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Abstract

For closed subgroups L and R of a compact Lie group G, a left L-space X, and an L-equivariant
continuous map A : X → G/R, we introduce the twisted action of the equivariant cohomology H•R(pt, k)
on the equivariant cohomology H•L(X, k). Considering this action as a right action, H•L(X, k) becomes a
bimodule together with the canonical left action of H•L(pt, k). Using this bimodule structure, we prove
an equivariant version of the Künneth isomorphism. We apply this result to the computation of the
equivariant cohomologies of Bott–Samelson varieties and to a geometric construction of the bimodule
morphisms between them.
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1. Introduction

Let L be a topological group acting continuously on a topological space X. For any
commutative ring k, the L-equivariant (sheaf) cohomology H•L(X, k) is naturally a left
H•L(pt, k)-module, where pt is the singleton trivially acted upon by L. This module
structure can explicitly be described as follows:

cm = a�X(c) ∪ m,

where c ∈ H•L(pt, k), m ∈ H•L(X, k), aX : X → pt is the constant map, a�X is the equivari-
ant pull-back, and ∪ denotes the cup product.

The main idea of this paper is to define the structure of a right H•R(pt, k)-module
on H•L(X, k) possibly for R � L. Of course, if L = R and we do not have any additional
information about X, then we can do it, simply setting md = m ∪ a�X(d). This con-
struction is however very restrictive. Therefore, we define the right H•R(pt, k)-module
structure on H•L(X, k) with the help of an L-equivariant map A : X → G/R, which we
call the twisting map (Section 3.1). In this definition, refer to (3-2), the groups L and R

© The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical
Publishing Association Inc.

1

https://doi.org/10.1017/S1446788724000065 Published online by Cambridge University Press

http://dx.doi.org/10.1017/S1446788724000065
https://orcid.org/0000-0001-9590-3330
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1446788724000065&domain=pdf
https://doi.org/10.1017/S1446788724000065


2 V. Shchigolev [2]

are contained in a larger group G, which we assume to be a compact Lie group for the
most part of the paper.

The main result of the paper is the proof of the following equivariant form of the
Künneth isomorphism. Let X and Y be topological spaces, and L, R, P, Q be closed
subgroups of a compact Lie group G such that R ⊂ P and Q ⊂ P, the groups L and R
act commutatively and continuously on X on the left and on the right, respectively, and
Q acts continuously on Y on the left. Then we consider the space

X ×
R

P×
Q

Y = X × P × Y/ ∼,

where ∼ is the equivalence relation defined by (x, p, y) ∼ (xr, r−1 pq, q−1y) for any
r ∈ R and q ∈ Q. Let also α : X → G be a continuous L- and R-equivariant map. It
induces the morphism of left L-spaces A : X/R→ G/R by A(xR) = α(x)R. Considering
A as a twisting map, we get the structure of a right H•R(pt, k)-module on H•L(X/R, pt)
and thus the structure of a right H•P(pt, k)-module through the natural morphism
H•P(pt, k)→ H•R(pt, k). Similarly, the natural morphism H•P(pt, k)→ H•Q(pt, k) defines
the structure of a left H•P(pt, k)-module on H•Q(Y , k) by modifying the canonical left
module structure. Then there exists a homomorphism of rings and bimodules

H•L(X/R, k) ⊗H•P(pt,k) H•Q(Y , k) H•L
(
X ×

R
P×

Q
Y , k

)
.θ

It is an isomorphism under certain restrictions (I)–(VIII) close to equivariant formality.
The theory we develop is illustrated by two basic examples: computation of

the equivariant cohomology of the flag variety (Section 4.6) and the realization of
the cohomology of the point with a twisted right action as a standard bimodule
(Section 4.7).

Our main example however concerns Bott–Samelson varieties BS(t) in Section 5
for a sequence of reflections t. Here we use the original definition of these varieties by
Bott and Samelson [BS]. Note that BS(t) is a left K-space for the maximal compact
torus K. Thus, we can consider the K-equivariant cohomology H•K(BS(t), k) for any
commutative ring k. In Theorem 5.3, we establish the isomorphism of rings and
R-R-bimodules

θt : R ⊗Rt1 R ⊗Rt2 ⊗ · · · ⊗Rtn R
∼→ H•K(BS(t), k),

where t = (t1, . . . , tn) and Rti denotes the subring of ti-invariants of the K-equivariant
cohomology of the point R. We call the tensor product in the left-hand side the
Bott–Samelson bimodule. Compared with other constructions of similar isomorphisms
(for example, [WW, Theorem 1.6]), our construction has the following advantages:

• the reflections ti are not necessarily simple;
• the proof is localization free;
• θt is constructed explicitly as a quotient of the composition of a pull-back and a

(nonequivariant) Künneth isomorphism;
• the ring of coefficients k can be any commutative ring of finite global dimension.
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[3] Twisted actions on cohomologies and bimodules 3

The isomorphisms θt satisfy the quite expected concatenation property (Theorem
5.4) and their restrictions to the K-fixed points are computed (Theorem 5.7).

The explicit construction of the isomorphisms θt pays off in Section 6, where
we consider the morphisms of R-R-bimodules H•K(BS(t), k)→ H•K(BS(r), k). The
morphisms we consider are built up from the elementary morphisms, which fall into
two types: one-color morphisms and two-color morphisms. The former morphisms
(Sections 6.2–6.3) exist for arbitrary reflections. However, we require the reflections
to be simple for the latter morphisms (Sections 6.4–6.9), as the generalization to
arbitrary reflections would require varieties more general than those considered in this
paper.

Composing elementary morphisms horizontally as well as vertically, we get more
general morphisms that are convenient to represent by planar diagrams [EW]. We
assume here that such diagrams do not have horizontal tangent lines and that no two
vertices have the same y-coordinate (Soergel graphs in the terminology of [EW]). We
can cut any such diagram by horizontal lines into strips containing only one vertex. A
typical picture looks like this:

We find a geometric description for any such horizontal strip as a pull-back or a
push-forward or the composition of both. The first two cases are considered and
computed in coordinates in Sections 6.2 and 6.3, and the compositions are considered
in Section 6.5 and are extended horizontally in Section 6.9. One can see that the
compositions are necessary only for strips containing two-color vertices. Such strips
can be further cut to the upper and the lower parts, which are given by pull-backs and
push-forwards, respectively. For example, the diagram above receives an additional
cut. The corresponding strip turns into the following diagram:

This picture shows that we need to consider varieties more general than Bott–Samelson
varieties (Section 6.4). We also prove that the normalization criterion for two-color
morphisms holds (Lemma 6.4), which allows us to identify them with the morphism
fs,r defined by Libedinsky in [Li, Lemme 4.7]. Note that Libedinsky proved in the same
paper that in the case of simple reflections, all morphisms between Bott–Samelson
modules are generated (as linear combinations) by morphisms corresponding to planar
diagrams.
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If we compose two-color diagrams differently as in Section 6.7, we obtain the
Jones–Wenzl projectors, which we also represent by two-color vertices of the same
valency as the vertices representing the morphisms fs,r. Some relations can be
proved using the direct construction of the morphisms. The examples are given in
Sections 6.3, 6.7, and 6.8. Note we prove these relations on the level of topology
of the underlying varieties unlike [E, EKh], which argue on the level of polynomial
algebras. We conjecture that all other relations defining the diagrammatic category
[EW, (5.1)–(5.11)] as well as their versions for nonsimple reflections can also be proved
similarly. In the case of sequences of simple reflections, these relations were proved in
[RW] for morphisms between (shifted) Bott–Samelson parity complexes [RW, Ch. 10].

It also would be interesting to find a geometric description for morphisms repre-
sented by strips containing more than one vertex, at least in the case when all vertices
of this strip are represented either by pull-backs or push-forwards.

2. Notation and basic constructions

2.1. Set theory. To avoid confusion with quotients, we denote the difference of
sets by −. For a sequence of indices 1 � i1 < i2 < · · · < ik � n and sets X1, . . . , Xn, we
denote by pri1,i2,...,ik the projection X1 × · · · × Xn → Xi1 × · · · × Xik to the corresponding
coordinates.

Let X, Y, and S be sets, and f : X → S and g : Y → S be maps. The fiber product of
X and Y with respect to f and g is the set

X × f=g Y = {(x, y) ∈ X × Y | f (x) = g(y)}.

We often use the singleton pt whose unique element is denoted by pt.

2.2. Sequences. We denote sequences by s, t, r, and so forth. The length n of a finite
sequence s is denoted by |s| and its i th element is denoted by si. Thus, s = (s1, . . . , sn).
The case |s| = 0 corresponds to the empty sequence ∅. If however |s| > 0, then we
get the truncated sequence s′ = (s1, . . . , sn−1). If t = (t1, . . . , tm) is another sequence,
we consider their concatenation st = (s1, . . . , sn, t1, . . . , tm). Obviously, |st| = |s| + |t|. In
Section 5.3, we use a similar notation for collection of integers c thought of as upper
triangular matrices.

2.3. Modules. Let M and M′ be right modules over rings R and R′, respectively.
Suppose that there is an isomorphism of rings ι : R

∼→ R′. Then a map μ : M → M′ is
called an isomorphism of modules if it is an isomorphism of the underlying abelian
groups and

μ(mr) = μ(m)ι(r) (2-1)

for any m ∈ M and r ∈ R. We assume similar definitions for left modules and
bimodules.
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[5] Twisted actions on cohomologies and bimodules 5

The tensor product of a right R-module M by a left R-module N is denoted as
usual by M ⊗R N. If R is commutative, we can also consider the n th tensor power
N ⊗R · · · ⊗R N with n factors, which we denote by N⊗Rn.

As the rings and (bi)modules in this paper are represented by cohomologies, they
are naturally graded. The component of degree i of M is denoted by Mi. In Section 6,
we also consider the shift of grading: if M is a graded (bi)module and n is an integer,
then we denote by M(n) the graded (bi)module such that M(n)i = Mn+i.

2.4. Group actions and quotients. Let a group G act on a set X on the left. We
denote this fact by G� X. Then we denote by G \X the set of left G-orbits and by GX
the set of G-fixed points of X, that is, of points x ∈ X such that gx = x for any g ∈ G.
We have the quotient map X → G \X that sends x to Gx. We use the notation X/G
and XG for right group actions. For example, let P1(C) = (C2 − {(0, 0)})/C×, where C×

acts as follows: (z, w)c = (zc, wc). This space is called the complex projective line. We
denote the orbit in P1(C) containing the pair (z, w) by [z, w].

If groups L and R act on a set X on the left and on the right, respectively, then we
say that the actions of L and R commute if l(xr) = (lx)r for any l ∈ L, r ∈ R, and x ∈ X.
In this case, L acts on X/R on the left and R acts on L \X on the right by l(xR) = (lx)R
and (Lx)r = L(xr), respectively.

Suppose that G acts on the left on both X and E. Then G acts on the left on the
product X × E diagonally: g(x, e) = (gx, ge). We set

X G× E = G \(X × E).

We call the map X G× E → G \E that maps any orbit G(x, e) to Ge the canonical
projection. We denote canonical projections by can. If X′ and E′ are other sets
endowed with left G-actions, and α : X → X′ and β : E → E′ are G-equivariant maps,
then we denote by α G× β the map from X G× E to X′ G× E′ given by G(x, e) 
→
G(α(x), β(e)).

