
13

Sparticle decays

Once sparticles are produced, they will typically decay into another sparticle to-

gether with SM particles via many different channels. The daughter sparticles sub-

sequently decay to yet lighter sparticles until the decay cascade terminates in the

stable LSP. In this discussion we have implicitly assumed that R-parity is con-

served: otherwise, sparticles may also decay into just SM particles, and the final

state would be comprised of only SM particles. However, whether or not R-parity is

conserved, sparticle production at colliders typically leads to a variety of final state

topologies via which to search for SUSY. Signal rates into any particular topology

are determined by sparticle production cross sections studied in the last chapter,

and by the branching fractions for various decays of sparticles.

In this chapter, we examine sparticle decays in the context of the R-parity con-

serving MSSM. As just mentioned, R-parity conservation implies that any sparticle

decay chain will end in a stable LSP which may be a neutralino, a sneutrino, or,

in models with local supersymmetry, also a gravitino. We have already seen in

Chapter 9 that a sneutrino LSP is disfavored. A weak scale gravitino is essentially

decoupled as far as collider physics considerations go. Hence, for most of this chap-

ter, we will assume the gravitino is unimportant for sparticle decay calculations.

However, as we saw in Section 11.3.1, an important exception to this occurs if the

scale of SUSY breaking is low so that gravitinos are very light. To cover this pos-

sibility, we address sparticle decays to gravitinos in the last section of this chapter.

Before proceeding with the detailed examination of the decay rates and vari-

ous branching fractions for individual sparticle decays, we pause to estimate the

expected lifetimes for unstable sparticles. The lifetimes of sparticles are relevant

when considering collider signatures for SUSY.

� Sparticles with lifetimes much longer than the time they take to traverse the

detector will appear to be stable for the purposes of collider physics. If these

are color and electrically neutral, they escape the detector unseen and manifest
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themselves as apparent missing energy and momentum in SUSY events. If such

sparticles are electrically charged, they would cause ionization (the extent of

which would depend on their velocity) and leave tracks in the detector, and would

reveal themselves in experiments searching for heavy charged exotics. If these are

electrically neutral but have strong interactions their experimental signatures may

be quite complicated.1 A particularly striking possibility is that such a particle

may intermittently change into its charged partner by charged pion exchanges

with nucleons in the experimental apparatus, and then back to neutral!
� Neutral sparticles with lifetimes somewhat shorter than their traversal time in

the experimental apparatus would result in displaced vertices. Such a sparticle

would be produced at the primary vertex, but would travel a macroscopic distance

before decaying at a secondary vertex, which may, depending on the lifetime, be

quite distant from the primary interaction point. Experimentalists searching for

new physics should keep this possibility in mind, and not discard such an exotic

signal as due to background from secondary (cosmic ray) interactions or other

noise. If the sparticle lifetime is comparable to B meson lifetimes, SUSY events

would contain displaced vertices (with tracks not pointing back to the primary

interaction point) that would be identified in specialized microvertex detectors

that are an integral part of most contemporary general purpose detectors.
� Finally, sparticles with lifetimes too short to yield displaced vertices that can

be resolved by the microvertex detectors would appear to decay promptly at the

primary vertex. A familiar SM example of such a situation is the production

and decay of the W or Z bosons. In this case, we can get a handle on sparticle

properties only by studying their decay products.

The partial decay rate for a particle decaying via A → a1 + a2 + · · · + an is

given in the rest frame of A by,

�n = (2π )4−3n 1

2MA

∫
d3 pa1

2Ea1

· · · d3 pan

2Ean

|M(A → a1a2 · · · an)|2

× δ4(PA − Pa1
− Pa2

· · · − Pan ), (13.1a)

where, for any sparticle A, the spin and color summed and averaged squared matrix

element |M|2 for the decay is evaluated using the matrix element obtained using

the sparticle interactions listed in Chapter 8. The total decay rate is then obtained

by summing the partial decay rates for all possible decay modes of A. The lifetime

of A is the inverse of this total decay rate,

τA = 1
∑

n
�n

. (13.1b)

1 The elementary sparticle may well be charged and colored, but may bind with SM quarks to produce an
unconfined strongly interacting, electrically neutral “meson” that traverses the apparatus.
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The mass dimension of the matrix element M that appears in (13.1a) can read-

ily be checked to be [M] = 3 − n. The matrix element for two-body decays has

dimensions of mass, that for three-body decays is dimensionless, etc.

Before proceeding to evaluate the partial widths for the various decays of indi-

vidual sparticles, let us estimate their order of magnitude. For two-body decays of

unpolarized particles, Lorentz invariance implies that the squared matrix element,

summed over final state spins, must be independent of final state momenta: i.e. it

is constant.2 This constant must generically be ∼ k2 × m2
A where k is the coupling

constant in the interaction responsible for the decay A → a1a2.3 Using

∫

δ4(PA − Pa1
− Pa2

)
d3 pa1

2Ea1

d3 pa2

2Ea2

= πλ1/2(m2
A, m2

a1
, m2

a2
)

2m2
A

, (13.2a)

it is easy to check that the partial width for the decay,

�(A → a1a2) ∼ f

4m A

k2

4π
λ1/2(m2

A, m2
a1

, m2
a2

)

� f
k2

4π

m A

4
, (13.2b)

where f includes spin and color factors, and in the last step we have ignored any

phase space suppression for the decay. The point of this calculation is to show

that if the coupling k is comparable to the electromagnetic coupling or larger, the

typical width of a 100 GeV particle undergoing two-body decays is >∼ 200 MeV for

a single channel, corresponding to a lifetime <∼ 10−23 seconds: frequently, the total

decay rate is considerably larger because of color factors and also because there

are several channels. Clearly, such lifetimes are orders of magnitude too short to

be detectable by even the best vertex detectors. As shown in the exercise below,

the same conclusion obtains if sparticles dominantly decay via three-body decays

mediated by gauge interactions.

In the subsequent sections, we will see that essentially all MSSM sparticles

can decay (at tree level) via two- or three-body decays mediated by SM gauge

interactions. We conclude that, except in very special cases where there is severe

phase space suppression, sparticles decay promptly in the experimental apparatus.

Important exceptions may occur in GMSB models where the NLSP decays into a

(longitudinal) gravitino via suppressed couplings as discussed in Section 11.3.1,

or for the case of R-parity violating models where the lightest dominantly R-odd

2 The matrix element can be a function of scalar products of various momenta which, by momentum conservation
can be written in terms of particle masses.

3 We assume that the interaction does not have any special features that forbids the appearance of the parent’s
mass in the matrix element. An example where this is forbidden is the matrix element for charged pion decay
which, because of chiral symmetry, has to be proportional to the final state fermion mass rather than mπ .
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particle decays via very small R-parity violating couplings. These special situations

will be treated separately.

In the rest of this chapter we will focus on the decay patterns of various sparticles

since these determine the event topologies via which to search for supersymmetry

at high energy colliders. We illustrate the calculation of partial decay widths by

evaluating the width for three-body decays of the gluino. In Appendix B, we list

formulae for widths of all tree-level two-body sparticle decay modes along with

formulae for the important three-body decay widths.

Exercise Estimate the order of magnitude of the partial width for a three-body
decay of A and show that if this decay is mediated by gauge couplings, we should
not expect a discernible secondary vertex in the experimental apparatus. Proceed
by the following steps.

(a) Although the matrix element for three-body decays is not a constant but depends
on the final state momenta, we may estimate its order of magnitude. If the decay is
mediated by a virtual bosonic sparticle, the amplitude will contain a propagator
of this heavy bosonic particle. Convince yourself that the order of magnitude of
the matrix element (which we saw must be dimensionless) is given by,

|M|2 ∼ k2
1k2

2

(
m2

A

m2
H

)2

,

where k1 and k2 are the dimensionless couplings at each of the two vertices
involving the virtual heavy particle of mass m H . Here, m2

H in the denominator
comes from the propagator, and the m2

A is inserted to make the matrix element
dimensionless.

(b) Neglecting any masses for the final state particles, show that the partial width
for the three-body decay is then given by,

�(A → a1a2a3) ∼ f

32π

(
k1k2

4π

)2 m5
A

m4
H

,

where f again contains spin and color factors.
(c) Assuming that the mass of the virtual sparticle is no more than an order of

magnitude larger than that of the decaying parent, estimate the partial width for
this decay, taking the couplings k1 and k2 to be comparable to gauge couplings.

(d) Frequently, each sparticle has several three-body decay modes, so that the total
decay rate is enhanced by color and multiplicity factors. Convince yourself
that the lifetime of a 100 GeV sparticle decaying via SM gauge interactions is
typically smaller than ∼ 10−16 seconds.
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Note that if the virtual sparticle is a fermion, the matrix element may have just
one power of m H in the denominator, in which case the expected lifetime would be
even smaller.

