, times2 n = 2 * n.

The intuition here is that applying exp2_right to a number n yields the same result as
applying the n-fold composition of times2 to 1:

times2(times2(. . . times2(
︸ ︷︷ ︸

n

1) . . .))

The equivalence theorem says that this computation can be achieved tail-recursively by
using fold_left_nat instead of fold_right_nat.

Inlining fold_left_nat yields the morphed counterpart of powerset_left_inlined in
Section 1.2:

Definition exp2_left_inlined (n : nat) : nat :=
let fix outer n outer_a :=

match n with
| O => outer_a
| S n’ => outer n’ (let fix inner m inner_a :=

match m with
| O => inner_a
| S m’ => inner m’ (S inner_a)
end

in inner outer_a outer_a)
end

in outer n 1.

Since inner is tail-recursive, we can relocate the recursive call to outer to its base case,
using lightweight fusion:

https://doi.org/10.1017/S0956796819000042 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000042


6 O. Danvy

Definition exp2_left_inlined_and_fused (n : nat) : nat :=
let fix outer n outer_a :=
match n with
| O => outer_a
| S n’ => let fix inner m inner_a :=

match m with
| O => outer n’ inner_a
| S m’ => inner m’ (S inner_a)
end

in inner outer_a outer_a
end

in outer n 1.

2.4 Application to tupled functions: the Fibonacci function

As initiated by Burstall and Darlington (1977), one can obtain a linear-time function com-
puting Fibonacci numbers by first defining a function that computes two such consecutive
numbers:

Definition fibfib (n : nat) : nat * nat :=
let fix visit n :=
match n with
| O => (0, 1)
| S n’ => let (fib_n’, fib_Sn’) := visit n’ in (fib_Sn’, fib_n’ + fib_Sn’)
end

in visit n.

Definition fib (n : nat) : nat :=
let (fib_n, fib_Sn) := fibfib n in fib_n.

Since fibfib fits the fold-right pattern, it can be expressed as such:

Definition fibfib_right (n : nat) : nat * nat :=
fold_right_nat (nat * nat)

(0, 1)
(fun c => let (fib_i, fib_Si) := c in (fib_Si, fib_i + fib_Si))
n.

Definition fib_right (n : nat) : nat :=
let (fib_n, fib_Sn) := fibfib_right n in fib_n.

Since fold_left_nat and fold_right_nat are equivalent, one can replace the other:

Definition fibfib_left (n : nat) : nat * nat :=
fold_left_nat (nat * nat)

(0, 1)
(fun c => let (fib_i, fib_Si) := c in (fib_Si, fib_i + fib_Si))
n.

Definition fib_left (n : nat) : nat :=
let (fib_n, fib_Sn) := fibfib_left n in fib_n.

Inlining fold_left_nat, lambda-lifting loop (Johnsson, 1985), and inlining
fibfib_left yield the familiar iterative definition of the Fibonacci function with a
pair of accumulators:

https://doi.org/10.1017/S0956796819000042 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000042


Functional Pearls 7

Fixpoint fibfib_left_loop (n : nat) (a : nat * nat) : nat * nat :=
match n with
| O => a
| S n’ => let (fib_i, fib_Si) := a in fibfib_left_loop n’ (fib_Si, fib_i + fib_Si)
end.

Definition fib_left_inlined_and_lifted (n : nat) : nat :=
let (fib_n, fib_Sn) := fibfib_left_loop n (0, 1) in fib_n.

As usual, fibfib_left_loop begs to be inlined and its initial call to be lightweight-fused
to become a tail call. Currying then yields the familiar iterative definition of the Fibonacci
function with two accumulators:

Definition fib_left_inlined_and_fused_and_curried (n : nat) : nat :=
let fix loop n fib_i fib_Si :=

match n with
| O => fib_i
| S n’ => loop n’ fib_Si (fib_i + fib_Si)
end

in loop n 0 1.

2.5 Application to computing the prefix of a stream

Given a natural number representing a length and a stream, one constructs the prefix of
this stream with this length by recursively traversing it at call time and constructing the
resulting list at return time:

CoInductive stream (V : Type) : Type :=
| Cons : V -> stream V -> stream V.

Definition stream_prefix_right (V : Type) (n : nat) (vs : stream V) : list V :=
fold_right_nat (stream V -> list V)

(fun vs => nil)
(fun c vs => match vs with

| Cons _ v vs’ => v :: c vs’
end)

n
vs.

The equivalence theorem says that this computation can be achieved tail-recursively by
accumulating a “stream prefixer” and eventually applying it to the given stream.