2.5. Quotient products. Let X1, . . . , Xn be topological spaces and G1, . . . , Gn−1
be topological groups such that each Gi acts on the right on Xi and on the left
on Xi+1. Suppose additionally that the actions of Gi−1 and Gi on Xi commute for
each i = 2, . . . , n − 1. Then we consider the following equivalence relation ∼ on
X1 × · · · × Xn:

(x1, . . . , xn) ∼ (x1g1, g−1
1 x2g2, . . . , g−1

n−1xn)

for any g1 ∈ G1, . . ., gn−1 ∈ Gn−1. The quotient product is the following quotient space:

X1 ×
G1

X2 ×
G2
· · · ×

Gn−1
Xn = X1 × X2 × · · · × Xn/ ∼ .

If n = 0, this space is just the singleton and if n = 1, this space is X1. The equivalence
class containing (x1, x2, . . . , xn) is denoted by [x1 : x2 : · · · : xn]. This product is clearly
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associative, that is,

[x1 : · · · : xn] = [x1 : · · · : xm−1 : [xm : · · · : xk] : xk+1 : · · · : xn].

Moreover,

X1 ×
G1
· · · ×

Gn−1
Xn � X1 ×

G1
· · · ×

Gi−1
Xi ×

Gi
Gi ×

Gi
Xi+1 ×

Gi+1
· · · ×

Gn−1
Xn, (2-2)

where we assume that [x1 : · · · : xn] = [x1 : · · · : xi : 1 : xi+1 : · · · : xn].
If a group G0 acts on the left on X1 so that this action commutes with the right

action of G1 for n > 1, then G0 also acts on the left on the above quotient product by
g0[x1 : x2 : · · · : xn] = [g0x1 : x2 : · · · : xn]. A similar fact is true if Gn acts on Xn on
the right commuting with Gn−1. In that case, we also consider the following quotient
space:

X1 ×
G1

X2 ×
G2
· · · ×

Gn−1
Xn/Gn = X1 × X2 × · · · × Xn/ ≈,

where the equivalence relation ≈ is given by (x1, . . . , xn)≈ (x1g1, g−1
1 x2g2, . . . , g−1

n−1xngn)
for any g1 ∈ G1, . . . , gn−1 ∈ Gn−1, gn ∈ Gn. The equivalence class containing
(x1, x2, . . . , xn) is denoted by [x1 : x2 : · · · : xn�. In view of the isomorphism

X1 ×
G1

X2 ×
G2
· · · ×

Gn−1
Xn/Gn � X1 ×

G1
X2 ×

G2
· · · ×

Gn−1
Xn ×

Gn
pt,

we assume [x1 : x2 : · · · : xn� = [x1 : x2 : · · · : xn : pt]. It follows from (2-2) that

X1 ×
G1
· · · ×

Gn−1
Xn/Gn � X1 ×

G1
· · · ×

Gi−1
Xi ×

Gi
Gi ×

Gi
Xi+1 ×

Gi+1
· · · ×

Gn−1
Xn/Gn,

where we assume that [x1 : · · · : xn� = [x1 : · · · : xi : 1 : xi+1 : · · · : xn�. We make this
identification, when appropriate.

2.6. Topology. We are going to use the following topological result.

PROPOSITION 2.1. Let X and Y be topological spaces and f : X → Y be a continuous
bijection. Suppose that there exists an open covering Y =

⋃
i∈I Ui and continuous

functions gi : Ui → X for each i ∈ I such that f gi(y) = y for any i ∈ I and y ∈ Ui. Then
f is a homeomorphism.

PROOF. As the restrictions of gi and gj to Ui ∩ Uj coincide, we can glue these maps
to the single continuous map g ([Du, Theorem III.9.4]). Then we get f g = id, whence
f −1 = g. �

In this paper, we use the following terminology: a topological space X is called sim-
ply connected if it is path-connected, locally path-connected, and for any continuous
function on the unit circle f : S1 → X, there exists a continuous function g : D1 → X
on the closed unit disk such that g|S1 = f . Note that this definition deviates from the
classical one in that we require local path-connectedness, which however is true for all
cases we encounter (for example, topological manifolds).

Let E and B be G-spaces, and p : E → B be a continuous G-equivariant map. We say
that p is a principal G-bundle if for each point b ∈ B, there exist an open neighborhood
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[7] Twisted actions on cohomologies and bimodules 7

U ⊂ B and a G-equivariant homeomorphism h : G × U
∼→ p−1(U) for the left G-action

or h : U × G
∼→ p−1(U) for the right G-action such that the respective diagram

G × U p−1(U)

U

h
∼

pr2 p

U × G p−1(U)

U

h
∼

pr1 p

is commutative. The G-equivariance of h means that for any u ∈ U and g1, g2 ∈ G,
there holds h(g1g2, u) = g1h(u, g2) for the left G-action and h(u, g1g2) = h(u, g1)g2 for
the right G-action.

PROPOSITION 2.2 [Hu, Ch. 4, Proposition 5.3]. Let X and E be left G-spaces.
Suppose that the quotient map E → G \E is a principal G-bundle. Then the canonical
projection X G× E → G \E is a fiber bundle with fiber X.

PROPOSITION 2.3. Let X and Y be right and left G-spaces, respectively. Let, moreover,
H act continuously on Y on the right so that this action and the left action of G
commute. Suppose that the quotient maps X → X/G and Y → Y/H are principal
G- and H-bundles, respectively. Then the quotient map f : X ×

G
Y → X ×

G
Y/H is a

principal H-bundle.

PROOF. We use the notation of Section 2.5. Thus, f ([x : y]) = [x : y�. We also denote
the quotient maps X → X/G and Y → Y/H by p and q, respectively.

Let [x0 : y0� be an arbitrary point of X ×
G

Y/H. By the hypothesis of the lemma,

there exist an open neighborhood U of x0G and a G-equivariant homeomorphism σ
such that the diagram

U × G p−1(U)

U
pr1

σ
∼

p

is commutative. Let g = pr2 σ
−1. This is a continuous map from p−1(U) to G such that

g(xg) = g(x)g for any x ∈ p−1(U) and g ∈ G.
There exists an open neighborhood V of g(x0)y0H and an H-equivariant homeomor-

phism τ such that the diagram

V × H q−1(V)

V
pr1

τ
∼

q

is commutative. Let h = pr2 τ
−1. This is a continuous map from q−1(V) to H such that

h(yh) = h(y)h for any y ∈ q−1(V) and h ∈ H.
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Let λ : X × Y/H → X/G be the map given by λ([x : y�) = xG and μ : λ−1(U)→ Y/H
be the map given by μ([x : y�) = g(x)yH. Obviously, both these maps are well defined
and continuous. We set W = μ−1(V). By our choice of U and V, we get [x0 : y0� ∈ W.
We define the function ξ : W × H → X ×

G
Y by ([x : y�, h) 
→ [x : yh(g(x)y)−1h]. One

can easily check that this map is well defined, continuous, and H-equivariant.
Composing it with f,

([x : y�, h) [x : yh(g(x)y)−1h] [x : yh(g(x)y)−1hH� = [x : y�.
ξ f

This calculation proves that ξ is actually a map to f −1(W) and that the following
diagram is commutative:

W × H f −1(W)

W

ξ

pr1 f

It remains to prove that ξ is a homeomorphism. This is true, as the inverse map is given
by ξ−1([x : y]) = ([x : y�, h(g(x)y)). �

2.7. Equivariant cohomology. Let G be a topological group. A principal G-bundle
E → B is called universal if the total space E is contractible. We define the
G-equivariant cohomology of a left G-space X with coefficients in a commutative
ring k by

H•G(X, k) = H•(X G× E, k).

Considering the canonical projection can : X G× E → G \E � pt G× E, we obtain
the map can∗ : H•G(pt, k)→ H•G(X, k). This map makes H•G(X, k) into a left
H•G(pt, k)-module by

am = can∗(a) ∪ m,

where a ∈ H•G(pt, k) and m ∈ H•G(X, k). This module does not depend on the choice of
the universal bundle E → B. This fact is discussed in Corollary 3.2. We call this left
action of H•G(pt, k) canonical.

The similar right action of H•G(pt, k) on H•G(X, k) given by ma = m ∪ can∗(a) is also
called canonical. We use it in Section 4.6.

If X′ is another left G-space and f : X → X′ is a continuous G-equivariant map,
then we have the continuous map f G× id : X G× E → X′ G× E. This map induces
the pull-back

( f G× id)∗ : H•G(X′, k)→ H•G(X, k)

between cohomologies. We use the notation f � = ( f G× id)∗ to distinguish between
the ordinary and the equivariant pull-backs. For example, a�X = can∗, where
aX : X → pt is the constant map.
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[9] Twisted actions on cohomologies and bimodules 9

2.8. Stiefel manifolds. Let G be a compact Lie group. As G can be considered a
closed subgroup of the unitary group U(nG) for nG big enough which will be thought
of as a function of G throughout the paper, we explain how to find a universal principal
U(nG)-bundle. For any natural number N > nG, we consider the Stiefel manifold (this
space is usually denoted by WN,nG or VnG (CN) or CVN,nG . We also transpose matrices,
as we want to have a left action of U(nG))

EN = {A ∈ MatnG,N(C) | AĀT = InG},

where MatnG,N(C) is the space of nG × N complex matrices with respect to the metric
topology and InG is the identity nG × nG matrix. The group U(nG) acts on EN on the left
by multiplication. Similarly, U(N) acts on EN on the right by multiplication. The last
action is transitive and commutes with the left action of U(nG). The quotient space
GrN = U(nG) \EN is called the Grassmanian and the corresponding quotient map
EN → GrN is a principal U(nG)-bundle. Note that the group U(N) also acts on GrN

by the right multiplication. For N < N′, we have the smooth embedding EN ↪→ EN′ by
adding N′ − N zero columns to the right.

Taking the direct limits

E = lim
−→

EN , Gr = lim
−→

GrN ,

we get a universal principal U(nG)-bundle E → Gr. These spaces satisfy the following
properties [Bo, Proposition 9.1].

PROPOSITION 2.4

(1) EN is simply connected.
(2) Hn(EN , k) = 0 for 0 < n � 2(N − nG).
(3) Hn(EN , k) is free of finite rank for any n.

COROLLARY 2.5. For any closed connected subgroup L of G, the space L \EN is
simply connected.

PROOF. As EN → L \EN is a fiber bundle with fiber L, the result follows from
Propositions 2.4, (1), and the long exact sequence of homotopy groups

{1} = π1(EN)→ π1(L \EN)→ π0(L) = {1}. �

PROPOSITION 2.6. Let L be a closed subgroup of G and X be a left L-space. Then the
restriction map

Hn
L(X, k)→ Hn(X L× EN , k)

is an isomorphism for n � 2(N − nG).

PROOF. Let us consider the triple product X × EN × E with respect to the diagonal
action of L, the natural embedding ι : X L× EN ↪→ X L× E, and the map Δ : X × EN →
X × EN × E given by (x, e) 
→ (x, e, e). Then we have the following commutative
diagram:

https://doi.org/10.1017/S1446788724000065 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788724000065


10 V. Shchigolev [10]

Hn(X L× EN , k)

Hn(X L× EN , k) Hn
L(X, k)

Hn(L \(X × EN × E), k)

id

(L \ pr1,2)∗
∼

(L \ pr1,3)∗
∼

ι∗

(L \Δ)∗

Here, the isomorphisms follow from Propositions 2.4, (2), and the Vietoris–Begle
theorem in the form [S2, Corollary 14], as the quotient maps

L \ pr1,2 : L \(X × EN × E)→ X L× EN , L \ pr1,3 : L \(X × EN × E)→ X L× E

are fiber bundles with fibers E and EN , respectively. From the left triangle, it follows
that (L \Δ)∗ is an isomorphism. Therefore, it follows from the right triangle that ι∗ is
also an isomorphism. �

COROLLARY 2.7. Let L be a closed subgroup of G, X be a left L-space, and
nG < N′ < N. Then the restriction map

Hn(X L× EN , k)→ Hn(X L× EN′ , k)

is an isomorphism for n � 2(N − nG).