13.1 Decay of the gluino

If the gluino is heavy enough, it can decay via the strong interaction to quark plus

squark. Neglecting intergenerational mixing, the possible two-body decays are:

g̃ → u ¯̃uL, ūũL, u ¯̃uR, ūũR, (13.3a)

→ d ¯̃dL, d̄d̃L, d ¯̃dR, d̄d̃R, (13.3b)

→ s ¯̃sL, s̄ s̃L, s ¯̃sR, s̄ s̃R, (13.3c)

→ c ¯̃cL, c̄c̃L, c ¯̃cR, c̄c̃R, (13.3d)

→ b ¯̃b1, b̄b̃1, b ¯̃b2, b̄b̃2, and (13.3e)

→ t ¯̃t1, t̄ t̃1, t ¯̃t2, t̄ t̃2. (13.3f)

Each flavor combination must be separately calculated, since the different squark

types will have different decay modes, and each decay chain can give rise to distinct

final states and ensuing signatures. Unless they are kinematically suppressed these

two-body decays generally dominate other decays. Their partial widths are given

by (B.1a) and (B.1b) of Appendix B.

Since the gluino has only strong interactions, if these two-body decays to squarks

are kinematically forbidden, then the gluino would dominantly decay to charginos

and neutralinos via three-body decays mediated by virtual squarks. Again neglecting

inter-generational mixing, the possible decays are,

g̃ → uū Z̃i , dd̄ Z̃i , ss̄ Z̃i , cc̄ Z̃i , bb̄Z̃i , t t̄ Z̃i , (13.4a)

→ ud̄W̃ −
j , ūdW̃ +

j , cs̄W̃ −
j , c̄sW̃ +

j , t b̄W̃ −
j , t̄bW̃ +

j , (13.4b)

where i = 1–4 and j = 1, 2. Note that in all models with a neutralino LSP, the

decays g̃ → qq̄ Z̃1 are kinematically allowed (q = u, d, s, c). As an example cal-

culation, we will illustrate gluino three-body decay to a pair of light quarks plus a

chargino.

13.1.1 g̃ → ud̄W̃ j : a worked example

At leading order, the g̃ → ud̄W̃ j decay occurs via the Feynman diagrams shown

in Fig. 13.1. The decay amplitude for diagram (1) is constructed from

〈uad̄bW̃ j |T
[(

−
√

2gs(i)θg̃ ũLū PR

λB

2
g̃B(x)

)

·
(

iAd
W̃ j

ũ†
LW̃ i PLd(y)

)]

|g̃A〉,
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Figure 13.1 Feynman diagrams contributing to the decay g̃ → ud̄W̃ j .

where a, b, and A denote the color indices of the final state quarks and the decaying

gluino. The matrix element can be evaluated as described in the last chapter. The

external particles can be reduced using the creation/annihilation operators; again

the exponential wave function factors lead to momentum conservation at each

vertex. Finally, the ũL and ũ†
L fields contract together to yield a ũL propagator

factor DF (ũL) = 1
(g̃−u)2−m2

ũL

. Following the steps detailed in Chapter 12, we omit

irrelevant factors of i, and find that the matrix element is given by,

M1 = −i(i)θg̃
√

2gs Ad
W̃ j

λAab

2
ū(u)PRu(g̃) · DF (ũL) · ū(W̃ j )PLv(d̄). (13.5a)

The sum and average over color indices yields a factor

1

8

∑

A

λAab

2

λ∗
Aab

2
= 1

8
Tr

λA

2

λA

2
= 1

8

1

2
δAA = 1

2
,

where in the second step we have used the Hermiticity of the SU (3) generators.

Using usual trace techniques, the sum and average over colors and spins then yields

the squared matrix element,

1

2

1

8

∑

|M1|2 = 2g2
s |Ad

W̃ j
|2 g̃ · u W̃ j · d̄

[(g̃ − u)2 − m2
ũL

]2
. (13.5b)

A similar calculation for diagram (2) yields the matrix element,

M2 = −i(−i)θg̃
√

2gs Au∗
W̃ j

λAab

2
v̄(g̃)PLv(d̄) · DF (d̃L) · ū(u)PRv(W̃ j ), (13.6a)

where the chargino is treated as an antiparticle since its interaction with the down

squark is written in terms of the field W̃ c
j . This explains the direction of the arrow

on the chargino line in diagram (2) of Fig. 13.1; we will leave it to the reader to

check the reason for the reversal of the corresponding arrow on the gluino line. We
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then obtain the spin and color averaged squared matrix element,

1

2

1

8

∑

|M2|2 = 2g2
s |Au

W̃ j
|2 g̃ · d̄ W̃ j · u

[(g̃ − d̄)2 − m2
d̃L

]2
. (13.6b)

Finally, we turn to the interference term,

M1M†
2 = (−1)θg̃ 2g2

s Ad
W̃ j

Au
W̃ j

(
λA

2
)ab(

λ∗
A

2
)ab DF (ũL)DF (d̃L)

× ū(u)PRu(g̃) · v̄(d̄)PRv(g̃) · ū(W̃ j )PLv(d̄) · v̄(W̃ j )PLu(u).

Just as in the evaluation of the interference term following (12.4c), we find a

mismatch between spinors involving the g̃ and also the W̃ j . As before, this can

be rectified using the relations u = C v̄T and v = CūT , which yield:

v̄(d̄)PRv(g̃) = uT (d̄)C PRCūT (g̃) = −ū(g̃)PRu(d̄), and

ū(W̃ j )PLv(d̄) = vT (W̃ j )C PLCūT (d̄) = −ū(d̄)PLv(W̃ j ).

Then the spin and color summed and averaged interference term becomes,

1

8

1

2

∑

(M1M†
2 + c.c.) = −

2g2
s (−1)θg̃ mg̃mW̃ j

Re(Ad
W̃ j

Au
W̃ j

)u · d̄

[(g̃ − u)2 − m2
ũL

][(g̃ − d̄)2 − m2
d̃L

]
. (13.6c)

The width for the decay g̃ → ud̄W̃ j can now be obtained using (13.1a) and

integrating over the entire phase space. To integrate
∑ |M1|2, we first re-write the

dot product W̃ j · d̄ = (Q2 − m2
W̃ j

− m2
d)/2, with Q = W̃ j + d̄ = g̃ − u, so that the

integrand is independent of W̃ j and d̄. The integration over the momenta of W̃ j

and d̄ can be easily performed using the invariant scalar integral (13.2a) leaving

just the integral over the three momentum of the u quark to be performed. It is

most convenient to write the integrand in the rest frame of the gluino. The measure

d3u/2Eu = 2π |	pu|dEu so that the contribution to the partial width from |M1|2 is

�11 =
αs |Ad

W̃ j
|2

16π2
ψ(mg̃, mũL

, mW̃ j
), (13.7a)

where

ψ(mg̃, mq̃, m) =
∫

dE
E2(m2

g̃ − 2mg̃ E − m2)2

(m2
g̃ − 2mg̃ E − m2

q̃)2(m2
g̃ − 2mg̃ E)

, (13.7b)

and where the limits of integration (neglecting the u quark mass) range from Emin =
0 to Emax = (m2

g̃ − m2)/2mg̃. Similarly, integrating
∑ |M2|2 over the phase space
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gives,

�22 =
αs |Au

W̃ j
|2

16π2
ψ(mg̃, md̃L

, mW̃ j
). (13.7c)

Finally, we must integrate over the interference term. Since this term involves

g̃ · u and g̃ · d̄ dot products in the propagator denominators, we cannot use covariant

scalar, vector or tensor integrals in its evaluation. Instead, we will evaluate the three-

body phase space integral directly. Toward this end, we write

d3W̃ j

2EW̃ j

= d4W̃ jθ (W̃ 0
j )δ(W̃ 2

j − m2
W̃ j

),

and use the energy–momentum conserving δ-function to integrate over the chargino

four-momentum. Since W̃ j = g̃ − u − d̄, the step function θ (W̃ 0
j ) is just one (be-

cause of limits on the particle energies obtained below). The remaining integrand

can then be written in the rest frame of the gluino with the u quark direction chosen

as the z-axis. The δ-function that specifies the chargino to be on its mass shell can

be then written as,

δ
[

(g̃ − u − d̄)2 − m2
W̃ j

]

= 1

2Eu Ed̄
δ

[

1 − cos θ +
m2

g̃ − m2
W̃ j

− 2mg̃(Eu + Ed̄)

2Eu Ed̄

]

,

where θ is the angle between the up and down quark momenta. Neglecting quark

masses, it is now straightforward to see that

∫
u · d̄

[(g̃ − u)2 − m2
ũL

][(g̃ − d̄)2 − m2
d̃L

]
δ4(g̃ − W̃ j − u − d̄)

d3u

2Eu

d3d̄

2Ed̄

d3W̃ j

2EW̃ j

= π2

∫
u · d̄ dEudEd̄

[(g̃ − u)2 − m2
ũL

][(g̃ − d̄)2 − m2
d̃L

]

= −π2

2

∫
dEu

(m2
g̃ − 2mg̃ Eu − m2

ũL
)

∫

dEd̄

(

1 +
m2

d̃L
− m2

W̃ j
− 2mg̃ Eu

m2
g̃ − 2mg̃ Ed̄ − m2

d̃L

)

.