2.6 A first application of Kleene’s insight: the predecessor function

Let us revisit Church numerals. When the world was young (Church, 1941), it was unclear
how to lambda-define the predecessor function until Kleene, while at the dentist (1981),
anticipated the tupling strategy by computing a pair of Church numbers, one of them the
predecessor of the other, when it exists. His insight makes it possible, given a positive
number n, to apply n − 1 times a given s over a given z, without breaking the abstraction.
Here is the fold_right_nat analogue:

https://doi.org/10.1017/S0956796819000042 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000042


8 O. Danvy

Definition predecessor_right (n : nat) : option nat :=
let (on’, S_n’) := fold_right_nat (option nat * nat)

(None, 0)
(fun p => let (_, S_i) := p

in (Some S_i, S S_i))
n

in on’.

Theorem soundness_and_completeness_of_predecessor_right :
forall n n’ : nat,
predecessor_right n = Some n’ <-> n = S n’.

The equivalence theorem says that this simulation can be achieved tail-recursively with
a pair of accumulators.

N.B.: In actuality, Kleene’s explanation (1981) is not based on pairs, but on triples,
which is an artifact of using the λ-I calculus. Our exposition here is aligned with
the modern rendition of the story put forward in Goldberg’s lecture notes on the λ

calculus (2014).

2.7 A second application of Kleene’s insight: the first suffix of a list

Just as fold_right_nat is the functional counterpart of Church numerals,
fold_right_list is the functional counterpart of the Church encoding of lists (1941).
And as it turns out, Kleene’s insight can be applied, e.g., to computing the first suffix (i.e.,
the tail) of a list, if this list is nonempty, by constructing a pair of lists, one of them the tail
of the other when it exists:

Definition list_suffix_right (V : Type) (vs : list V) : option (list V) :=
let (ovs’, vs) := fold_right_list V

(option (list V) * list V)
(None, nil)
(fun v c => let (_, vs’) := c

in (Some vs’, v :: vs’))
vs

in ovs’.

Theorem soundness_of_list_suffix_right :
forall (V : Type) (v : V) (vs : list V) (ows : option (list V)),
list_suffix_right V (v :: vs) = ows -> ows = Some vs.

Theorem completeness_of_list_suffix_right :
forall (V : Type) (vs : list V) (v : V) (vs’ : list V),
vs = v :: vs’ -> list_suffix_right V vs = Some vs’.

However, due to the inequivalence between fold_right_list and fold_left_list,
replacing one by the other yields the first prefix of the given list in reverse order if this
list is nonempty.

2.8 A third application of Kleene’s insight: the first prefix of a list

Kleene’s insight also translates to computing the first prefix of a list, if this list is nonempty,
by constructing a pair of difference lists (Hughes, 1986), one of them the optional prefix of
the other, and eventually applying the second one to the empty list to construct the prefix:

https://doi.org/10.1017/S0956796819000042 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000042


Functional Pearls 9

Definition list_prefix_left (V : Type) (vs : list V) : option (list V) :=
let (odl’, dl) := fold_left_list V

((list V -> option (list V)) * (list V -> list V))
((fun vs => None), (fun vs => vs))
(fun v c => let (_, dl’) := c

in ((fun vs => Some vs) ‘o‘ dl’,
dl’ ‘o‘ (cons v)))

vs
in odl’ nil.

where ‘o’ is an infix notation for function composition.
Again, due to the inequivalence between fold_left_list and fold_right_list, replac-

ing one by the other yields the first suffix of the given list in reverse order if this list is
nonempty.

2.9 A fourth application of Kleene’s insight: the factorial function

Let us get back to folding over Peano numbers. In contrast to Gödel’s System T, the
abstracted induction step does not have access to the current snapshot of the given number
in the course of the calls (which is where primitive recursion and primitive iteration differ,
as outlined in Appendix A). This lack of access makes it nonobvious to express, e.g., the
factorial function since it uses the successive decrements of the given number to construct
its result. In his PhD thesis, Goldberg (1996) used Kleene’s insight to lambda-define the
factorial function over Church numerals: he returned a pair containing an index i and the
factorial of i. Here is the fold_right_nat analogue:

Definition specification_of_the_factorial_function (fac : nat -> nat) : Prop :=
fac 0 = 1 /\ forall n’ : nat, fac (S n’) = S n’ * fac n’.

Definition factorial_right (n : nat) : nat :=
let (n,fac_n) := fold_right_nat (nat * nat)

(0, 1)
(fun c => let (i,fac_i) := c in (S i, S i * fac_i))
n

in fac_n.

Theorem factorial_right_satisfies_the_specification_of_the_factorial_function :
specification_of_the_factorial_function factorial_right.

The equivalence theorem says that this simulation can be achieved tail-recursively with
a pair of accumulators, making it clear that Goldberg crystallized Kleene’s insight as
enumerating the graph of the given function using Church numerals.