REMARK 2.8. We always mean the choice of E as the direct limit of EN in the
remainder of the paper. If, however, we replace it by EN , then we write f N instead
of f, where f is either a map between spaces whose definitions depend on E or a subset
of such a space. We refer to f N as a compact version of f.

2.9. Ordinary push-forward. For any topological space X, we consider the dualiz-
ing complex ωX = a!

Xk [KS, Definition 3.1.16]. This complex allows us to define the
Borel–Moore homology HBM

i (X, k) = H−i(X,ωX), where H•(X, __ ) is the hypercoho-
mology functor [Di, Definition 2.1.4].

Any proper map f : X → Y induces the push-forward map f∗ : HBM
i (X, k)→

HBM
i (Y , k). Suppose additionally that X and Y are orientable topological manifolds

of dimensions n and m, respectively. This means that there exist isomorphisms
ωX � k[n] and ωY � k[m], which we fix. Then we get the following map between the
cohomologies:

Hn−i(X, k) � HBM
i (X, k) HBM

i (Y , k) � Hm−i(X, k),
f∗

which we also denote by f∗. This map is also called the Gysin map. It has the following
property [I, IX.7.3].
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PROPOSITION 2.9 (Projection formula). For any proper continuous map f : X → Y
between oriented topological manifolds, ξ ∈ H•(X, k) and η ∈ H•(Y , k), there holds

f∗(ξ ∪ f ∗η) = f∗(ξ) ∪ η.

2.10. Orientation of quotient spaces. Let U be an oriented subspace of an oriented
real vector space V. We fix the following orientation of the quotient space V/U.
Let v1, . . . , vn be an oriented basis of V such that v1, . . . , vm is an oriented basis of
U for some m � n. Then the orientation of V/U is defined by declaring the basis
vm+1 + U, . . . , vn + U to be oriented. We define the orientation of the quotient of
oriented vector bundles by defining the orientation of each fiber using the rule just
described.

2.11. Compatibly oriented squares. We follow here the presentation of this topic
by Fulton [F, Appendix A: Algebraic topology, Section 5]. For an embedding X ↪→ Y
of smooth manifolds, we denote by νX,Y the normal bundle of X in Y. If X and Y are
oriented, then νX,Y is orientated as described in Section 2.10.

Consider a Cartesian square

X′ X

Y ′ Y

g′

f ′ f

g

where X, X′, Y , Y ′ are compact smooth oriented manifolds and f , f ′, g, g′ are smooth
maps. By the Whitney embedding theorem (for example, [Lee, Theorem 6.15]), there
exists a closed embedding ι : X ↪→ RM , where M = 2 dim X + 1. Then we get the
closed embedding f × ι : X ↪→ Y × RM and also the closed embedding f ′ × ιg′ : X′ ↪→
Y ′ × RM .

We say that the above square is compatibly oriented if

νX′,Y ′×RM � (g′)∗νX,Y×RM (2-3)

as oriented vector bundles. If this isomorphism holds and dim X − dim Y = dim X′ −
dim Y ′, then

f ′∗ (g
′)∗ = g∗ f∗. (2-4)

We refer to this property as the naturality of the push-forward.

2.12. Smooth structures on Borel constructions. Let L be a closed connected
subgroup of a compact Lie group G. By the quotient manifold theorem [Lee, Theorem
21.10], the space L \EN is a smooth manifold. It is orientable being simply connected
by Corollary 2.5. Therefore, we consider only local coordinates on L \EN from a
chosen oriented atlas.

Let X be any smooth manifold acted upon smoothly by L on the left. Applying
the quotient manifold theorem once again, we get that the space X L× EN is a smooth
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manifold. Its smooth structure can be described as follows. Let L(x0, e0) be an arbitrary
point of X L× EN . There exists a coordinate chart U of L \EN containing Le0. Let
(u1, . . . , uk) be the coordinates on U.

Shrinking U if necessary, we may suppose that the restriction of the fiber bundle
p : EN → L \EN to U is a trivial bundle, that is, there exists an L-equivariant
diffeomorphism h such that the diagram

L × U p−1(U)

U

h
∼

pr2 p

is commutative. We set l = pr1 h−1. This map is smooth and has the usual (refer to the
proof of Proposition 2.3) property l(le) = ll(e) for any l ∈ L and e ∈ p−1(U).

The restriction of the fiber bundle can : X L× EN → L \EN to U is also trivial. This
trivialization is given by L(x, e) 
→ (l(e)−1x, Le). Then the coordinates in the vicinity of
L(x0, e0) are given by the local coordinates (x1, . . . , xn, u1, . . . , uk), where (x1, . . . , xn)
are the local coordinates on X in the vicinity of l(e0)−1x0. If (x̃1, . . . , x̃n, ũ1, . . . , ũk)
are different local coordinates in a vicinity of L(x0, e0) with a possibly different
trivialization function l̃, then the Jacobian matrix of the base change is equal to

∂(x̃1, . . . , x̃n, ũ1, . . . , ũk)
∂(x1, . . . , xn, u1, . . . , uk)

(L(x, e)) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∂( f̃ 1, . . . , f̃ n)
∂(x1, . . . , xn)

(l(e)−1x) 0

∗ ∂(ũ1, . . . , ũk)
∂(u1, . . . , uk)

(Le)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

where f is the map f (x) = l̃(e)−1l(e)x and f̃ i = x̃i f . Note that the multiplication
constant l̃(e)−1l(e) smoothly depends only on Le. The multiplication by this constant is
responsible to the ∗-part in the above matrix. This part is the zero matrix if we do not
change the local trivialization of EN → L \EN .

If X is oriented, then L acts on X by orientation-preserving diffeomorphisms.
Hence,

det
∂( f̃ 1, . . . , f̃ n)
∂(x1, . . . , xn)

(l(e)−1x) > 0

and the atlas described above on X L× EN is oriented.

2.13. Equivariant push-forward. Let X and Y be compact smooth oriented mani-
folds acted upon smoothly on the left by a closed connected subgroup L of a compact
Lie group G. Let f : Y → X be a smooth L-equivariant map. For any N > nG, we get
the smooth proper map f L× id : Y L× EN → X L× EN , which we denote by f N . As
both the domain and codomain of this map are smooth oriented manifolds, we can
consider the ordinary push-forward

f N
∗ : Hn(Y L× EN , k)→ Hn+d(X L× EN , k),
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where d = dim X − dim Y . So by Proposition 2.6, we actually get the map

f� : Hn
L(Y , k)→ Hn+d

L (X, k),

as soon as n � min{2(N − nG), 2(N − nG) − d}, defined by

f�(m) = (i∗X)−1 f N
∗ i∗Y (m) (2-5)

for m ∈ Hn
L(Y , k), where iX : X L× EN ↪→ X L× E and iY : Y L× EN ↪→ Y L× E are the

natural embeddings.
We claim that the definition of f� does not depend of N. Indeed, let N′ > N. In this

case, we have the map f ′� defined by a formula similar to (2-5). To prove that f ′� = f�,
we consider the diagram

Hn(Y L× EN′ , k) Hn+d(X L× EN′ , k)

Hn
L(Y , k) Hn

L(X, k)

Hn(Y L× EN , k) Hn+d(X L× EN , k)

f N′
∗


 


f ′�

f�

∼

∼

∼

∼

f N
∗

As both triangles and trapezoids are commutative, it suffices to prove that the perimeter
is also so. This fact follows from (2-4) as soon as we prove that the square

Y L× EN Y L× EN′

X L× EN X L× EN′

is compatibly oriented.
First note that the embedding EN ↪→ EN′ produces an embedding L \EN ↪→

L \EN′ . Therefore, we always choose the coordinates (u1, . . . , uk′) on an open sub-
space U′ ⊂ L \EN′ so that the intersection U′ ∩ EN is defined by the equalities
uk+1 = 0, . . . , uk′ = 0. Shrinking U′ if necessary, we assume that the fiber bundle
p′ : EN′ → L \EN′ is trivial and consider the trivialization function l′ : (p′)−1(U′)→ L
as in Section 2.12.

Let ι : Y L× EN′ ↪→ RM be an embedding. We denote by x1, . . . , xn, y1, . . . , ym, and
z1, . . . , zM local coordinates on X, Y, and RM , respectively.

We abbreviate

B
′ = (X L× EN′) × RM , B = (X L× EN) × RM .

According to the general plan described in Section 2.11, we need to consider the
embedding β′ = f N′ × ι : Y L× EN′ ↪→ B′, and its pullback β : Y L× EN ↪→ B being in
our case simply the restriction of β′, that is, β = f N × ι|YL×EN .
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Let a ∈ YL× EN be an arbitrary point. We set b = β(a) = β′(a). Choosing the
representation a = L(y, e) with l′(e) = 1, we compute the differential

Taβ
′ : Ta(YL× EN′) ↪→ TbB

′

in coordinates as follows:

Taβ
′
(
∂

∂yi

)
=

n∑
j=1

∂ f j

∂yi (y)
∂

∂xj +

M∑
q=1

∂ιq

∂yi (a)
∂

∂zq , Taβ
′
(
∂

∂ui

)
=
∂

∂ui +

M∑
q=1

∂ιq

∂ui (a)
∂

∂zq .

(2-6)

Therefore, we can choose v1, . . . , vr ∈ TbB
′ in the span of ∂/∂xj and ∂/∂zq so that the

sequence (
Taβ

′
(
∂

∂y1

)
, . . . , Taβ

′
(
∂

∂ym

)
, Taβ

′
(
∂

∂u1

)
, . . . , Taβ

′
(
∂

∂uk′

)
, v1, . . . , vr

)
(2-7)

is an oriented basis of TbB
′. Note that our choice guarantees that v1, . . . , vr ∈ TaB.

By the convention of Section 2.10, the sequence (v1 + im Taβ
′, . . . , vr + im Taβ

′) is an
oriented basis of the fiber (νYL×EN′ ,B′)b = TbB

′/ im Taβ
′. By (2-6), the transition matrix

from (2-7) to the oriented basis(
∂

∂x1 , . . . ,
∂

∂xn ,
∂

∂u1 , . . . ,
∂

∂uk′ ,
∂

∂z1 , . . . ,
∂

∂zM

)
of TbB

′ has the form ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
F 0 V
0 Ik′ 0
Z1 Z2 Z3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
for the matrices F, V, Z1, Z2, Z3 of sizes n × m, n × r, M × n, M × k′, M × r,
respectively. By construction, the determinant of the above matrix is positive. Note
that k′ − k = 2(N′ − N)nG is even. Therefore, if we cross out the rows and columns
corresponding to coordinates uk+1, . . . , uk′ , we get a matrix with positive determinant.
Repeating the above arguments for the space B (in reverse order), we get that
(v1 + im Taβ, . . . , vr + im Taβ) is an oriented basis of the fiber (νYL×EN ,B)b. This fact
proves (2-3).

2.14. Semisimple groups. Let G be a semisimple compact Lie group. Then G can
be described externally as the set of points fixed by some analytic automorphism of
the corresponding complex Chevalley group Gc [St, Remark following Theorem 16].

We consider a maximal torus K < G and the Weyl group W = NG(K)/K. For any
w ∈ W, we arbitrarily choose its lifting ẇ ∈ NG(K). We use the abbreviation wK = ẇK.

The group G has the Bruhat decomposition G =
⊔

w∈W Kw, where Kw = G ∩ (BwB)
and B is the Borel subgroup of Gc corresponding to a chosen Bruhat order � on
W [St, Corollary 5 of Lemma 45]. Taking the quotient, we get the decomposition
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G/K =
⊔

w∈W Kw/K into Schubert cells. We can compute their closures, called Schu-
bert varieties, as Kw/K =

⊔
w′�w Kw′ .