The integration over dEd̄ is simple, once the limits of integration are determined

(see the exercise below). We then find that the contribution to the width from the

interference term takes the form,

�12 =
−αs(−1)θg̃ Re(Au

W̃ j
Ad

W̃ j
)

8π2
φ(mg̃, mũL

, md̃L
, mW̃ j

), (13.8a)
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where

φ(mg̃, mũL
, md̃L

, m)

= m

2

∫
dEu

m2
g̃ − m2

ũL
− 2mg̃ Eu

[
−Eu(m2

g̃ − m2 − 2mg̃ Eu)

mg̃(mg̃ − 2Eu)

−
2mg̃ Eu − m2

d̃L
+ m2

2mg̃
log

m2
d̃L

(mg̃ − 2Eu) − mg̃m2

(mg̃ − 2Eu)(m2
d̃L

− 2mg̃ Eu − m2)

]

, (13.8b)

with the range of integration from 0 to (m2
g̃ − m2)/2mg̃. The partial decay width is

then given by

�(g̃ → ud̄W̃ j ) = �11 + �22 + �12. (13.9)

By C P invariance, �(g̃ → ud̄W̃ −
j ) = �(g̃ → dūW̃ +

j ). This will lead to an

important signature for gluinos. Moreover, these partial widths are generation-

independent as long as quark Yukawa interactions can be neglected. For decays to

third generation quarks the calculation is considerably more complicated mainly

because the higgsino components of the charginos also couple via Yukawa inter-

actions. Moreover, intra-generational squark mixing and final state quark masses

also need to be taken into account. The formula for this partial width is given in

Section B.1.4 of Appendix B.

Exercise The requirement that | cos θ | ≤ 1 determines the limits on the energy of
the down quark. Using the value of cos θ given by the chargino mass shell δ-function,
show that

Ed̄(min) = (m2
g̃ − m2

W̃ j
− 2mg̃ Eu)/2mg̃,

Ed̄(max) = (m2
g̃ − m2

W̃ j
− 2mg̃ Eu)/2(mg̃ − 2Eu).

The limits on the up quark energy are even easier to determine. In the gluino rest
frame, if u is produced at rest, then Eu(min) = 0, while if d̄ is produced at rest,
then Eu(max) = (m2

g̃ − m2
W̃ j

)/2mg̃.

Work out how these limits are modified if quarks have non-zero masses. This is
relevant for the decay g̃ → t b̄W̃ j .

13.1.2 Other gluino decays

We have already mentioned that the decays g̃ → cs̄W̃ −
j and g̃ → t b̄W̃ −

j (along

with the corresponding C P conjugate decays) may also occur. If the latter decay is

kinematically unsuppressed, its partial width may be considerably larger than that
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Figure 13.2 Feynman diagrams contributing to the decay g̃ → uū Z̃i . Decays to
other flavors of squarks occur via similar diagrams.

Figure 13.3 Feynman diagrams contributing to the decay g̃ → gZ̃i . Since the
gluino and the neutralino are Majorana particles, these same diagrams but with
reversed arrows also contribute to the amplitude. This corresponds to distinct
contractions in the evaluation of the decay matrix element.

for three-body decays to light squarks. This occurs in part because the top (and

for large tan β, bottom) quark Yukawa couplings are large, and also because in all

models where squark mass parameters are (roughly) equal at some high scale, the

physical masses of light bottom and top squarks are significantly smaller than first

and second generation squark masses.

Gluinos can also decay via three-body mode to neutralinos. The diagrams con-

tributing to g̃ → uū Z̃i are shown in Fig. 13.2. The calculation of the decay width

is very similar to the one illustrated for g̃ → ud̄W̃ j . For decays to massless quarks,

the chiral structure of the interaction ensures that there is no interference term

between diagrams involving left- and right-squark exchange. The corresponding

partial width is given by Eq. (B.4). The decays g̃ → bb̄Z̃i and g̃ → t t̄ Z̃i may also

occur. Once again, the evaluation of these partial widths is complicated because

Yukawa couplings, squark mixing, and quark masses have all to be included. The

relevant formulae can be found in Section B.1.3 of Appendix B.

It is also possible for the gluino to decay via loop diagrams as g̃ → gZ̃i , as shown

in Fig. 13.3. Each diagram is separately divergent but the summed amplitude is finite
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Figure 13.4 Branching fractions for g̃ decay to qq̄ Z̃i , qq̄ ′W̃ j , and qq̃ final states
as a function of mg̃ for MSSM model parameters shown.

as it must be in a renormalizable theory. Since the amplitude has an additional factor

of the strong coupling relative to the amplitudes for tree-level three-body decays as

well as a loop suppression factor, the partial width for this decay is usually smaller

than that for three-body tree-level decays. However, in some regions of MSSM

parameter space, this decay mode can be significant, since it can be enhanced by

third generation Yukawa couplings, and suffers less kinematic suppression. We do

not list the formula for this decay here but refer the reader to the literature.4

In Fig. 13.4, we show gluino branching ratios to charginos and neutralinos as a

function of mg̃, for degenerate soft SUSY breaking squark masses of mq̃ = 1 TeV,

with μ = 200 GeV, and tan β = 5, in the MSSM with gaugino mass unification.

Values of mg̃
<∼ 550 GeV are excluded by the LEP constraint on the chargino mass.

However, we should understand that this figure is for illustrative purposes only. Two-

body gluino decays are kinematically forbidden over most of the range of mg̃ in the

figure. For low values of mg̃, Z̃1, Z̃2, and W̃1 are all extremely light, and the gluino

decays mainly via three-body modes into qq̄ ′W̃1, qq̄ Z̃1, and qq̄ Z̃2. Moreover, we

see that the branching fraction to the kinematically favored qq̄ Z̃1 mode is smaller

than that for gluino decays to the heavier neutralino Z̃2 or to the chargino. The reason

is that for low values of mg̃, 2M1 � M2 � mg̃/3 � μ, so that the lightest neutralino

is dominantly a bino while Z̃2 and W̃1 are dominantly winos. Since the SU (2)L gauge

coupling is larger than the hypercharge gauge coupling, decays to the bino-like LSP

are dynamically suppressed. The partial width for the decay to a chargino is almost

4 See e.g., H. Baer, X. Tata and J. Woodside, Phys. Rev. D42, 1568 (1990).
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13.1 Decay of the gluino 349

Figure 13.5 Branching fractions of the g̃ to final states involving third generation
quarks versus tan β in the mSUGRA model. Also shown is the total branching
fraction for decays to quarks of the first two generations.

twice that to Z̃2; this is reasonable because there are two charged wino states and

just one neutral wino state. Decays to heavy neutralinos and the heavier chargino

(which are mainly higgsino-like) are kinematically and dynamically suppressed. As

mg̃ increases, decays to states including heavier charginos and neutralinos become

possible. Ultimately, these dominate the branching fractions. This is because for

fixed μ, M1 and M2 increase with mg̃ so that for very heavy gluinos, it is the

heavier chargino W̃2 and the heavier neutralinos Z̃3 and Z̃4 that are mainly gaugino-

like and so have large couplings to the quark–squark system: decays to the more

higgsino-like W̃1, Z̃1, and Z̃2, though kinematically favored are suppressed by

mixing angles. That heavy gluinos decay to heavy charginos and neutralinos which

subsequently decay to lighter charginos and neutralinos is quite a general feature

of SUSY models. Of course, as we can see, if mg̃ > (mq + mq̃), then the two-body

decays to quark plus squark become kinematically accessible and rapidly dominate

the branching fraction. Since these occur via only strong interactions which are

flavor independent, aside from mass effects, every flavor and type of squark will be

democratically produced.

In Fig. 13.5, we show the g̃ branching fractions to states including third gen-

eration quarks, as a function of tan β, in the mSUGRA model for m0 = 600

GeV, m1/2 = 250 GeV, A0 = 0, and μ > 0. For small values of tan β just the

top quark Yukawa coupling is important, but decays to t quarks are somewhat

suppressed by phase space. As tan β increases, the magnitude of the bottom (and

also tau) Yukawa coupling increases; as a result, mb̃1
is decreased both because of
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renormalization group evolution as well as left-right mixing. Thus as tan β in-

creases, gluino decays to bottom quarks become increasingly important both due

to direct Yukawa couplings at the chargino and neutralino vertices, as well as to

propagator enhancement. As can be seen from the figure, gluino production events

at hadron colliders should be rich in b-quark jets if the parameter tan β is large.

Moreover, the primary b-quark jets should be very hard, and events with hard b-jets

and large Emiss
T may give a striking signature at the LHC.5 If tan β is large enough

(tan β >∼ 42 in our illustration), the decays g̃ → b ¯̃b1 and b̄b̃1 become kinematically

accessible, and rapidly dominate the gluino decay rate. In some cases, the momen-

tum distribution of the b-jets from the decay of the gluino and the b̃1 squark can

even provide information about their masses.

13.2 Squark decays

Squarks dominantly decay via two-body modes. The decay q̃i → q Z̃1 is kine-

matically accessible by assumption as long as the mass of the daughter quark is

negligible. For the first generation, Yukawa couplings can be neglected and possible

decay modes include,

ũL → u Z̃i , dW̃ +
j , ug̃, (13.10a)

d̃L → d Z̃i , uW̃ −
j , dg̃, (13.10b)

ũR → u Z̃i , ug̃, (13.10c)

d̃R → d Z̃i , dg̃. (13.10d)

Notice that right-squarks have no coupling to charginos, and so can only decay

to g̃ or Z̃i . The decay modes for c̃L, c̃R, s̃L and s̃R are similar. Unless they are

kinematically suppressed, decays to gluinos dominate. Partial widths for two-

body decays of squarks to gluinos, charginos, and neutralinos may be found in

Appendix B.2.