2.10 More applications of Kleene’s insight: the atoi function, etc.

Likewise, the atoi function that maps a number to a list of its successive predecessors can
be simulated by enumerating its graph:

Definition atoi_right (n : nat) : list nat :=
let (n, ns) := fold_right_nat (nat * list nat)

(0, nil)
(fun c => let (i, is) := c in (S i, i :: is))
n

in ns.

https://doi.org/10.1017/S0956796819000042 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000042


10 O. Danvy

The equivalence theorem says that this simulation can be achieved tail-recursively with
a pair of accumulators.

In the same spirit, it is simple to list the successive suffixes of a list and the successive
difference lists of its prefixes (or directly of its successive prefixes), though there, as in
Sections 2.7 and 2.8, this listing is order-sensitive.

3 Left or right?

Why would one prefer recursion over tail-recursion with an accumulator, or vice versa?
For one point, fold-right-based functions tend to be simpler to reason about and also
more amenable to deforestation than fold-left-based ones. On the other hand, tail-recursive
functions are famed to be more efficient to implement.

For example, consider the case of the fibfib function in Section 2.4:

• Here is the invariant for its recursive instance:

Lemma about_fibfib_right :
forall n : nat,

fibfib_right n = (reference_fib n, reference_fib (S n)).

where reference_fib is a reference definition of the Fibonacci function.
• And here is the invariant for its tail-recursive counterpart:

Lemma about_fibfib_left_loop :
forall i j : nat,

fibfib_left_loop i (reference_fib j, reference_fib (S j)) =
(reference_fib (i + j), reference_fib (S (i + j))).

As one can see, the first invariant is simpler than the second, which illustrates the relevance
of theorems about folding left and right.

Acknowledgements

The author is grateful to Andreea Costea, Kira Kutscher, and Ilya Sergey for their encour-
agement. Thanks are also due to the anonymous reviewers for insightful comments and to
Ralf Hinze and Jeremy Gibbons for their editorship.

References

Bertot, Y. & Castéran, P. (2004) Interactive Theorem Proving and Program Development. Springer.
Bird, R. & Wadler, P. (1988) Introduction to Functional Programming, 1st ed. London, UK:

Prentice-Hall International.
Burstall, R. M. & Darlington, J. (1977) A transformational system for developing recursive

programs. J. ACM 24(1), 44–67.
Church, A. (1941) The Calculi of Lambda-Conversion. Princeton University Press.
Danvy, O. & Spivey, M. (2007) On Barron and Strachey’s Cartesian product function, possibly

the world’s first functional pearl. In Proceedings of the 2007 ACM SIGPLAN International
Conference on Functional Programming (ICFP’07), Hinze, R. & Ramsey, N. (eds). SIGPLAN
Notices, vol. 42, no. 9. Freiburg, Germany: ACM Press, pp. 41–46.

https://doi.org/10.1017/S0956796819000042 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000042


Functional Pearls 11

Goldberg, M. (1996) Recursive Application Survival in the λ-calculus. PhD Thesis, Computer
Science Department, Indiana University, Bloomington, Indiana.

Goldberg, M. (2014) The λ Calculus – Outline of Lectures. lambda.little-lisper.org.
Gordon, M. J. C. (1979) On the power of list iteration. Comput. J. 22(4), 376–379.
Hughes, J. (1986) A novel representation of lists and its application to the function “reverse”. Inf.

Process. Lett. 22(3), 141–144.
Johnsson, T. (1985) Lambda lifting: Transforming programs to recursive equations. In Functional

Programming Languages and Computer Architecture, Jouannaud, J.-P. (ed). Lecture Notes in
Computer Science, vol. 201. Nancy, France: Springer-Verlag, pp. 190–203.

Kleene, S. C. (1981) Origins of recursive function theory. Ann. Hist. Comput. 3(1), 52–67.
Meertens, L. (1992) Paramorphisms. Formal Aspects Comput. 4(5), 413–424.
Ohori, A. & Sasano, I. (2007) Lightweight fusion by fixed point promotion. In Proceedings of the

Thirty-Fourth Annual ACM Symposium on Principles of Programming Languages, Felleisen, M.
(ed). SIGPLAN Notices, vol. 42, no. 1. Nice, France: ACM Press, pp. 143–154.

Strachey, C. (1961) Handwritten Notes. Archive of Working Papers and Correspondence. Bodleian
Library, Oxford, Catalogue no. MS. Eng. misc. b.267.

Wadler, P. (1984) Listlessness is better than laziness. In Conference Record of the 1984 ACM
Symposium on Lisp and Functional Programming, Steele, G. L. (ed). Austin, Texas: ACM Press,
pp. 282–305.