We have K � (S1)d for some d, where S1 is the unit circle. We get the map
ρw : E → E given by ρw(e) = ẇe. This map factors through the action of K as
ρw(ke) = k′ρw(e), where k′ = ẇkẇ−1 ∈ K, and we get the map K \ ρw : K \E → K \E
and hence its pull-back (K \ ρw)∗ : H•K(pt, k)→ H•K(pt, k). We think of this map as a
left action of W on H•K(pt, k):

w(μ) = (K \ ρw−1 )∗(μ). (2-8)

This formula agrees with the following standard representation of H•K(pt, k) as a
polynomial ring, refer to [Br, Section 1, Example 2] and [J, 1.7, 1.8]. Let us consider for
each character λ : K → S1 the representation Cλ being the field of complex numbers C
as the vector space and having the following left K-action: kc = λ(k)c. We denote the
line bundle can : (Cλ)K× E → K \E by L(λ). Its Euler class (that is, the first Chern
class) Eu(L(λ)) is identified with λ itself. Thus, choosing ε1, . . . , εd freely generating
the character group of K, we get that the cohomology ring H•K(pt, k) is a polynomial
ring over k in variables εi.

For any root α, we denote by Gα the subgroup of G generated by the image of the
root homomorphism ϕα : SU2 → G and the torus K [BS, Ch. III (3.1)]. An alternative
(external) description of this subgroup is given in [St, Lemma 45]. As Gα = G−α, we
can denote Gωα = Gα, where ωα ∈ W is the reflection through the plane perpendicular
to α. We call elements ωα reflections. In what follows, for any reflection t, we denote
by αt the positive root such that t = ωαt . We also reserve the letter s (with indices
or accents, primed or underlined) to denote simple reflections or sequences of simple
reflections. This notation is used only in Sections 6.4–6.9.

3. The tensor product morphism

3.1. Twisted action. Let G be a topological group, and L and R be subgroups.
We assume that L and R act on G on the left and on the right, respectively, by
multiplication. As both actions commute, the group L acts continuously on the quotient
space G/R on the left.

Let X be another left L-space and A : X → G/R be an L-equivariant continuous
map. We call A a twisting map. For any left G-space E, the map A allows us to define
the map

vA : X L× E → R \E

by

L(x, e) 
→ A(x)−1e. (3-1)

Note that A(x)−1 ∈ R \G. The reader can easily check that vA is well defined and
continuous. We call this map the projection twisted by A.

Let us suppose that the quotient maps E → L \E and E → R \E are universal
principal L- and R-bundles, respectively. Then we get the map between cohomologies
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v∗A : H•R(pt, k)→ H•L(X, k), which induces the following right H•R(pt, k)-action on
H•L(X, k):

mb = m ∪ v∗A(b). (3-2)

We call this action the action twisted by A.
A priori, this construction of a right module depends on the choice of E. However,

we get the following result.

LEMMA 3.1. Up to isomorphism, the right H•R(pt, k)-module H•L(X, k) is independent
of the choice of E.

PROOF. Let Ẽ be another left G-space such that Ẽ → L \ Ẽ and Ẽ → R \ Ẽ are universal
principal L- and R-bundles, respectively. We use the following notation only in this
proof:

H̃•L(X, k) = H•(XL× Ẽ, k), H̃•R(pt, k) = H•(R \ Ẽ, k).

We also have the map ṽA : XL× Ẽ → R \ Ẽ similar to vA also given by (3-1). This map
defines the structure of a right H̃•R(pt, k)-module on H̃•L(X, k) by

m̃b̃ = m̃ ∪ ṽ∗A(b̃). (3-3)

Let us make L and R act on the products X × E × Ẽ and E × Ẽ, respectively,
diagonally: l(x, e, ẽ) = (lx, le, lẽ) and r(e, ẽ) = (re, rẽ). Let qA be the map given by
L(x, e, ẽ) 
→ A(x)−1(e, ẽ). Then we get the following diagram:

H•
(
L \(X × E × Ẽ), k

)

H•L(X, k) H̃•L(X, k)

H•R(pt, k) H̃•R(pt, k)

H•(ER× Ẽ, k)

∼
(L \ pr1,2)∗

∼ μ

∼
(L \ pr1,3)∗

(R \ pr1)∗
∼

v∗A

∼ ι

∼
(R \ pr2)∗

ṽ∗Aq∗A (3-4)

If we forget about the dashed arrows, then we get a commutative diagram (as the
underlying diagram for sets is commutative). Therefore, the central rectangle (with the
dashed arrows) is also commutative, because all slant arrows are isomorphisms. As all
maps preserve the additive structure on cohomologies, it remains to check Condition
(2-1): for m ∈ H•L(X, k) and b ∈ H•R(pt, k),

μ(mb) = μ(m ∪ v∗A(b)) = μ(m) ∪ μv∗A(b) = μ(m) ∪ ṽ∗Aι(b) = μ(m)ι(b),
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where we use the multiplication rules (3-2) and (3-3), and the fact that μ preserves the
cup product. �

COROLLARY 3.2 (of Lemma 3.1). Up to isomorphism, the H•L(pt, k)-H•R(pt, k)- bimod-
ule H•L(X, k) is independent of the choice of E.

PROOF. It suffices to prove a result similar to Lemma 3.1 for the canonical action. We
can do it if in (3-4), we replace: R with L; vA and ṽA with the canonical projections
X L× E → L \E and X L× Ẽ → L \ Ẽ, respectively; qA with L \ pr2,3. �

REMARK 3.3. The above stipulation that both E → L \E and E → R \E are universal
principal L- and R-bundles usually is the result of the fact that G is a Lie group, L and
R are its closed subgroups, and the quotient map E → G \E is a universal principal
G-bundle.

REMARK 3.4. If R = L and A : X → G/L is defined by A(x) = L for any x ∈ X, then
vA is the canonical projection. In this case, the corresponding right action (3-2) of
H•L(pt, k) on H•L(X, k) is canonical.

3.2. Pull-back as a bimodule homomorphism. Keeping the notation of the previ-
ous section, let additionally Y be another L-space and f : Y → X be an L-equivariant
continuous map. Then the composition A f : Y → G/R is also L-equivariant.

LEMMA 3.5. The equivariant pull-back f � : H•L(X, k)→ H•L(Y , k) is a homomorphism
of bimodules, where the left actions are canonical and the right actions on the domain
and codomain are twisted by A and A f , respectively.

PROOF. First, we prove the claim about the left actions. We get the following
commutative diagram:

Y L× E X L× E

L \E

f L× id

can can
(3-5)

Let a ∈ H•L(pt, k) and m ∈ H•L(X, k). It follows from the above diagram that

f �(am) = f �(can∗(a) ∪ m) = f � can∗(a) ∪ f �(m) = can∗(a) ∪ f �(m) = a f �(m).

Now let us deal with the right actions. It follows directly from definition that

vA f = vA( f L× id). (3-6)

Hence, for any m ∈ H•L(X, k) and b ∈ H•R(pt, k),

f �(mb) = f �(m ∪ v∗A(b)) = f �(m) ∪ f �v∗A(b) = f �(m) ∪ v∗A f (b) = f �(m)b. �

3.3. Push-forward as a bimodule homomorphism. Suppose we are in the situa-
tion of Section 2.13, so f L× id : Y L× EN → X L× EN is denoted by f N .
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Let R be a closed subgroup of G and A : X → G/R be an L-equivariant continuous
map (as in Section 3.1). We get the commutative diagrams (refer to Remark 2.8 about
the notation)

X L× E R \E

X L× EN R \EN

vA

vN
A

iX iR

Y L× E R \E

Y L× EN R \EN

vA f

vN
A f

iY iR (3-7)

Let m ∈ Hn
L(Y , k) and b ∈ Hl

R(pt, k). For N big enough, we get by (2-5), the
commutativity of diagrams (3-7), the projection formula (Proposition 2.9), and a
compact version of (3-6) that

f�(mb) = f�(m ∪ v∗A f (b)) = (i∗X)−1 f N
∗ i∗Y (m ∪ v∗A f (b))

= (i∗X)−1 f N
∗ (i∗Y (m) ∪ (vA f iY )∗(b)) = (i∗X)−1 f N

∗ (i∗Y (m) ∪ (vN
A f )
∗i∗R(b))

= (i∗X)−1 f N
∗ (i∗Y (m) ∪ ( f N)∗(vN

A )∗i∗R(b)) = (i∗X)−1( f N
∗ i∗Y (m) ∪ (iRvN

A )∗(b))

= (i∗X)−1( f N
∗ i∗Y (m) ∪ i∗Xv∗A(b)) = (i∗X)−1 f N

∗ i∗Y (m) ∪ v∗A(b) = f�(m)b.

We also get the commutative diagrams

X L× E L \E

X L× EN L \EN

can

can

iX iL

Y L× E L \E

Y L× EN L \EN

can

can

iY iL (3-8)

Suppose that the cohomology H•L(pt, k) vanishes in odd degrees. Let a ∈ H2l
R (pt, k) and

m ∈ Hn
L(Y , k). For N big enough, we get by (2-5), the commutativity of diagrams (3-8),

the projection formula (Proposition 2.9), the graded-commutativity of the cup product,
and a compact version of (3-5) that

f�(am) = f�(can∗(a) ∪ m) = (i∗X)−1 f N
∗ i∗Y (can∗(a) ∪ m)

= (i∗X)−1 f N
∗ ((can iY )∗(a) ∪ i∗Y (m))

= (i∗X)−1 f N
∗ (can∗ i∗L(a) ∪ i∗Y (m)) = (i∗X)−1 f N

∗ (( f N)∗ can∗ i∗L(a) ∪ i∗Y (m))

= (i∗X)−1 f N
∗ (i∗Y (m) ∪ ( f N)∗(iL can)∗(a)) = (i∗X)−1( f N

∗ i∗Y (m) ∪ (can iX)∗(a))

= (i∗X)−1 f N
∗ i∗Y (m) ∪ can∗(a) = can∗(a) ∪ f�(m) = a f�(m).

So we have proved the following counterpart of Lemma 3.5.

LEMMA 3.6. The equivariant push-forward f� : H•L(Y , k)→ H•+dim X−dim Y
L (X, k) is a

homomorphism of right H•R(pt, k)-modules, where the right actions on the domain and
codomain are twisted by A f and A, respectively.

If, moreover, the cohomology H•L(pt, k) vanishes in odd degrees, then f� is a
homomorphism of left H•L(pt, k)-modules, where both left actions of H•L(pt, k) are
canonical.
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3.4. The embedding of Borel constructions. We fix the setup that we preserve
until the end of Section 3. Let L, R, P, Q be subgroups of a topological group G such
that R ⊂ P and Q ⊂ P. Let X and Y be topological spaces such that:

(i) L acts on the left on X;
(ii) R acts on the right on X;
(iii) Q acts on the left on Y.

Assuming that R and Q act on P on the left and on the right, respectively, via
multiplication, we can write these data as follows:

L� X � R� P� Q� Y .

We also assume that:

(iv) the actions of L and R on X commute.

Let additionally:

(v) α : X → G be a continuous R- and L-equivariant map.

In that case, we get the morphism of left L-spaces A : X/R→ G/R given by

A(xR) = α(x)R. (3-9)

Let E be a left G-space. Then we are in the situation of Section 3.1 (with X replaced
by X/R) and we have the map vA : (X/R) L× E → R \E given by (3-1).