For third generation squarks, squark mixing effects as well as non-negligible

Yukawa couplings lead to more complicated decay patterns. Bottom squarks may

decay via the following modes, if these are kinematically accessible:

b̃1,2 → bg̃, bZ̃i , t W̃ j , W t̃1,2, H− t̃1,2 and (13.11a)

b̃2 → Zb̃1, hb̃1, Hb̃1, Ab̃1. (13.11b)

Unlike squarks of the first two generations, both light and heavy bottom squarks can

potentially decay to charginos and W bosons, since they are mixtures of left- and

5 For yet larger values of m1/2 gluino decays to t-quarks are kinematically unsuppressed, and these serve as an
additional source of b-jets.
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right-squarks. Likewise, top squarks can decay via

t̃1,2 → t g̃, t Z̃i , bW̃ j , W b̃1,2, H+b̃1,2 and (13.12a)

t̃2 → Zt̃1, ht̃1, Ht̃1, At̃1. (13.12b)

If top squarks are relatively light, they dominantly decay via t̃1 → bW̃1, and

possibly also via t̃1 → t Z̃1. If both these modes are kinematically forbidden, then

the t̃1 can decay via usually suppressed modes

t̃1 → cZ̃1, bν
̃L, b
ν̃L, bW Z̃1, or b f f̄ ′ Z̃1, (13.13)

where f and f̄ ′ are light SM fermions that couple to the W boson. The first of these

decay modes can take place via the off-diagonal terms in the SUSY Lagrangian that

give rise to flavor-violating interactions. Even if tree-level flavor-violating interac-

tions are absent in the Lagrangian renormalized at high energy scales, radiative

corrections can induce these at the weak scale, giving rise to the flavor-violating

decay mode. We assume here that the decay t̃1 → cg̃ (which would be similarly

induced) is kinematically forbidden. In models with universal squark masses at

the high scale, it has been shown that the decay t̃1 → cZ̃1 frequently dominates

the four-body decay for rather light top squarks.6 There are, however, regions of

parameter space where the three- and even four-body decay modes can compete

with, or even dominate, the t̃1 → cZ̃1 decay.

In Fig. 13.6, we show the branching fractions for ũL in the MSSM, for fixed

values of μ = 200 GeV, mg̃ = 1000 GeV, and tan β = 5, versus mũL
. Gaugino mass

unification is also assumed. At a very low value of mũL
, only the decay ũL → u Z̃1

is open, and hence dominates the branching fraction. As mũL
increases, new decay

modes become accessible. In particular, when ũL → dW̃1 becomes accessible, it

soon becomes dominant.7 As mũL
increases even further, decays to the heavier

charginos and neutralinos become kinematically accessible. Ultimately, decays to

the SU (2)L gaugino-like W̃2 and Z̃4 dominate while decays to the higgsino-like Z̃3

are dynamically suppressed. The heavy charginos and neutralinos will subsequently

decay as described below so that heavy squarks, like heavy gluinos, will decay via

a multi-step cascade that terminates in the LSP. Finally, at very high values of mũL
,

the decay to ug̃ becomes possible, and soon dominates the electroweak decays to

charginos and neutralinos. Branching fractions for d̃L decays shown in Fig. 13.7 are

qualitatively similar, except that the d̃L → d Z̃1 decay is not as rapidly suppressed

when other channels open up. Indeed the extremely rapid suppression of ũL → u Z̃1

6 K. Hikasa and M. Kobayashi, Phys. Rev. D36, 724 (1987).
7 To understand the branching fractions we note that, in this case, the neutralinos are fairly mixed with Z̃1

dominantly bino-like, Z̃2 equally mixed in all four components, Z̃3 being essentially a higgsino, and Z̃4

dominantly wino-like. The two charginos are substantial mixtures of gauginos and higgsinos, with W̃2 being
the more gaugino-like because M2 > μ.
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Figure 13.6 Branching fractions of the ũL versus mũL
in the MSSM, assuming

gaugino mass unification.

Figure 13.7 Branching fractions of the d̃L versus md̃L
in the MSSM, assuming

gaugino mass unification.
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decays in Fig. 13.6 may be attributed to a somewhat accidental cancellation in the

corresponding coupling.

In Fig. 13.8 and Fig. 13.9, we show branching fractions of the ũR and d̃R squarks

in the MSSM model versus the corresponding squark mass, for the same pa-

rameters as in Fig. 13.6. Since right-handed squarks are SU (2)L singlets, these

can only decay to neutralinos, and (neglecting Yukawa couplings) only via their

hypercharge gaugino components. The partial widths are, therefore, in the ra-

tio of the corresponding |v(i)
4 |2 for both types of squarks. Finally, for very high

masses, the decay mode q̃R → qg̃ opens up, and soon dominates the branching

fractions.

Exercise Notice that the form of three boson couplings in Chapter 8 implies that the
decays t̃2 → t̃1 Z, t̃2 → b̃1W, and also t̃i → b̃ j H+ (and the corresponding sbottom
decays) may occur via gauge interactions. This would suggest that these decays
may be relevant also for the first two generations of squarks. Verify that if Yukawa
couplings can be ignored, the relevant coupling to Z vanishes, and further, that
the decays of d̃L to W and H± bosons are kinematically forbidden assuming that
mũL

+ md̃L
> MW . Convince yourself that two-body decays to h, H, and A can only

occur via Yukawa couplings.

13.3 Slepton decays

First generation sleptons may decay via the following two-body modes, if kinemat-

ically allowed:

ẽL → eZ̃i , νeW̃ −
j , (13.14a)

ν̃e → νe Z̃i , eW̃ +
j , (13.14b)

ẽR → eZ̃i . (13.14c)

Decays to W , Z and Higgs bosons are not possible for the same reasons as for first

generation squarks. Smuons and muon sneutrinos have identical decay patterns and

branching fractions as their first generation cousins. The partial widths for these

decays are given by (B.53a)–(B.54b) of Appendix B.

We illustrate the branching fractions of the left-selectron, the right-selectron, and

the sneutrino in Fig. 13.10, Fig. 13.11, and Fig. 13.12, respectively, as a function

of the corresponding sparticle mass for the same MSSM parameters as Fig. 13.6.

Except for the fact that these sleptons and sneutrinos never have two-body decays

to gluinos, the decay patterns are qualitatively very similar to those of the corre-

sponding squarks that we examined in the last section. In particular, while very

light SU (2)L doublet sleptons ẽL and ν̃e can only decay to the LSP, the branching
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Figure 13.8 Branching fractions of the ũR versus mũR
in the MSSM, assuming

gaugino mass unification.

Figure 13.9 Branching fractions of the d̃R versus md̃R
in the MSSM, assuming

gaugino mass unification.

fractions for their decays to heavier charginos and neutralinos become dominant

if these decays are not kinematically suppressed.8 Thus a sneutrino heavier than

the chargino is expected to have a significant branching fraction for visible decays.

8 The strong suppression of the ν̃e → Z̃2ν decay is accidental.
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Figure 13.10 Branching fractions of the ẽL versus mẽL
in the MSSM, assuming

gaugino mass unification.

Figure 13.11 Branching fractions of the ẽR versus mẽR
in the MSSM, assuming

gaugino mass unification.

The right-selectron, like its squark cousin d̃R, can only decay to neutralinos via the

hypercharge gauge coupling: since Z̃1 has the largest bino component, this decay

always dominates. As a result, 
̃R pair production leads to events with opposite

sign/same flavor dilepton pairs plus large missing energy.

Just as with third generation squarks, the decay possibilities of third generation

sleptons are more complicated due to Yukawa coupling and mixing effects. The
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Figure 13.12 Branching fractions of the ν̃eL versus m ν̃eL
in the MSSM, assuming

gaugino mass unification.

decay possibilities, not all of which may be kinematically allowed, include

τ̃1 → τ Z̃i , ντ W̃ j , (13.15a)

τ̃2 → τ Z̃i , ντ W̃ j , W ν̃τ , H−ν̃τ , (13.15b)

τ̃2 → Z τ̃1, hτ̃1, H τ̃1, Aτ̃1, (13.15c)

ν̃τ → ντ Z̃i , τ W̃ j , W τ̃1,2 and H+τ̃1,2. (13.15d)

The partial widths for these decays may be found in Appendix B.3.