Appendix A: Primitive iteration and primitive recursion

As pointed out in Section 2.9, fold-right functionals embody primitive iteration because
the abstracted induction step does not have access to the current snapshot of the
given value in the course of the calls. In contrast, a “parafold-right” functional (i.e., a
paramorphism (Meertens, 1992)) embodies primitive recursion by enabling the abstracted
induction step to have access to this current snapshot:

Definition parafold_right_nat (V : Type) (z : V) (s : nat -> V -> V) (n : nat) : V :=
let fix visit n :=

match n with
| O => z
| S n’ => s n’ (visit n’)
end

in visit n.

For example, applying parafold_right_nat z s to 3 yields s 2 (s 1 (s 0 z)), where
s is applied three times. It is thus simple to define the atoi function from Section 2.10,
i.e., the function that maps a natural number to the decreasing list of its predecessors,
without using Kleene’s insight:

Definition atoi_right_alt (n : nat) : list nat :=
parafold_right_nat (list nat) nil (fun i c => i :: c) n.

This primitive-recursive functional also makes it simple to define, e.g., the predecessor
function and the factorial function without using Kleene’s insight. It is not equivalent to
its parafold-left counterpart for the same reason that fold_right_list is not equivalent to
fold_left_list, even though either can be used to define the other:

https://doi.org/10.1017/S0956796819000042 Published online by Cambridge University Press

http://lambda.little-lisper.org
https://doi.org/10.1017/S0956796819000042


12 O. Danvy

Definition parafold_left_nat (V : Type) (z : V) (s : nat -> V -> V) (n : nat) : V :=
let fix loop n a :=
match n with
| O => a
| S n’ => loop n’ (s n’ a)
end

in loop n z.

For example, applying parafold_left_nat z s to 3 yields s 0 (s 1 (s 2 z)), where
s is applied three times. It is thus simple to define a iota function, i.e., a function that maps
a natural number to the increasing list of its predecessors:

Definition iota_left (n : nat) : list nat :=
parafold_left_nat (list nat) nil (fun i c => i :: c) n.

(“atoi” is “iota” spelled backwards. These names come from APL.)
Programmatically, the word “iteration” in “primitive iteration” might be misleading

since “iteration” does not mean “tail-recursion” here. For example, the same point applies,
e.g., to binary trees – namely to have or not to have access to the value to which the induc-
tion hypothesis applies – and binary trees are not traversed tail-recursively when they are
processed by a function which is structurally recursive, be it primitive iterative or primitive
recursive. Binary trees have no fold-left functionals.

Appendix B: Primitive recursion in Coq

In Gallina, the type nat preexists and was defined as an inductive data type. Therefore,
parafold_right_nat also preexists, under the name of nat_rect:

Definition parafold_right_nat_rect (V : Type) (z : V) (s : nat -> V -> V) (n : nat) : V :=
nat_rect (fun (_ : nat) => V) z s n.

As pointed out in Appendix A, parafold_right_nat, and therefore nat_rect, make it
simple to define, e.g., the predecessor function and the factorial function without using
Kleene’s insight. Their soundness is proved by induction:

Definition predecessor_rect (n : nat) : option nat :=
nat_rect (fun (_ : nat) => option nat) None (fun n’ _ => Some n’) n.

Theorem soundness_of_predecessor_rect :
forall n n’ : nat,
predecessor_rect n = Some n’ -> n = S n’.

Definition factorial_rect (n : nat) : nat :=
nat_rect (fun (_ : nat) => nat) 1 (fun i fac_i => S i * fac_i) n.

Theorem factorial_rect_satisfies_the_specification_of_the_factorial_function :
specification_of_the_factorial_function factorial_rect.

We notice, though, that in the Init/Nat.v library, iter, the primitive iterator for natural
numbers, is defined with nat_rect. This definition seems like an overkill since nat_rect
embodies primitive recursion, not primitive iteration. The main result of this pearl suggests
instead to reason with fold_right_nat for simplicity and to compute with fold_left_nat
for efficiency when iterating over Peano numbers.

https://doi.org/10.1017/S0956796819000042 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000042

	FUNCTIONAL PEARL
	Folding left and right over lists
	Abstraction and instantiation
	Inequivalence in general

	Folding left and right over Peano numbers
	Abstraction and instantiation
	Equivalence in general
	Application to computing a power of 2
	Application to tupled functions: the Fibonacci function
	Application to computing the prefix of a stream
	A first application of Kleene's insight: the predecessor function
	A second application of Kleene's insight: the first suffix of a list
	A third application of Kleene's insight: the first prefix of a list
	A fourth application of Kleene's insight: the factorial function
	More applications of Kleene's insight: the atoi function, etc.

	Left or right?
	: Primitive iteration and primitive recursion
	: Primitive recursion in Coq