In view of item (iv), the group L acts on the left on X ×
R

P×
Q

Y by l[x : p : y] =

[lx : p : y]. We consider the map

ϕ :
(
X ×

R
P×

Q
Y
)

L × E → ((X/R) L × E) × (Y Q × E)

defined by

L([x : p : y], e) 
→ (L(xR, e), Q(y, p−1α(x)−1e)). (3-10)

The reader can easily check that this map is well defined and continuous.
We get the following diagram:

(X ×
R

P×
Q

Y) L × E ((X/R) L × E) × (Y Q × E) (X/R) L × E

Y Q × E R \E

Q \E P \E

ϕ pr1

pr2 vA

can πR

πQ

(3-11)

where πR and πQ are the natural quotient maps. In general, the rectangle on the right is
not commutative. However, we get the following result.
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LEMMA 3.7. The image of ϕ is equal to ((X/R) L× E) ×πR vA pr1=πQ can pr2
(Y Q× E).

PROOF. It follows from (3-10) that the two maximal paths of diagram (3-11) commute,
that is, πR vA pr1 ϕ = πQ can pr2 ϕ. Thus, the image of ϕ is contained in the fiber
product.

Conversely, let a = (L(xR, e), Q(y, e′)) be an arbitrary point of the fiber product.
Hence, Pα(x)−1e = Pe′. Thus, there exists an element p ∈ P such that pe′ = α(x)−1e.
We get ϕ(L([x : p : y], e)) = a. �

LEMMA 3.8. Suppose that P acts freely on E. Then ϕ is an embedding.

PROOF. Let L([x : p : y], e) and L([x′ : p′ : y′], e′) be two orbits mapped to the same
pair by ϕ. As L(xR, e) = L(x′R, e′), there exists l ∈ L such that lxR = x′R and le = e′.
From the first equality, it follows that there exists r ∈ R such that lxr = x′. We get

L([x : p : y], e) = L([lx : p : y], le) = L([lxr : r−1 p : y], e′)

= L([x′ : r−1 p : y], e′)
pr2ϕ
−→ Q(y, p−1rα(x′)−1e′). (3-12)

As L([x′ : p′ : y′], e′) is mapped by pr2 ϕ to the same orbit,

Q(y, p−1rα(x′)−1e′) = Q(y′, (p′)−1α(x′)−1e′).

Therefore, there exists q ∈ Q such that qy = y′ and qp−1rα(x′)−1e′ = (p′)−1α(x′)−1e′.
From the last equality and the freeness of the action of P on E, we get qp−1r = (p′)−1.
Hence, r−1 p = p′q and, applying (3-12),

L([x : p : y], e) = L([x′ : r−1 p : y], e′) = L([x′ : p′q : y], e′)
= L([x′ : p′ : qy], e′) = L([x′ : p′ : y′], e′),

as required. �

THEOREM 3.9. Suppose that the quotient map E → P \E is a principal P-bundle.
Then ϕ is a topological embedding.

PROOF. We denote this quotient map by π and by D the fiber product from the
formulation of Lemma 3.7. Let a be any point of D. The assumption of this lemma
implies that there exists an open neighborhood U ⊂ P \E of the point πRvA pr1(a) =
πQ can pr2(a) and a P-equivariant homeomorphism h : P × U

∼→ π−1(U) such that the
diagram

P × U π−1(U)

U

h
∼

pr2 π

is commutative. We set p = pr1 h−1. Clearly, p(pe) = pp(e) for any p ∈ P and
e ∈ π−1(U).
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We define the continuous function

ξ : (πRvA)−1(U) × (πQ can)−1(U)→ (X ×
R

P×
Q

Y) L× E

as follows. Let d = (L(xR, e), Q(y, e′)) be a point of the domain of ξ. We set

ξ(d) = L([x : p(α(x)−1e)p(e′)−1 : y], e).

One can easily check that this definition does not depend on the choice of x, y, e, e′ in
the representation of d.

Now suppose that d ∈ D. Then we get Pα(x)−1e = Pe′. Let us write α(x)−1e = pe′

for the corresponding p ∈ P. We get

ϕξ(d) = (L(xR, e), Q(y, p(e′)p(α(x)−1e)−1α(x)−1e))

= (L(xR, e), Q(y, p(e′)p(pe′)−1 pe′))

= (L(xR, e), Q(y, p(e′)p(e′)−1 p−1 pe′)) = (L(xR, e), Q(y, e′)) = d.

This calculation proves that the restriction of ξ to (πRvA)−1(U) × (πQ can)−1(U) ∩ D
inverts ϕ. As a belongs to the last subset, all such subsets cover D. Thus, the required
claim follows from Lemma 3.8 and Proposition 2.1. �

3.5. Canonical and twisted projections for the triple product. By (3-10), we get
the following commutative diagram:

(X ×
R

P×
Q

Y) L× E ((X/R) L× E) × (Y Q× E)

L \E ((X/R) L× E)

ϕ

can pr1

can

(3-13)

Now let M be a subgroup of G and B : Y → G/M be a Q-equivariant continuous
map. We consider the map αB : X ×

R
P×

Q
Y → G/M given by

[x : p : y] 
→ α(x)pB(y). (3-14)

It is easy to check that this map is well defined, continuous, and L-equivariant. By
(3-10), we get the following commutative diagram:

(X ×
R

P×
Q

Y) L× E ((X/R) L× E) × (Y Q× E)

M \E Y Q× E

ϕ

vαB
pr2

vB

(3-15)
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3.6. The difference. In this section, we want to study the difference

((X/R) L× E) × (Y Q× E) − imϕ.

To this end, we claim some additional properties of E.

LEMMA 3.10. Suppose that P acts freely on E. Let U be a compact Lie group acting
continuously on E on the right so that this action and the left action of G commute.
Suppose that the space R \E is Hausdorff and is acted upon by U transitively. Then
the projection to the first component

ω : ((X/R) L× E) × (Y Q× E) − imϕ→ (X/R) L× E

is a fiber bundle with fiber homeomorphic to

Fē = {Q(y, e) ∈ Y Q× E | ē � Pe} = Y Q× E − (πQ can)−1(ē),

where ē is an arbitrary point of P \E.

PROOF. We denote the action of U by ·. We make U act on Y Q× E on the right by the
rule Q(y, e) · u = Q(y, e · u). Then we obviously get Fē · u = Fē·u. As U acts transitively
on R \E, it also acts transitively on P \E. Therefore, the spaces Fē are homeomorphic
for different points ē. We rely on the notation of Diagram (3-11).

Let a ∈ (X/R) L× E be an arbitrary point. By Lemma 3.8,

ω−1(a) = {a} × FπRvA(a) � FπRvA(a) � Fē.

We consider the map t : U → R \E defined by t(u) = vA(a)u. Let V be the stabilizer
of vA(a) in U. Note that V is a Lie group as it is closed in U. Let us consider the
commutative diagram

U

V \U R \E

tquotient map

The bottom map, which is given by Vu 
→ vA(a) · u, is continuous and bijective. It is
a homeomorphism, being a map from a compact space to a Hausdorff space. As the
natural projection U → V \U is a principal V-bundle, it has a continuous section in an
open neighborhood of any point of V \U. From the diagram above, we get the same
property for the map t. In particular, there exist an open neighborhood W of vA(a) in
R \E and a continuous section s : W → U of t. In other words,

w = t(s(w)) = vA(a) · s(w) (3-16)

for any w ∈ W.
Let H = v−1

A (W). It is an open subset of (X/R) L× E containing a. We construct the
map σ : H × ω−1(a)→ ((X/R) L× E) × (Y Q× E) by

(h, (a, Q(y, e))) 
→ (h, Q(y, e · svA(h))).
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This map is obviously well defined and continuous. Let us prove that imσ ∩ imϕ = ∅.
By Lemma 3.8, we have to prove the inequality

πRvA(h) � πQ(Qe · svA(h)) = Pe · svA(h). (3-17)

As the G- and U-actions on E commute, the map πR is U-equivariant. Therefore, (3-17)
is equivalent to

πR(vA(h) · svA(h)−1) � Pe.

Applying (3-16) for w = vA(h), to compute the left-hand side, we get the equivalent
inequality

πRvA(a) � Pe,

which holds by Lemma 3.8, as (a, Q(y, e)) � imϕ. Thus, we can consider σ as a
continuous map from H × ω−1(a) to ω−1(H). The diagram

H × ω−1(a) ω−1(H)

H

σ

pr1 ω

is obviously commutative.
To prove that σ is a homeomorphism, we notice that its inverse map

ω−1(H)→ H × ω−1(a) is given by

(h, Q(y, e)) 
→ (h, (a, Q(y, e · svA(h)−1))). �

To establish the required cohomological properties of the compact version of Fē

(Lemma 4.8), we need the following result whose proof we leave to the reader.

LEMMA 3.11. Suppose that the quotient map E → P \E is a principal P-bundle. Then
the composition

Y Q× E Q \E P \Ecan πQ

is a fiber bundle with fiber Y Q × P.

3.7. The tensor product. The above results can be applied to equivariant coho-
mologies. Let us suppose that all quotient maps E → L \E, E → P \E, E → R \E,
E → Q \E, E → M \E are universal principal bundles for the respective groups. We
denote by Θ the following composition:

H•L(X/R, k)⊗k H•Q(Y , k) H•(((X/R) L ×E) × (Y Q ×E), k)

H•L(X ×
R

P×
Q

Y , k)

×

Θ
ϕ∗ (3-18)
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The map × is the cross product and is given by a ⊗ b 
→ pr∗1(a) ∪ pr∗2(b). The classical
rule

(m ⊗ n)(m′ ⊗ n′) = (−1)ij(m ∪ m′) ⊗ (n ∪ n′) (3-19)

makes H•L(X/R, k)⊗k H•Q(Y , k) into an associative ring.
Using the notation of Section 3.5, we can get the following result.

THEOREM 3.12. The map Θ is a homomorphism of rings and of left H•L(pt, k)-
modules with respect to the canonical actions. For any Q-equivariant continuous map
B : Y → G/M, the map Θ is also a homomorphism of right H•M(pt, k)-modules with
respect to the actions twisted by B and αB on the domain and the codomain of Θ,
respectively.

PROOF. The fact that Θ is a homomorphism of rings can be proved following the
calculation before [Ha, Theorem 3.16].

Let a ∈ H•L(pt, k), m ∈ H•L(X/R, k), and n ∈ H•Q(Y , k). As diagram (3-13) is commu-
tative,

Θ(am ⊗ n) = Θ((can∗(a) ∪ m) ⊗ n) = ϕ∗(pr∗1(can∗(a) ∪ m) ∪ pr∗2(n))

= (can pr1 ϕ)∗(a) ∪ ϕ∗(pr∗1(m) ∪ pr∗2(n))

= can∗(a) ∪ Θ(m ⊗ n) = aΘ(m ⊗ n).

Now let m ∈ H•L(X/R, k), n ∈ H•Q(Y , k), and b ∈ H•M(pt, k). As diagram (3-15) is
commutative,

Θ(m ⊗ nb) = Θ(m ⊗ (n ∪ v∗B(b))) = ϕ∗(pr∗1(m) ∪ pr∗2(n ∪ v∗B(b)))

= ϕ∗(pr∗1(m) ∪ pr∗2(n)) ∪ (vB pr2 ϕ)∗(b)

= Θ(m ⊗ n) ∪ v∗αB(b) = Θ(m ⊗ n)b. �

Now let us look more closely at the tensor product H•L(X/R, k)⊗k H•Q(Y , k).
According to Section 3.1, the left factor H•L(X/R, k) is a right H•R(pt, k)-module with
the action twisted by A. However, the right factor H•Q(Y , k) is a left H•Q(pt, k)-module
with respect to the canonical action (Section 2.7). Moreover, the quotient maps πR and
πQ, refer to Diagram (3-11), yield the following maps:

π∗R : H•P(pt, k)→ H•R(pt, k), π∗Q : H•P(pt, k)→ H•Q(pt, k).