In gauge-mediated SUSY breaking models with a low scale of SUSY breaking

and a light gravitino, the τ̃1 slepton may be the next-to-lightest SUSY particle

(NLSP), while the gravitino G̃ is the LSP. In this case, Z̃1 may be heavier than

some of the sleptons. The right-handed sleptons of the first two generations (these

would be much lighter than their left-handed sisters) would then dominantly decay

via


̃R → τ̃−
1 τ+
 and 
̃R → τ̃+

1 τ−
 (13.16a)

mediated by neutralino exchange (recall that these couple to charginos only via tiny

Yukawa couplings) which usually dominates the two-body decay 
̃R → 
G̃ (even

for Cgrav = 1) as long as these are not strongly suppressed by kinematics. For the

case of the “co-NLSP” scenario where the sleptons of all three generations are al-

most degenerate, and m 
̃1
− m τ̃1

< mτ , the decay 
̃1 → 
G̃ dominates if Cgrav = 1;
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for larger values of Cgrav, the decay

μ̃1 → τ̃1ν̄τ νμ (13.16b)

mediated by muon Yukawa couplings to a virtual chargino can potentially compete

with the decay to the gravitino. In this case, the lifetimes of the NLSP may be large,

and there may be displaced vertices or detectable charged sparticle tracks in the

experimental apparatus.9

13.4 Chargino decays

Charginos decay only via electroweak interactions. They would dominantly decay

via the following two-body modes if these are kinematically unsuppressed:

W̃ j → W Z̃i , H− Z̃i , (13.17a)

→ ũLd̄, ¯̃dLu, c̃Ls̄, ¯̃sLc, t̃1,2b̄, b̃1,2t, (13.17b)

→ ν̃eē, ¯̃eLνe, ν̃μμ̄, ¯̃μLνμ, ν̃τ τ̄ , ¯̃τ1,2ντ , and (13.17c)

W̃2 → Z W̃1, hW̃1, H W̃1, and AW̃1. (13.17d)

Partial widths for these decays are listed in Appendix B.5.1.

If all these modes are suppressed or forbidden (as may be the case for charginos

in the mass range accessible to Tevatron searches), then three-body modes mediated

by virtual bosons will dominate. Charginos may decay to a lighter neutralino via

W̃ j → Z̃i + f f̄ ′, (13.18a)

where f and f̄ ′ are light SM fermions that couple to the W boson. For the lighter

chargino, usually only the three-body decays to the Z̃1 are relevant. The heavy

chargino may also decay via

W̃2 → W̃1 f f̄ (13.18b)

as well.

Feynman diagrams for leading order contributions to W̃1 → eν̄e Z̃1 decay are

shown in Fig. 13.13. Three-body decays to other leptons or to quarks occur via

analogous diagrams. For decays to the first two generations of fermions, Yukawa

couplings, and hence also intragenerational sfermion mixings, are small; thus ẽR and

H+ exchange diagrams make negligible contributions. However, for W̃1 → τ ν̄τ Z̃1

decay, these contributions can be important if tan β is large. The partial width for

the decay W̃1 → τ ν̃τ Z̃1 is given in Appendix B.5.2. The corresponding widths for

9 For a discussion of three-body decays of sleptons, see S. Ambrosanio, G. Kribs and S. Martin, Nucl. Phys.
B516, 55 (1998) and H. Baer, P. Mercadante, X. Tata and Y. Wang, Phys. Rev. D60, 055001 (1999).
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Figure 13.13 Feynman diagrams contributing to the decay W̃1 → eν̄e Z̃1.

Figure 13.14 Branching fractions for decays of W̃1 versus mW̃1
in the mSUGRA

model. Below the threshold for W̃1 → W Z̃1 decay, decays to other leptons families

have essentially the same branching ratio as that for W̃1eν. The rest of the time
the chargino decays hadronically with these decays distributed essentially equally
between the first two generations.

other decays can be obtained from this by setting the Yukawa coupling and the tau

lepton mass to zero, and including appropriate color factors as spelled out there.

We illustrate the W̃1 decay branching ratio in Fig. 13.14 versus mW̃1
for the

mSUGRA model with parameters m0 = m1/2, tan β = 5, A0 = 0, and μ > 0. In

this case, squarks are much heavier than MW and, except for the lowest values

of the chargino mass, so are sleptons and sneutrinos. For mW̃1
< MW + m Z̃1

the

amplitude for the decay is dominated by the virtual W boson exchange, resulting in

a branching ratio B(W̃1 → Z̃1 f f̄ ′) � B(W → f f̄ ′), which is close to 11% for the

decay W̃1 → Z̃1eν ; the small increase in this branching for very low mW̃1
values

is due to contributions from slepton and sneutrino exchanges. Here, it is worth

recalling the relative robustness of the W W̃1 Z̃1 coupling that we mentioned below
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Figure 13.15 Branching fractions of the W̃1 versus tan β in the mSUGRA model
with parameters as shown in the figure.

(8.103b): since this coupling is usually unsuppressed, the W exchange contribution

tends to dominate chargino three-body decays if sfermions are heavy and tan β is

not very large, so that chargino branching fractions to Z̃1 f f̄ ′ are frequently close

to those for W → f f̄ ′ decays. As mW̃1
increases, the two-body mode W̃1 → W Z̃1

opens up, and quickly dominates the branching fraction. The final state particles of

the W̃1 decay (and the branching ratios) are the same as for low mW̃1
values, but

now the W boson is real instead of virtual.

The tan β dependence of the branching fractions of W̃1 is illustrated in Fig. 13.15

for the same mSUGRA model parameters as in the previous figure, but with m0 =
m1/2 = 200 GeV. For low values of tan β, the chargino dominantly decays via

W̃1 → f f̄ ′ Z̃1 with branching fractions equal to those for W → f f̄ ′ as for the

case of Fig. 13.14. As tan β increases, the τ Yukawa coupling grows, and the τ̃1

mass decreases due to Yukawa coupling contributions to RGE running, and due to

non-negligible mixing effects. For tan β ∼ 15, the two branching fractions begin to

separate and decays to τ s become increasingly important; for large values of tan β,

contributions from the higgsino component of the chargino may also be relevant.

The decay amplitude from the virtual τ̃1 Feynman diagram becomes comparable to

and even larger than the virtual W contribution. For very large values of tan β, the

τ̃1 becomes so light that W̃1 → τ̃1ντ becomes accessible, and quickly dominates

the branching fraction even though τ̃1 is dominantly τ̃R.

Heavy charginos usually decay via two-body modes. Their decay patterns are

highly model and parameter-space dependent. The decay products of W̃2 frequently

include W , Z , and Higgs bosons, and sometimes also sleptons. Indeed if W̃2s are
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produced via cascade decays of heavy sparticles, very rich phenomenology results.

We refer the reader to the literature for a discussion and illustrative examples of the

branching ratios of W̃2.10

13.4.1 A chargino degenerate with the LSP

Within the MSSM, it is possible that mW̃1
� m Z̃1

if either |M1|, |M2| 
 |μ|, MW

or |M1|, |μ| 
 |M2|, |MW |. In the first case, the light chargino and the lightest two

neutralinos are higgsino-like with masses close to |μ|. Any splitting between the

chargino and the Z̃1 mass has to be an SU (2)L breaking effect, i.e. it has to come

from mixing between the gauginos and higgsinos. It is not difficult to show (see

exercise below) that the splitting is O(M2
W /�), where � ∼ |M1| or |M2| is the

large scale in the chargino and neutralino mass matrices. For an SU (2)L gaugino

mass an order of magnitude larger than MW , a mass splitting of O(10) GeV may be

expected. This small mass gap implies that the visible products from chargino decay

will be rather soft compared to expectations in mSUGRA or mGMSB models, but

the decay patterns of the charginos are qualitatively similar to those we have just

discussed.11

In the second case where |M1|, |μ| 
 |M2|, MW , the SU (2)L gaugino would be

lighter than the higgsinos or the hypercharge gauginos and in the absence of any

gaugino–higgsino mixing we would expect that Z̃1 and W̃ ±
1 form a weak isotriplet

with a mass |M2|. The degeneracy again should not be surprising because any mass

splitting between the charged and neutral winos has to be an SU (2)L breaking effect

and, at tree level, gaugino–higgsino mixing is the only source of SU (2)L breaking.

It is tedious but straightforward to show that in this case the tree-level mass splitting

between the chargino and neutralino is O(M4
W /�3) where � ∼ |M1| or |μ| is the

large scale in the mass matrices. For an order of magnitude hierarchy between MW

and �, this corresponds to a sub-GeV mass gap. Then, the contribution to the mass

splitting from radiative corrections can potentially be comparable to or even much

larger than the tree-level splitting. These corrections have been evaluated,12 and it

has been shown that radiative corrections make the dominant contribution to the

mass gap within the minimal anomaly-mediated SUSY breaking (AMSB) model

which provides an example of just such a chargino–neutralino spectrum. Detailed

calculation shows that the chargino–neutralino mass gap is typically 160–250 MeV.

Fortunately, mW̃1
> m Z̃1

so that the LSP is still neutral.

10 See, e.g., H. Baer, A. Bartl, D. Karatas, W. Majerotto and X. Tata, Int. J. Mod. Phys. A4, 4111 (1989).
11 Although |μ| is generically large within the mSUGRA framework, the recent determination of the relic dark

matter density by the WMAP collaboration prefers selected regions of mSUGRA parameter space: in one of
these regions, dubbed the hyperbolic branch region, |μ| may be much smaller than the gaugino masses.