They allow us to define the structure of a right H•P(pt, k)-module on H•L(X/R, k) and of
a left H•P(pt, k)-module on H•Q(Y , k).

LEMMA 3.13. The map Θ factors through H•L(X/R, k) ⊗H•P(pt,k) H•Q(Y , k).

PROOF. Let m ∈ H•L(X/R, k), n ∈ H•Q(Y , k), and a ∈ H•P(pt, k). By Lemma 3.7 and
Diagram (3-18) defining Θ,

https://doi.org/10.1017/S1446788724000065 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788724000065


[25] Twisted actions on cohomologies and bimodules 25

Θ(ma ⊗ n) = Θ(mπ∗R(a) ⊗ n) = Θ(m ∪ v∗Aπ
∗
R(a) ⊗ n) = ϕ∗(pr∗1(m ∪ v∗Aπ

∗
R(a)) ∪ pr∗2(n))

= ϕ∗ pr∗1(m) ∪ (πRvA pr1 ϕ)∗(a) ∪ ϕ∗ pr∗2(n)

= ϕ∗ pr∗1(m) ∪ (πQ can pr2 ϕ)∗(a) ∪ ϕ∗ pr∗2(n)

= ϕ∗(pr∗1(m) ∪ pr∗2 can∗ π∗Q(a) ∪ pr∗2(n)) = ϕ∗(pr∗1(m) ∪ pr∗2(can∗ π∗Q(a) ∪ n))

= Θ(m ⊗ can∗ π∗Q(a) ∪ n) = Θ(m ⊗ π∗Q(a)n) = Θ(m ⊗ an). �

We denote the map induced by Θ as follows:

θ : H•L(X/R, k) ⊗H•P(pt,k) H•Q(Y , k)→ H•L(X ×
R

P×
Q

Y , k).

We make the left-hand side into a ring using product (3-19).

COROLLARY 3.14. The map θ is a homomorphism of rings and of left H•L(pt, k)-
modules with respect to the canonical actions. For any Q-equivariant continuous map
B : Y → G/M, the map θ is also a homomorphism of right H•M(pt, k)-modules with
respect to the actions twisted by B and αB on the domain and the codomain of θ,
respectively.

PROOF. The result follows from Theorem 3.12. �

4. The isomorphism

We prove that the map θ introduced in Section 3 is an isomorphism under certain
restrictions, which we are going to formulate. First, we assume the following two
conditions:

(I) the ring k has finite global dimension gld(k);
(II) G is a compact Lie group and L, R, P, Q, M are closed subgroups.

These conditions are supposed to hold for the rest of the paper.

4.1. Künneth formula. Let X1, . . . , Xm be topological spaces such that Hn(Xj, k) are
free of finite rank for all n � N and j = 2, . . . , m. Then for any n � N − gld(k), we have
the isomorphism

⊕
i1+···+im=n

Hi1 (X1, k) ⊗ · · · ⊗ Him (Xm, k)
∼→ Hn(X1 × · · · × Xm, k)

that is given by the cross product a1 ⊗ · · · ⊗ am 
→ p∗1(a1) ∪ · · · ∪ p∗m(am).
This isomorphism and Proposition 2.4 prove that Hn((EN)m, k) = 0 for any

0 < n � 2(N − nG) and natural number m. Moreover, the space Em is contractible.
Hence, we get the following result similar to Proposition 2.6.
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PROPOSITION 4.1. Suppose that for each i = 1, . . . , m, there is a left L(i)-space X(i) for
a closed subgroup L(i) of G. Then the restriction map

Hn((X(1)
L(1)× E) × · · · × (X(m)

L(m)× E), k)

→ Hn((X(1)
L(1)× EN) × · · · × (X(m)

L(m)× EN), k)

is an isomorphism for n � 2(N − nG).

4.2. An auxiliary lemma. We are going to use the following result proved in [S2,
Lemma 18].

PROPOSITION 4.2. Let S be a locally compact Hausdorff space, p : S→ T be a fiber
bundle with fiber F, t ∈ T be a point, and k be a commutative ring. Suppose that T is
compact, Hausdorff, connected, and simply connected, all Hn

c (F, k) are free of finite
rank, Hn

c (F, k) = 0 for odd n, and Hn
c (T , k) = 0 for odd n � N.

Then the following are true.

(1) The restriction map Hn
c (S, k)→ Hn

c (p−1(t), k) is surjective for all n < N.
(2) Hn

c (S − p−1(t), k) = 0 for odd n < N.
(3) If Hn

c (T , k) are free of finite rank for n � N, then the k-modules Hn
c (S − p−1(t), k)

are also free of finite rank for n < N.

4.3. Leray spectral sequence with compact support. For any topological space S
and a commutative ring k, we denote by kS the constant sheaf on S. In the formulation
of the next result (refer, for example, to [Di, Corollary 2.3.24]), we use the direct
image functor f! with compact (proper) support for a continuous map f between locally
compact spaces and its q th right derived functor Rqf! [KS, II.2.5, II.2.6].

PROPOSITION 4.3. Let f : S→ T be a continuous map between locally compact
Hausdorff spaces. There exists a first quadrant spectral sequence with the second page
Ep,q

2 = Hp
c (T , Rqf! kS ) converging to Hp+q

c (S, k).

Let us consider the case where f : S→ T is a fiber bundle with fiber F. In this case,
the sheaf Rqf! kS is locally constant. Indeed, applying the proper base change [KS,
Proposition 2.6.7], we reduce the problem to the case where S = F × T and f = pr2.
Applying the proper base change to the Cartesian square

S T

F pt

f

pr1 aT

aF

we get

R f!kS � R f! pr∗1 kF � a∗TRaF!kF .
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Taking the q th cohomology,

Rq f!kS = a∗TRqaF!kF = a∗THq
c (F, k) = Hq

c (F, k)T . (4-1)

COROLLARY 4.4. Let f : S→ T be a fiber bundle with fiber F, where S and T are
locally compact and Hausdorff. Suppose that Hq

c (F, k) is free of finite rank for any q
and T is simply connected. Then there exists a first quadrant spectral sequence with
the second page Ep,q

2 = Hp
c (T , k)⊗k Hq

c (F, k) converging to Hp+q
c (S, k).

In particular, if H•c (T , k) and H•c (F, k) are free of finite rank in each degree and
vanish in odd degrees, then H•c (S, k) � H•c (T , k)⊗k H•c (F, k).

PROOF. By the preceding arguments, we know that the sheaf Rq f!kS is locally
constant. It follows from [I, Proposition IV.4.20] that Rq f!kS is constant. Thus, by
(4-1), it is isomorphic to k⊕n

T
, where n is the rank of Hq

c (F, k). To prove the first result,
it suffices to substitute this sheaf into the spectral sequence of Proposition 4.3.

The second result follows from the fact that this spectral sequence collapses at the
second page and Ext1(k, M) = 0 for any k-module M. �

COROLLARY 4.5. Let L be a connected compact Lie group such that H•L(pt, k) is free
of finite rank in each degree and vanishes in odd degrees. For any compact Hausdorff
L-space X such that H•(X, k) is free of finite rank in each degree and vanishes in odd
degrees, there is an isomorphism H•L(X, k) � H•L(pt, k)⊗k H•(X, k).

PROOF. We assume that G = L and the spaces EN are chosen as in Section
2.8. Let n be a nonnegative integer. We choose any N such that n < 2(N − nG).
Applying Corollary 4.4 together with Corollary 2.5 to the canonical pro-
jection X L× EN → L \EN , we get the spectral sequence with the following
second page: Ep,q

2 = Hp(L \EN , k)⊗k Hq(X, k). By Proposition 2.6, we get that
Ep,q

2 = Hp
L (pt, k)⊗k Hq(X, k) for p � 2(N − nG). The differentials coming to and from

each Ep,q
r for p + q < 2(N − nG) are zero. Therefore, Ep,q

∞ = Ep,q
2 . As no extension

problem emerges in this case,

Hn(X L× EN) =
⊕
p+q=n

Hp
L (pt, k)⊗k Hq(X, k)

for n < 2(N − nG). Proposition 2.6 applied to the left-hand side finishes the proof. �

4.4. Restrictions on groups and spaces. We consider the following additional
conditions:

(III) P, Q, and L are connected;
(IV) Hn

P(pt, k), Hn
Q(pt, k), and Hn

L(pt, k) are free of finite rank and vanish for odd n;
(V) X and Y are compact and Hausdorff;
(VI) the cohomologies of X/R, P/Q, and Y with coefficients in k are free of finite

rank in each degree and vanish in odd degrees;
(VII) X/R and P/Q are simply connected;
(VIII) the quotient map X → X/R is a principal R-bundle.
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By Proposition 2.2 and Condition (VIII), these conditions imply that the natural
projections

P×
Q

Y → P/Q, X ×
R

P×
Q

Y → X/R

are fiber bundles with fibers Y and P×
Q

Y , respectively. These projections are given

by [p : y] 
→ pQ and [x : p : y] 
→ xR. To apply Proposition 2.2, we can consider
the isomorphisms P×

Q
Y � Y Q× P and X ×

R
P×

Q
Y � (P×

Q
Y) R× X given by [p : y] 
→

Q(y, p−1) and [x : p : y] 
→ R([p : y], x), respectively. Here we consider X as a left
R-space under the following action: rx = xr−1. We also have the isomorphisms
R \X � X/R and Q \P � P/Q given by Rx 
→ xR and Qp 
→ p−1Q, respectively. Our
projections become canonical in the sense of Section 2.4 if we apply the identifications
described just above. By Conditions (II) and (V), we get that all four spaces in the
left- and right-hand sides of the above formulas are compact and Hausdorff. Applying
Corollary 4.4 to the first sequence and using Conditions (VI) and (VII),

H•(P×
Q

Y , k) � H•(P/Q, k)⊗k H•(Y , k).

Hence, we also get that the cohomology in the left-hand side vanishes in odd degrees
and is free of finite rank in each degree. Now applying Corollary 4.4 to the second
sequence and using Conditions (VI) and (VII) again,

H•(X ×
R

P×
Q

Y , k) � H•(X/R, k)⊗k H•(P×
Q

Y , k)

� H•(X/R, k)⊗k H•(P/Q, k)⊗k H•(Y , k). (4-2)

This cohomology also vanishes in odd degrees and is free of finite rank in each degree.

LEMMA 4.6. The space (X/R) L× EN is simply connected.

PROOF. By Proposition 2.2, (X/R) L× EN → L \EN is a fiber bundle with fiber X/R.
Therefore, the result follows from Condition (VII) and the long exact sequence of
homotopy groups

{1} = π1(X/R)→ π1((X/R) L× EN)→ π1(L \EN) = {1}.

The last equality follows from Corollary 2.5. �

4.5. Surjectivity. We use here the abbreviations (refer to Remark 2.8)

Z = X ×
R

P×
Q

Y , CN = ((X/R) L× EN) × (Y Q× EN) − imϕN .

LEMMA 4.7. Hn((X/R) L× EN , k) = Hn(Z L× EN , k) = 0 for odd n � 2(N − nG).

PROOF. The result follows from Proposition 2.6, Conditions (III), (IV), (VI), (4-2),
and Corollary 4.5. �
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We are going to study the cohomologies with compact support of the spaces CN .
First, we study the cohomology of the fiber FN

ē ; refer to Lemma 3.10 and Remark 2.8.

LEMMA 4.8. For any n < 2(N − nG) and ē ∈ P \EN, the cohomology Hn
c (FN

ē , k) is free
of finite rank and vanishes if n is odd.

PROOF. It suffices to apply Parts (2) and (3) of Proposition 4.2 to the fiber bundle
πQ can : Y Q× EN → P \EN with fiber Y Q × P � P×

Q
Y; refer to Lemma 3.11. �

LEMMA 4.9. Hn
c (CN , k) = 0 for odd n < 2(N − nG).

PROOF. In view of Lemmas 4.6 and 4.8, we can apply Corollary 4.4 to the projection
ωN as in Lemma 3.10 (refer to Remark 2.8 about the notation). The second page of this
spectral sequence is equal to

Ep,q
2 = Hp((X/R) L× EN , k)⊗k Hq

c (FN
ē , k)

if q < 2(N − nG). It follows from Lemmas 4.7 and 4.8 that Ep,q
r = 0 for any finite r �

2 if p + q < 2(N − nG) and either of p or q is odd. Thus, this fact is also true for
r = ∞. �

COROLLARY 4.10. For any n < 2(N − nG) − 1, the map

Hn(((X/R) L× EN) × (Y Q× EN), k) Hn(Z L× EN , k)
(ϕN )∗

is surjective.

PROOF. By Theorem 3.9, we get the exact sequence

Hn(((X/R) L× EN) × (Y Q× EN), k) Hn(Z L× EN , k) Hn+1
c (CN , k).

(ϕN )∗

Now the result follows from Lemmas 4.7 and 4.9. �

COROLLARY 4.11. The map θ is surjective.

PROOF. Under our assumption (VI), the left map (cross product) in (3-18) is an
isomorphism by the Künneth formula. Therefore, it suffices to prove that ϕ∗ is
surjective. In each degree, this fact follows from Corollary 4.10 and Proposition 4.1
for N big enough. �

LEMMA 4.12. In each degree, the homomorphism θ induces a map between free
k-modules of the same finite rank.

PROOF. As is noted in [J, 1.5(3)], we have H•P(P/Q, k) � HQ(pt, k). Then the result
follows from the following computation based on (4-2) and Corollary 4.5:
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H•L(X/R, k) ⊗H•P(pt,k) H•Q(Y , k)

� H•L(X/R, k) ⊗H•P(pt,k) H•Q(pt, k)⊗k H•(Y , k)

� H•L(X/R, k) ⊗H•P(pt,k) H•P(pt, k)⊗k H•(P/Q, k)⊗k H•(Y , k)

� H•L(X/R, k)⊗k H•(P/Q, k)⊗k H•(Y , k)
� H•L(pt, k)⊗k H•(X/R, k)⊗k H•(P/Q, k)⊗k H•(Y , k)
� H•L(pt, k)⊗k H•(X ×

R
P×

Q
Y , k) � H•L(X ×

R
P×

Q
Y , k). �

To prove the main result of this section, let us remember the following proposition.

PROPOSITION 4.13 [R, Theorem 3.6]. Let R be a commutative ring and let M be a
finitely generated R-module. If β : M → M is an epic R-module homomorphism, then
β is an isomorphism.

THEOREM 4.14. Suppose that Conditions (I)–(VIII) are satisfied. Then θ is an
isomorphism of rings and left H•L(pt, k)-modules. If M is another closed subgroup of
G and B : Y → G/M is a Q-equivariant continuous map, then θ is an isomorphism of
rings and H•L(pt, k)-H•M(pt, k)-bimodules.

PROOF. Working in one degree at a time and composing θ with the isomorphism of
Lemma 4.12, we get a surjective homomorphism from a finitely generated k-module
to itself. Now it suffices to apply Proposition 4.13 to prove that θ is bijective. The
remaining claims follow from Corollary 3.14. �

We consider below two basic examples of how this theorem can be applied.

4.6. Equivariant cohomology of the flag variety. Let G be a semisimple compact
Lie group and K be a maximal torus in G (as in Section 2.14).

Suppose that the order |W | of the Weyl group is invertible in k. The map
πK : K \E → G \E given by πK(Ke) = Ge induces the isomorphism

π∗K : H•G(pt, k)
∼→ H•K(pt, k)W , (4-3)

where the right-hand side is the subring of W-invariants (refer to the proof of [Br,
Proposition 1]).

We are going to apply the results of the previous sections to the following data
X = G, Y = G/K, P = R = Q = G, L = M = K, letting α : X → G and B : Y → G/M
be the identity maps on G and G/K, respectively. The induced map A : X/R→ G/R is
then the identity map on G/G. By Theorem 4.14, Condition (IV) being guaranteed by
(4-3), and the calculation of H•K(pt, k), the homomorphism θ is an isomorphism and

H•K(G×
G

G×
G

G/K, k) � H•K(G/G, k) ⊗H•G(pt,k) H•G(G/K, k).
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As G/G � pt and the map vB : (G/K) G× E → K \E is a homeomorphism [J, 1.5],
we get by (4-3) the well-known isomorphism of rings and bimodules

H•K(G/K, k) � H•K(pt, k) ⊗H•K (pt,k)W H•K(pt, k)

with the canonical action of H•K(pt, k) on the left and on the right.

4.7. Standard bimodules. We continue to work here with the same groups G and K
as in the previous section. Let us denote

R = H•K(pt, k). (4-4)

This is the R-R-bimodule with respect to the cup product. For any w ∈ W, we denote
byRw the R-R-bimodule equal to R as an abelian group whose left action · is untwisted
and right action ·w is twisted by w:

r′ · r = r′r, r ·w r′′ = rw(r′′).

The construction of this bimodule naturally arises as a special case of the twisted
action described in Section 3.1. Indeed, let Aw : pt→ G/K be the map with the value
wK. Then we get the map vAw : K \E � pt K× E → K \E, which coincides with the
map K \ ρw−1 described in Section 2.14. By (2-8), we get that the right action on
H•K(pt, k) on itself twisted by Aw coincides with ·w.

Now let us compute the tensor product of these bimodules with the help of the
isomorphism θ. Let X = K, Y = pt, L = R = P = Q = N = M = K, and α : X → G
be the map defined by α(k) = ẇk. The last map becomes K-K-equivariant if we
consider the right action of K on X by multiplication and define the left action by
k′ ∗ k = ẇ−1k′ẇk. Using this map α, we define the map A : pt � K/K → G/K by (3-9).
Obviously, A = Aw.

Let us choose any w′ ∈ W and set B = Aw′ . By (3-14),

αB([k : 1 : pt]) = ẇkẇ′K = ẇẇ′(ẇ′−1kẇ′)K = ẇẇ′K = ww′K.

Hence, αB = Aww′ under the identification K ×
K

K ×
K

pt � pt.

As P, Q, L are connected, X/R, P/Q, Y are singletons, and H•K(pt, k) is the
polynomial ring in finitely many variables of the second degree, Conditions (I)–(VIII)
are satisfied. By Theorem 4.14, the homeomorphism θ is an isomorphism and it reads
as the classical R-R-bimodule isomorphism

Rw ⊗R Rw′ � Rww′ .

5. Bott–Samelson varieties

5.1. Computation of the equivariant cohomology. Let G be a semisimple compact
Lie group. We use Abbreviation (4-4). Additionally, we assume that 2 is invertible in
k. For any reflection t, we have two rings

R(t) = H•Gt
(pt, k), Rt = {r ∈ R | t(r) = r},

where Gt is the group defined in the last paragraph of Section 2.14.
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LEMMA 5.1. For any reflection t, the quotient map πt : K \E → Gt \E induces the
isomorphism π∗t : R(t)

∼→ Rt.

PROOF. The result follows from the proof of [Br, Proposition 1] applied to the group
Gt, as its Weyl group consists of 2 elements and 2 is invertible in k. �

For a sequence of reflections t = (t1, . . . , tn), we define the following space:

BS(t) = Gt1 ×K Gt2 ×K · · · ×K Gtn/K

called the Bott–Samelson variety for sequence t. The sequence t can be empty, in
which case BS(t) is just the singleton. In what follows, we use the natural identification
pt K× E � K \E given by K(pt, e) = Ke.

The torus K acts on the left on BS(t) (via the first factor for nonempty t). Therefore,
we can consider the equivariant cohomology denoted as follows:

H(t) = H•K(BS(t), k).

It is a left R-module with respect to the canonical action. However, there is the
K-equivariant map

At : BS(t)→ G/K (5-1)

given by [g1 : · · · : gn−1 : gn� 
→ g1 · · · gn−1gnK. Therefore, H(t) is also a right
R-module with the action twisted by At according to Section 3.1.

We represent H(t) graphically by

If we need to indicate the elements of t directly, then we use the following notation:

BS(t1, . . . , tn) = BS(t), H(t1, . . . , tn) = H(t).

We consider the following map ϕt : BS(t) K× E → (K \E)n+1:

K([g1 : · · · : gn−1 : gn�, e) 
→ (Ke, Kg−1
1 e, . . . , K(g1 · · · gn)−1e).

This map can be constructed inductively with the help of the embedding ϕ constructed
in Section 3.4 as follows. If t = ∅, then ϕt is the identity map.

Now suppose that t is not empty. Then we consider the following commutative
diagram:

BS(t) K× E (Gt1 ×K Gt2 ×K · · · ×K Gsn−1 ×K Gtn ×K pt) K× E

(K \E)n+1 (BS(t′) K× E) × (pt K× E)

ϕt ϕ

ϕt′ ×id

(5-2)
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Here t′ = (t1, . . . , tn−1) is the truncated sequence (Section 2.2) and the map ϕ is the
map defined in Section 3.4 for the following set of data:

X = Gt1 ×K Gt2 ×K · · · ×K Gtn−1 , Y = pt, P = Gtn , L = R = Q = K

and α : X → G given by [g1 : · · · : gn−1] 
→ g1 · · · gn−1.

LEMMA 5.2. The map ϕt is a topological embedding.

PROOF. The result follows inductively from Diagram (5-2) and Theorem 3.9. �

Using this embedding, we can define the map Θt as the following composition:

R⊗k n+1 H•((K \E)n+1, k) H(t),× ϕ∗t

where the first map is the cross product (Section 3.7). We consider the following
commutative diagram:

R⊗k n+1 H(t′)⊗k R

H(t) H•K(Gt1 ×K · · · ×K Gtn ×K pt, k)

Θt

Θt′ ⊗id

Θ (5-3)

where Θ is Map (3-18) corresponding to ϕ. If we additionally set M = K and define
B : Y → G/M by B(pt) = 1M, then we get by Corollary 3.14 thatΘ is a homomorphism
of rings and R-R-modules. Note that (5-3) is commutative as (5-2) is so. Indeed,

a1 ⊗ · · · ⊗ an+1 ϕ∗t′(pr∗1(a1) ∪ · · · ∪ pr∗n+1(a1)) ⊗ an+1
Θt′ ⊗id Θ

ϕ∗(pr∗1 ϕ
∗
t′(pr∗1(a1) ∪ · · · ∪ pr∗n+1(a1)) ∪ pr∗2(an+1)),

a1 ⊗ · · · ⊗ an+1 ϕ∗t (pr∗1(a1) ∪ · · · ∪ pr∗n+1(an+1)).
Θt

Hence, we need to prove that

pri ϕt′ pr1 ϕ = pri ϕt for 1 � i � n, pr2 ϕ = prn+1 ϕt.

Both equalities follow if we append pri to the left at both sides of the commutativity
condition (ϕt′ × id)ϕ = ϕt of (5-2). As Θ∅ = id, we can use Diagram (5-3) to compute
Θt inductively. This computation and Corollary 3.14 prove that Θt is a homomorphism
of rings and R-R-bimodules.

Let us consider now the tensor product:

R⊗t = R ⊗R(t1) · · · ⊗R(tn) R,
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where eachR(ti) acts on the left and on the right onR through πti , that is, bm= π∗ti (b)∪m
and mb = m ∪ π∗ti (b) for any m ∈ R and b ∈ R(ti). In view of Lemma 5.1,

R⊗t = R ⊗Rt1 · · · ⊗Rtn R.