12 See e.g. D. Pierce and A. Papadopoulos, Nucl. Phys. B430, 278 (1994).
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For such a small splitting, chargino decays are qualitatively altered from our

discussion above. If mW̃1
− m Z̃1

< mπ , hadronic decays of the chargino are kine-

matically forbidden, and the chargino would dominantly decay via W̃ −
1 → eν Z̃1,

the mode with the largest phase space. The chargino could be rather long lived

and could traverse a considerable distance before decaying, so there would be a

charged particle track with a kink in the detector. If the decay W̃ −
1 → π− Z̃1 is al-

lowed, the chargino decay length would be only a few centimeters, and the chargino

track would then be more difficult to identify. For yet larger mass gaps, multi-pion

decays would become possible and the lifetime would be even shorter.13

Exercise For the case where the magnitude of the gaugino masses is much larger
than |μ| or MW , show that the eigenvalues of the neutralino mass matrix shift by:

μ → μ + 1

2
M2

W (1 − sin 2β)

[
1

M2

+ tan2 θW

M1

]

, (13.19a)

−μ → −μ + 1

2
M2

W (1 + sin 2β)

[
1

M2

+ tan2 θW

M1

]

, (13.19b)

while the chargino mass (for μ > 0) is given by,

mW̃1
= μ + M2

W

M2

sin 2β. (13.19c)

Hint: To find the shift of the neutralino eigenvalues, write the neutralino mass
matrix in the basis where the higgsino sub-matrix is diagonal, and then treat the
off-diagonal entries of the neutralino mass matrix in the new basis using standard
second order perturbation theory. The chargino mass may be obtained using (8.54).

13.5 Neutralino decays

Like charginos, neutralinos dominantly decay via the following two-body modes

if these are kinematically accessible:

Z̃i → W W̃ j , H+W̃ j , Z Z̃i ′, h Z̃i ′, H Z̃i ′, AZ̃i ′ (13.20a)

→ q̃L,Rq̄, q̃L,Rq, 
̃L,R
̄, 
̃L,R
, ν̃
ν̄
, ¯̃ν
ν
. (13.20b)

Here, i, i ′ = 1–4 with i > i ′, and q and 
 denote all possible quark and lepton

flavors. The partial widths for these decays are listed in Appendix B.4.1.

13 Formulae for W̃1 decay for a tiny mW̃1
− m Z̃1

mass difference can be found in C. H. Chen, M. Drees and J. F.

Gunion, Phys. Rev. D55, 330 (1997), (erratum-ibid. 60, 039901,1999).
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Figure 13.16 Feynman diagrams contributing to the decay Z̃2 → eē Z̃1.

If all these two-body modes are suppressed or kinematically forbidden, then the

neutralino usually decays via

Z̃i → Z̃i ′ + f f̄ (13.21a)

where f is a SM quark or lepton. The leading Feynman diagrams contributing

to Z̃2 → eē Z̃1 decay at leading order are shown in Fig. 13.16, where ẽ1 and ẽ2

are selectron mass eigenstates (that essentially coincide with ẽR and ẽL). Decays to

other fermion flavors in (13.21a) as well as of other neutralinos occur via analogous

diagrams. For decays to the first two generations, the three diagrams involving the

Higgs bosons make a negligible contribution. The partial width for this decay is

given in B.4.2. In addition, the three-body mode

Z̃i → W̃ j + f f̄ ′, (13.21b)

which occurs via diagrams analogous to those in Fig. 13.13 may also be relevant.

Its partial width is given by Eq. (B.106) of Appendix B.

Neutralinos can also decay via

Z̃i → γ Z̃i ′ (13.22)

at the one-loop level via diagrams involving charged sfermions/fermions and

charginos/W or charged Higgs bosons in the loop. The branching fraction for this

decay is usually small. However, it can be important if the widths of three-body

modes are somehow suppressed. This suppression may occur either if one of the

neutralinos is photino-like and the other higgsino-like since the photino (higgsino)

does not couple to the Z boson (sfermion), or if both neutralinos are very close

in mass because the strong three-body phase space suppression favors two-body

decays. We do not list the partial width for this decay but will refer the interested

reader to the original literature for this computation.14

14 H. E. Haber and D. Wyler, Nucl. Phys. B323, 267 (1989); see also H. Baer and T. Krupovnickas, JHEP 0209,
038 (2002).
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Figure 13.17 Branching fractions of the Z̃2 versus m Z̃2
in the mSUGRA model.

The branching ratios are almost generation independent for this low value of tan β.
The hadronic decays are summed over all quark flavors. Invisible decays make up
the remainder of the branching fraction at low values of m Z̃1

.

Since Z̃2 is likely to be the most accessible visibly decaying neutralino, we

show the branching fractions for its various decays in Fig. 13.17, assuming the

mSUGRA model framework, and for the same model parameters as in Fig. 13.14.

For low values of m Z̃2
, the two-body decay modes are all inaccessible, and Z̃2

mainly decays via three-body modes. If we compare these branching fractions to

those for chargino decay in Fig. 13.14, we are immediately struck by the fact that

while the branching fractions for chargino three-body decays were close to those for

the W boson, the branching fractions for the neutralino decay Z̃2 → Z̃1 f f̄ differ

considerably from those of Z → f f̄ : i.e. even for sfermions considerably heavier

than MZ , the Z exchange graph does not dominate. This is because the couplings of

Z to neutralinos are very sensitive to model parameters and, as we have discussed

below (8.101), can be considerably suppressed. When this occurs, slepton exchange

amplitudes remain important even for slepton masses of several hundred GeV. Over

considerable regions of the MSSM parameter space, the leptonic three-body decays

of Z̃2 can be either enhanced or suppressed due to interference between scalar and Z
boson exchange graphs, and neutralino branching fractions are quite different from

those of the Z boson.15 Neutralino decay patterns (and resulting signatures) are,

therefore, much more sensitive to model parameters than those for chargino decays.

15 For more details, see H. Baer and X. Tata, Phys. Rev. D47, 2739 (1993).
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Figure 13.18 Branching fractions of the Z̃2 versus tan β in the mSUGRA model.
Here q = u, d, s, c.

In Fig. 13.17, as m Z̃2
increases, ultimately the two-body mode Z̃2 → Z Z̃1 becomes

accessible, and dominant. At even higher values of m Z̃2
, the decay mode Z̃2 → h Z̃1

becomes accessible, and in this case quickly dominates. In SUSY particle cascade

decays, we may expect an assortment of Higgs and vector bosons to be present.

In Fig. 13.18, we again show Z̃2 decay branching fractions in the mSUGRA

model, but this time versus tan β and for the same parameters as in Fig. 13.15. At

very low tan β, Z̃2 decays via three-body modes with a large branching fraction

into charged leptons. Decays into first, second, and third generation charged leptons

occur at nearly the same rate. As tan β increases, the leptonic branching fraction

drops and decays to quarks become increasingly dominant. The branching fraction

into tau pairs begins diverging from that to electron (and muon) pairs around tan β ∼
5. The decays to bottom quarks become more important relative to other hadronic

decays but, in this example, decay to τ τ̄ Z̃1 becomes dominant for tan β ∼ 30, due

to the enhanced tau lepton Yukawa coupling, and the gradual suppression of m τ̃1
.

Finally, around tan β >∼ 42, two-body decays to τ̃1τ̄ and ¯̃τ1τ turn on, and quickly

dominate the branching fraction.

13.6 Decays of the Higgs bosons

Both the neutral and charged physical spin zero particles associated with the elec-

troweak symmetry breaking sector dominantly decay via two-body modes into SM

particles or, if they are heavy enough, also into lighter SUSY particles. The partial

widths for the dominant tree level decays of Higgs bosons are listed in Appendix C.
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13.6.1 Light scalar h

At tree level, the light scalar Higgs boson h can decay via the two-body modes,

h → uū, dd̄, ss̄, cc̄, bb̄, eē, μμ̄, τ τ̄ , (13.23a)

h → Z̃i Z̃i ′, W̃ +
j W̃ −

j ′ , f̃ ¯̃f , (13.23b)

h → AA (13.23c)

where i, i ′ = 1–4 and j, j ′ = 1, 2. Since mh is expected to be smaller than about

135 GeV within the MSSM framework with perturbative gauge couplings up to the

GUT scale, its decays to t t̄ , W +W −, and Z Z are kinematically forbidden. Its decays

to SUSY particles, possibly other than Z̃1 Z̃1, are also expected to be suppressed.

Over much of the parameter space, h → bb̄ decays dominate. For small to moderate

values of tan β, the bottom Yukawa coupling is small, and the h is narrow. In this

case, especially the first of the three-body modes

h → W f f̄ ′/Z f f̄ (13.24)

may also be significant, particularly at the upper end of the mh range. Since the

h couples to mass, it dominantly decays to bb̄ with a branching fraction of about

85%, and to τ τ̄ pairs. The ratio of their branching ratios is fixed at tree level, but

may be significantly affected by SUSY radiative corrections to the relation between

the fermion mass and the corresponding Yukawa coupling. If neutralinos are light

enough, h may also decay invisibly to Z̃1 Z̃1. This decay, which occurs via gauge in-

teractions, can potentially have a large branching fraction, although this is unlikely

within constrained frameworks such as mSUGRA because of experimental limits

on m Z̃1
.

Finally, h can also decay via

h → gg, γ γ, Zγ, (13.25)

through loops of gauge/Higgs sector fields and SM fermions, as well as their SUSY

counterparts. Although the branching fractions for these decays are always sup-

pressed by coupling and loop factors, the h → γ γ decay is an important search

mode for LHC experiments which have excellent electromagnetic resolution. The

h → γ γ branching fraction, which is O(10−3) for a SM-like h in the 100–120 GeV

range, is enhanced for some ranges of SUSY parameters.16

16 The h, H, and A can all decay via loop diagrams to γ γ as well as to gg pairs. Formulae for these partial widths
may be found in J. F. Gunion, H. E. Haber, G. Kane and S. Dawson, The Higgs Hunter’s Guide, Addison-Wesley
(1990); M. Bisset, U. of Hawaii thesis, UH-511-813-94 (1994).
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13.6.2 Heavy scalar H

The heavy scalar Higgs boson H decays via the two-body modes

H → uū, dd̄, ss̄, cc̄, bb̄, t t̄, eē, μμ̄, τ τ̄ , (13.26a)

→ W W, Z Z (13.26b)

→ Z̃i Z̃i ′, W̃ +
j W̃ −

j ′ , f̃ ¯̃f , (13.26c)

→ hh, AA, H+ H−, AZ , (13.26d)

→ gg, γ γ, Zγ, (13.26e)

as well as to (usually strongly suppressed) three-body modes, as does the h. If

m A
>∼ 200 GeV, h is essentially a SM Higgs boson, and decays of H to vector

bosons are suppressed by a factor cos2(α + β) (see the exercise below). Hence, the

heavy scalar usually decays to t t̄ , bb̄, hh or SUSY particles. As tan β increases,

decays to bb̄ and τ τ̄ are enhanced relative to decays to t t̄ . SUSY decay modes of

interest include the invisible H → Z̃1 Z̃1 channel, H → W̃1W̃1, and H → Z̃2 Z̃2.

This last decay results in gold-plated four isolated lepton events with missing energy

if both neutralinos decay via Z̃2 → 

̄Z̃1.

Exercise Starting from Eq. (8.40b) verify that tan α → cot β as m A → ∞, so that
cos(α + β) → 0 in the same limit.

13.6.3 Pseudoscalar A

The pseudoscalar Higgs boson A can decay via

A → uū, dd̄, ss̄, cc̄, bb̄, t t̄, eē, μμ̄, τ τ̄ , (13.27a)

→ Z̃i Z̃i ′, W̃ +
j W̃ −

j ′ , f̃ ¯̃f , (13.27b)

→ h Z , (13.27c)

→ gg, γ γ. (13.27d)

Since A does not couple to vector boson pairs at tree level, its dominant decays are

to t t̄ or bb̄ and τ τ̄ , unless its decays to h Z or SUSY particles are accessible: if this

is the case, these latter decays usually dominate.

We remark that if C P is violated in the Higgs sector, A would mix with h and

H , and its decay patterns would be qualitatively altered.

https://doi.org/10.1017/9781009289801.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781009289801.014


13.7 Top quark decays to SUSY particles 367

13.6.4 Charged scalar H±

The charged Higgs H+ dominantly decays via

H+ → ud̄, cs̄, t b̄, νeē, νμμ̄, ντ τ̄ , (13.28a)

→ Z̃i W̃
+
j , f̃ ¯̃f ′, (13.28b)

→ hW. (13.28c)

Notice that, within the MSSM, the decay H+ → W +Z0 is absent at tree level.

Thus, it dominantly decays to t b̄, unless decays to hW or SUSY particles are open.

If H+ → t b̄ decay is also kinematically forbidden, H+ preferentially decays via

H+ → τ+ντ . In this case, the daughter tau dominantly has the opposite helicity

from taus produced in W boson decays.

13.7 Top quark decays to SUSY particles

The top quark may be heavy enough for it to be able to decay to SUSY particles.

However, branching fractions for its SUSY decays cannot be too large, as this would

lead to inconsistencies between experimental measurements that agree well with

SM predictions of top quark production and decay properties. In addition to its SM

decay mode,

t → bW +, (13.29a)

the decays

t → bH+, (13.29b)

→ t̃1,2 Z̃i , b̃1,2W̃ j (13.29c)

are also possible within the MSSM framework. The decay mode t → bH+ would

then usually be followed by H+ → ντ τ̄ , so an enhanced production of τ leptons

would occur in top quark production events. If t → t̃1 Z̃1, followed by t̃1 → bW̃1 →
b f f̄ ′ Z̃1, then the visible top quark decay products might be the same as in the SM,

but with reduced energies, since some energy is taken by the mass of Z̃1. Such a

decay chain may be almost excluded if we assume gaugino mass unification, but may

be allowed if |M1| � |M2|. Alternatively, if t → t̃1 Z̃1 is followed by t̃1 → cZ̃1, then

a top quark decay would lead to a charm jet with an energy sensitively dependent

upon m Z̃1
and mt̃1 .

https://doi.org/10.1017/9781009289801.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781009289801.014


368 Sparticle decays

13.8 Decays to the gravitino/goldstino

If the gravitino is the LSP, sparticles can decay to it. If these decays proceed only via

the usual gravitational coupling (as do the decays to gravitinos with helicities ± 3
2
),

they would be completely irrelevant for the purposes of collider physics. In our

discussion of the GMSB model we saw, however, that the amplitudes for decays to

the longitudinal components of the gravitino with helicities ± 1
2

are enhanced by a

factor E/m3/2 which is very large if the gravitino is superlight. In this case, sparticle

decays to the longitudinal components of the gravitino, which is essentially the

goldstino, may be relevant. The NLSP, of course, can only decay into the gravitino.

The considerations of this section most directly apply to the GMSB model with a

low SUSY breaking scale.

13.8.1 Interactions

The couplings of the gravitino to the fermion–sfermion and to the gauge boson–

gaugino system are given by the last term of (10.57a) and the second term of

(10.57b), respectively. With Gi
j = δi

j + · · · and f AB = δAB + · · · (the ellipsis de-

notes possible non-minimal terms in these), we find that these couplings can be

written as,

L � i√
2MP

ψ̄μ �DS i†γ μψiL + 1

8MP

λ̄Aγ ρσμνψρ FAμν + h.c., (13.30a)

where we have inserted the appropriate factors of MP.

In principle, these couplings allow us to evaluate rates for sparticle decays to

gravitinos. However, because of the unfamiliarity with manipulating the vector–

spinor wave functions of spin 3
2

particles, it is convenient to work only with the

familiar spin 1
2

goldstino that has been dynamically rearranged by the super-Higgs

mechanism, and now forms the helicity ± 1
2

components of the gravitino. Then, just

as W and Z interactions at high energies can be approximated by the interactions

of their longitudinal components (the Goldstone bosons), so too can gravitino in-

teractions be approximated by the interactions of the goldstino fields which they

have absorbed by the super-Higgs mechanism.17 But, we have already obtained the

coupling of the goldstino to the chiral supermultiplet. Comparing the first term of

(13.30a) with the goldstino coupling in (7.28), we see that the gravitino field can,

in the high energy limit, be well approximated by

ψμ →
√

2

3

1

m3/2

∂μG̃, (13.30b)

17 The goldstino–gravitino equivalence, which was formally established by R. Casalbuoni et al., Phys. Lett. B215,
313 (1988), ought to be an excellent approximation for decays of 100 GeV sparticles into eV, keV or even GeV
scale gravitinos.
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where we have used (10.67a) to eliminate the auxiliary field VEV in favor of the

gravitino mass, and denoted the goldstino field (previously denoted by ψg) by G̃.18

With this substitution, the interaction Lagrangian (13.30a) becomes

L �
√

2

3

1

MPm3/2

[
1

8
λ̄Aγ ρσμν

(
∂ρG̃

)
FAμν − i√

2
ψ̄iLγ μ �DS∂μG̃

]

+ h.c.

(13.30c)

The first term in (13.30c) clearly contains the coupling of the goldstino (or

equivalently, helicity ± 1
2

gravitinos in the high energy limit) to gauginos and gauge

bosons, while the second contains the corresponding couplings to the sfermion–

fermion or the Higgs boson–higgsino pairs. Note, however, that when the Higgs

fields are set equal to their VEV, even the second term contains (via the gauge

covariant derivative) couplings of the goldstino to the vector boson–higgsino pair.19

These couplings can be used to obtain the interactions that are dominantly re-

sponsible for the decays Z̃i → γ G̃ (from the first term alone) or Z̃i → ZG̃, as

well as the interactions that lead to the decay W̃i → W G̃. The second term yields

interactions that lead to the decay of a neutralino (chargino) into a neutral (charged)

Higgs boson and a gravitino, as well as to sfermion decays, f̃ 1,2 → f G̃. Usually

the branching fraction for these gravitino decay modes is significant only for the

decay of the NLSP, with the gravitino being the LSP, as is the case in GMSB models

with a low SUSY breaking scale.

To evaluate the couplings responsible for Z̃i → γ G̃, we write out the first term

in (13.30c) for the neutral U (1)Y and neutral SU (2)L gauge and gaugino fields:

L �
√

2

3

1

8MPm3/2

[
λ̄0γ

ρσμν∂ρG̃(∂μ Bν − ∂ν Bμ)

+ λ̄3γ
ρσμν∂ρG̃(∂μW3ν − ∂νW3μ)

] + h.c.,

and substitute Bμ = sin θW Zμ + cos θW Aμ, W3μ = sin θW Aμ − cos θW Zμ, λ0 =
∑

i v
(i)
4 (iγ5)θi Z̃1, and λ3 = ∑

i v
(i)
3 (iγ5)θi Z̃i to obtain

LZ̃i γ G̃ =
√

2

3

1

4MPm3/2

(v
(i)
4 cos θW + v

(i)
3 sin θW)Z̃ i (iγ5)θi γ ρσμν∂ρG̃(

↔
∂ μ Aν).

(13.31a)

In arriving at this we have used the fact that the Majorana properties of the goldstino

and neutralinos imply that the Hermitian conjugate term is identical to the original

term, accounting for a factor 2. For the Z̃i Z G̃ interaction, both terms in Eq. (13.30c)

18 This was first pointed out by P. Fayet, Phys. Lett. B70, 461 (1977).
19 We will leave it to the reader to check that this contribution vanishes for the photon as it must since the VEVs

leave the electromagnetic gauge invariance unbroken.
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contribute, and the coupling is given by

LZ̃i Z G̃ =
√

2

3

1

4MPm3/2

[

(v
(i)
4 sin θW − v

(i)
3 cos θW)Z̃ i (iγ5)θi γ ρσμν∂ρG̃

↔
∂ μ Zν

+ 2MZ (i)θi (sin βv
(i)
1 − cos βv

(i)
2 )Z̃ i�γ μγ ν∂μG̃ Zν

]

, (13.31b)

where � = 1 (γ5) for θi = 0 (1).

The couplings of neutralinos to the goldstino and neutral Higgs bosons can be

worked out from the second term in (13.30c) by substituting the higgsinos and

the Higgs fields with definite hypercharges in terms of the corresponding mass

eigenstate fields. We then find the neutralino–Higgs boson–goldstino interactions:

LZ̃i φG̃ = κφ Z̃ i
1 + γ5

2
γ μγ ν∂μG̃∂νφ + h.c., (13.32a)

where φ = h, H, and A, and

κh = − (i)θi +1

√
6MPm3/2

[v
(i)
1 cos α + v

(i)
2 sin α], (13.32b)

κH = − (i)θi +1

√
6MPm3/2

[−v
(i)
1 sin α + v

(i)
2 cos α], and (13.32c)

κA = − (i)θi +2

√
6MPm3/2

[v
(i)
1 cos β + v

(i)
2 sin β]. (13.32d)

Exercise Using the Majorana properties of the neutralino and goldstino fields,
verify that these couplings can be rewritten as,

LZ̃i φG̃ = Z̃ i

[
κφ + κ∗

φ

2
+ κφ − κ∗

φ

2
γ5

]

∂μG̃∂νφ. (13.33)

Notice that because κφ is either real or imaginary, the interaction is either scalar or
pseudoscalar. This form of the coupling is, therefore, more convenient for evaluating
the partial widths for the decays Z̃i → φG̃.

Finally, the last term in (13.30c) also gives the couplings of the goldstino to

fermion–sfermion pairs. These can be written as

L f f̃ G̃ = − i√
3

1

MPm3/2

[

ψ̄ f
1 + γ5

2
γ μγ ν∂ν f̃ L + ψ̄Fc

1 + γ5

2
γ μγ ν∂ν f̃ †R

]

∂μG̃

+ h.c.,

where ψ f (ψFc ) are, as usual, Majorana spinors whose left-handed components

annihilate the left-handed SU (2)L doublet fermion, (left-handed SU (2)L singlet
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antifermion) and the SM Dirac fermion is given by

f = 1 − γ5

2
ψ f + 1 + γ5

2
ψFc .

Writing this Lagrangian with the Hermitian conjugate of the second term, and once

again using the Majorana nature of the spinors we find that,

L f f̃ G̃ = − i√
3

1

MPm3/2

[

f̄
1 + γ5

2
γ μγ ν∂ν f̃ L − f̄

1 − γ5

2
γ μγ ν∂ν f̃ R

]

∂μG̃

+ h.c. (13.34a)

Using this, we can readily obtain the goldstino interactions with the sfermion mass

eigenstates,

L f f̃ i G̃ = − i√
3MPm3/2

[
f̄ (cos θ f PR + sin θ f PL)γ μγ ν∂μG̃∂ν f̃ 1

+ f̄ (sin θ f PR − cos θ f PL)γ μγ ν∂μG̃∂ν f̃ 2

] + h.c. (13.34b)

The goldstino–tau–stau coupling leads to the dominant decay of the lighter stau in

mGMSB models with the gravitino as the LSP and τ̃1 as the NLSP.

13.8.2 NLSP decay to a gravitino within the mGMSB model

Within the mGMSB framework, as we saw in Fig. 11.5 for the number of messenger

generations n5 = 1 and tan β not too large, the lightest neutralino tends to be the

NLSP. Since gaugino masses scale with n5 while scalar masses scale with
√

n5, the

lighter stau becomes the NLSP for larger values of n5. If tan β is small to moderate,

the tau Yukawa coupling is small and ẽR and μ̃R are roughly degenerate with τ̃1,

and we have the so-called co-NLSP scenario (region 3 of this figure).

The NLSP dominantly decays into a gravitino and a SM particle. It is straightfor-

ward to work out the partial widths for these two-body decays using the interactions

presented in the last section. For a neutralino NLSP lighter than h or the Z boson,

Z̃1 → γ G̃ is the only allowed two-body decay.

Exercise Starting with the interaction in (13.31a), show that the width for the
decay Z̃i → γ G̃ is given by,

�(Z̃i → γ G̃) =
(v

(i)
4 cos θW + v

(i)
3 sin θW)2m5

Z̃i

48πm2
3/2 M2

P

. (13.35)

Here, we have neglected the gravitino mass (except in the goldstino coupling, of
course).
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You may find it helpful to use the identity,

γ ρσμν = 2i(gρμγ ν − gρνγ μ) + σμνγ ρ

and use G̃μγ μu(G̃) = 0 for the massless on-shell goldstino.

If m Z̃1
is large enough, its decays to Z as well as Higgs bosons may also be

accessible. The partial widths for these two-body decays of the neutralino are

listed in (B.67)–(B.69a) of Appendix B. Since this NLSP is mainly bino-like

within the mGMSB model, it has large couplings to the hypercharge gauge bo-

son, and as a result the decay Z̃1 → γ G̃ dominates the decay Z̃1 → ZG̃ for both

dynamical as well as kinematic reasons. Decays to Higgs bosons are strongly sup-

pressed. In non-minimal scenarios, the decays Z̃1 → hG̃ or Z̃1 → ZG̃ may be

dominant.20

The Z̃1 → γ G̃ decay rate depends on m3/2, which is independent of other spar-

ticle masses. Recall that in the mGMSB framework, the gravitino mass, and hence

the NLSP decay rate, is controlled by the parameter Cgrav. If m3/2 is large enough,

then the Z̃1 can be very long-lived. The mean decay length for a Z̃1 with fractional

velocity βZ̃1
is given by

d(cm) = βZ̃1
γZ̃1

cτZ̃1

= 10−2

(v
(i)
4 cos θW + v

(i)
3 sin θW)2

(E2/m2
Z̃1

− 1)1/2

(
100 GeV

m Z̃1

)5( √〈F〉
100 TeV

)4

.

(13.36)

Remember that 〈F〉 is the true SUSY breaking scale (not the corresponding scale

〈FS〉 in the messenger sector). For m Z̃1
∼ 100 GeV, the decay length mainly varies

with the SUSY breaking scale 〈F〉 and can range from microns to kilometers and

beyond, depending on 〈F〉. In a collider detector, the NLSP may have a decay vertex

displaced from the interaction region, or may even decay outside of the detector.

Thus, one of the signatures considered for GMSB models is the presence of hard

isolated photons plus missing energy in collider events, where the photon induced

EM shower may not point back to the interaction vertex. Indeed, a determination

of the lifetime of the NLSP from its decay length distribution would yield the

fundamental underlying SUSY scale. For this purpose, the higher order Z̃1 →
e+e−G̃ decay may be more suitable for experimental reasons.

Finally, if the stau is the NLSP in the GMSB model, it would decay via,

τ̃1 → τ G̃ (13.37)

20 See, e.g., K. Matchev and S. Thomas, Phys. Rev. D62, 077702 (2000).
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with a rate given by (B.60). If other flavors of sleptons are also only marginally

lighter than the stau NLSP (region 3 of Fig. 11.5 where m 
̃1
− m τ̃1

< mτ ), the decays

(13.16a) are kinematically forbidden, and 
̃1 → 
G̃ or via (13.16b), depending

on the value of Cgrav. The rates for stau decays to gravitinos are comparable to

the corresponding decay rate of a neutralino NLSP of the same mass. Hence, the

charged NLSP might again be sufficiently long-lived, and (depending on its β) a

highly ionizing track, terminating in a kink or a jet, may provide a characteristic

signature.
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