We use the first equality when we apply the (iso)morphisms θ introduced in Section 3.7
and the second equality to perform algebraic computations.

THEOREM 5.3. The map Θt factors through the natural projection R⊗k n+1 → R⊗t to
an isomorphism of rings and R-R-bimodules θt : R⊗t ∼→ H(t).

PROOF. Let us apply induction on the length of t. There is nothing to prove if t = ∅,
as Θ∅ = id. Now suppose that t is not empty. We consider the following diagram:

H(t′)⊗k R H•K(Gt1 ×K · · · ×K Gtn ×K pt, k)

H(t′) ⊗R(tn) R

R⊗t′ ⊗k R R⊗t H(t)

R⊗k n+1

Θ

θ

θt′ ⊗id

θt′ ⊗id

θt

Θt

where θ is the map corresponding to Θ from (5-3), as described in Section 3.7, and the
dashed arrow is defined so that the trapezoid containing it is commutative. We need to
prove that the triangle containing this arrow is also commutative. This is however so, as
all other triangles, both trapezoids as well as the outer perimeter are commutative. The
last claim follows from the commutativity of (5-3) and the inductive definition of θt′ .
Note that θ is an isomorphism by Theorem 4.14, the validity of Condition (VIII) being
guaranteed inductively by Lemma 2.3. Thus, θt is a composition of isomorphisms and
therefore is an isomorphism itself. �

5.2. Concatenation. Our next aim is to prove that the isomorphisms θt of
Theorem 5.3 behave well under the concatenation of sequences. Let t = (t1, . . . , tn)
and r = (r1, . . . , rm) be sequences of reflections. As in Section 3.4, we consider the
embedding

ϕt,r : BS(tr) K× E → (BS(t) K× E) × (BS(r) K× E)

for the following set of data:

X = Gt1 ×K Gt2 ×K · · · ×K Gtn , Y = BS(r), L = R = P = Q = K,
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and α : X → G defined by [g1 : · · · : gn] 
→ g1 · · · gn. Here we use the representation

BS(tr) = X ×
K

K ×
K

Y ,

thus assuming

[g1 : · · · : gn+m� = [g1 : · · · : gn : 1 : gn+1 : · · · : gn+m�. (5-4)

Setting additionally M = K and defining B : Y → G/M by [gn+1 : · · · : gn+m� 
→
gn+1 · · · gn+mK, we get by Theorem 4.14 the following isomorphisms of rings and
R-R-bimodules:

H(t) ⊗R H(r) H(tr),
θt,r

∼

where θt,r is induced by ϕt,r as in Section 3.7.

THEOREM 5.4. There is the following commutative diagram:

H(t) ⊗R H(r) H(tr)

R⊗t ⊗R R⊗r R⊗tr

θt,r

∼

θt⊗θr

∼

θtr

where the isomorphism of the bottom arrow is given by

(a1 ⊗ · · · ⊗ an+1) ⊗ (b1 ⊗ · · · ⊗ bm+1) 
→ a1 ⊗ · · · ⊗ an ⊗ (an+1 ∪ b1) ⊗ b2 ⊗ · · · ⊗ bm+1.

PROOF. Following the upper path,

(a1 ⊗ · · · ⊗ an+1) ⊗ (b1 ⊗ · · · ⊗ bm+1)
θt⊗θr

ϕ∗t (pr∗1(a1) ∪ · · · ∪ pr∗n+1(an+1)) ⊗ ϕ∗r (pr∗1(b1) ∪ · · · ∪ pr∗m+1(bm+1))
θt,r

ϕ∗t,r(pr∗1 ϕ
∗
t (pr∗1(a1) ∪ · · · ∪ pr∗n+1(an+1)) ∪ pr∗2 ϕ

∗
r (pr∗1(b1) ∪ · · · ∪ pr∗m+1(bm+1))).

Following the lower path,

(a1 ⊗ · · · ⊗ an+1) ⊗ (b1 ⊗ · · · ⊗ bm+1) a1 ⊗ · · · ⊗ an ⊗ (an+1 ∪ b1) ⊗ b2 ⊗ · · · ⊗ bm+1

ϕ∗tr(pr∗1(a1) ∪ · · · ∪ pr∗n(an) ∪ pr∗n+1(an+1 ∪ b1) ∪ pr∗n+2(b2) ∪ · · · ∪ pr∗n+m+1(bm+1)).

Comparing the right-hand sides, we see that we need to prove the formulas

pri ϕt pr1 ϕt,r = pri ϕtr for 1 � i � n + 1, prj ϕr pr2 ϕt,r = prj+n ϕtr for 1 � j � m + 1,

which follow from elementary calculations. �

The maps ϕt,r were introduced for the universal principal bundle E. In what follows,
we also use their compact versions ϕN

t,r (Remark 2.8).
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5.3. Bott towers. We remember the main constructions of [GK]. Let n be a
nonnegative integer and c = {ci,j}1�i<j�n be a collection of integers. The Bott tower
[GK, Section 2.2] corresponding to c is the quotient

BT(c) = (C2 − {(0, 0)})n/(C×)n

with respect to the following action of (C×)n:

(z1, w1, . . . , zn, wn)(1, . . . , 1, ai, 1, . . . , 1)

= (z1, w1, . . . , zi−1, wi−1, ziai, wiai, . . . , zj, wja
ci,j

i , . . .), (5-5)

where ai is at the i th place. Note that BT(c) is a smooth complex manifold and thus is
canonically oriented. We denote the orbit containing the sequence (z1, w1, . . . , zn, wn)
by [z1, w1, . . . , zn, wn]. This notation agrees with the notation of points of Bott towers
in [GK] and with our notation of points of P1(C) introduced in Section 2.4. In the
following lemma, we denote by 〈αt,αr〉 the integer such that t(αr) = αr − 〈αr,αt〉αt.

LEMMA 5.5. Let t = (t1, . . . , tn) be a sequence of reflections. Let us define
ci,j = 〈αtj ,αti〉 and c = {ci,j}1�i<j�n. Then the manifolds BT(c) and BS(t) are
homeomorphic.

PROOF. Let us consider the three-dimensional sphere S3 = {(z, w) ∈C2 | |z|2+ |w|2 = 1}.
We can construct the quotient (S3)n/(S1)n with respect to the group action given by
(5-5). Using the same notation for the orbits of this space as for the orbits of BT(c),
we define the homeomorphism (S3)n/(S1)n ∼→ BS(t) as follows:

[z1, w1, . . . , zn, wn] 
→
[
ϕαt1

(
z1 −w̄1
w1 z̄1

)
: · · · : ϕαtn

(
zn −w̄n

wn z̄n

)]]
.

Here ϕαti
are the root homomorphisms as in Section 2.14. As the natural embedding

(S3)n ↪→ (C2 − {(0, 0)})n induces the homeomorphism (S3)n/(S1)n ∼→ BT(c), refer to
[GK, Section 2.2], the required result follows. �

The homomorphism described above defines two things: an orientation on BS(t)
and a left K-action on BT(c). This action is given by

k[z1, w1, . . . , zn, wn] = [z1,αt1 (k)−1w1, . . . , zn,αtn (k)−1wn].

Note that the coefficients ci,j are given by the same formula in [GK, Section 3.7] in the
case where all reflections are simple.

In the special case of a sequence of length 1, we have BS(t) � BT(∅) = P1(C). This
isomorphism proves that

KBS(t) = {1K, ṫK}, (5-6)

where ṫ is a lifting of t (Section 2.14). We assume here and in the following that ṫ is
chosen within Gt for any reflection t. Moreover, we assume that the neutral element of
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W is lifted to the neutral element of G. By Lemma 5.5,

ν[1�,BS(t) � ν[1:0],P1(C) � ν0,C−αt
.

Thus, in accordance with the identification of Section 2.14, we compute the equivariant
Euler class (that is, the first Chern class), following the guidelines of [AF, Ch. 2,
Section 3], as follows:

EuK(ν[1�,BS(t)) = Eu(νK \EN ,(C−αt )K×EN ) = Eu(L(−αt)) = −αt (5-7)

for N big enough.

5.4. Fixed points. Let t = (t1, . . . , tn) be a sequence of reflections. We denote by
Γt the set of generalized combinatorial galleries whose elements are sequences
γ = (γ1, . . . , γn), where γi = ti or γi = 1 for each i.

LEMMA 5.6. The set KBS(t) consists of the points [γ̇1 : · · · : γ̇n�, where n = |t| and
γ ∈ Γt.

PROOF. As K is normalized by W, the points [γ̇1 : · · · : γ̇n� are fixed by K. To prove
the converse claim, let us apply induction on n. The case n = 0 is obvious. Suppose
that n > 0. Then tn is the last element of t. We consider the truncated sequence t′ and
two K-equivariant maps tr : BS(t)→ BS(t′) and ζ : BS(t)→ G/K given by

[x1 : · · · : xn−1 : xn� 
→ [x1 : · · · : xn−1�, [x1 : · · · : xn−1 : xn� 
→ x1 · · · xn−1xnK,

respectively. Let a ∈KBS(t). Then tr(a) ∈KBS(t′). By induction, we have a repre-
sentation a = [γ̇1 : · · · : γ̇n−1 : xn� for some (γ1, . . . γn−1) ∈ Γt′ and xn ∈ Gtn . However,
ζ(a) ∈K(G/K). Thus,

kγ̇1 · · · γ̇n−1xnK = γ̇1 · · · γ̇n−1xnK

for any k ∈ K. Hence, k′xnK = xnK, where k′ = (γ̇1 · · · γ̇n−1)−1kγ̇1 · · · γ̇n−1. As k′ is an
arbitrary element of K, we get by (5-6) that xnK ∈KBS(tn) = {1K, ṫnK}. The result
follows. �

We identify γ with the point [γ̇1 : · · · : γ̇n� of BS(t). For each x ∈ W, we denote
by Γt,x the subset of Γt consisting of sequences γ such that γ1 · · · γn = x. According
to Lemma 3.5, the embedding iγ : pt ↪→ BS(t) taking value γ ∈ Γt,x induces the
homomorphism of R-R-bimodules

i�γ : H(t)→ Rx.

Note that in this formula, the left actions are canonical, and the right actions on the
domain and codomain are twisted by At and Atiγ, respectively (Lemma 3.5). The last
map takes only the value xK. We can compute i�γ in coordinates.
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THEOREM 5.7. For each γ ∈ Γt,x, the composition

R⊗t H(t) Rx
θt i�γ

is given by a1 ⊗ · · · ⊗ an+1 
→ a1 ∪ γ1(a2) ∪ · · · ∪ γ1 · · · γn(an+1).

PROOF. Replacing θt by Θt, it remains to compute the following composition:

R⊗k n+1 H•((K \E)n+1, k) H(t) Rx.× ϕ∗t i�γ

Following these maps,

a1 ⊗ · · · ⊗ an+1 pr∗1(a1) ∪ · · · ∪ pr∗n+1(an+1)×

(pr1 ϕt(iγ × id))∗(a1) ∪ · · · ∪ (prn+1 ϕt(iγ × id))∗(an+1).
i�γ ϕ
∗
t

(5-8)

It is easy to note that prj ϕt(iγ × id) = K \ ρ(γ1···γj−1)−1 , where the last map is defined in
Section 2.14. Therefore, by (2-8),

(pri ϕt(iγ × id))∗(ai) = (K \ ρ(γ1···γi−1)−1 )∗(ai) = γ1 · · · γi−1(ai).

The result follows from this formula and (5-8). �

Using the Mayer–Vietoris isomorphism, we obtain that the restriction to KBS(t) is
the following homomorphism of R-R-bimodules:

H•K(BS(t), k)→ H•K(KBS(t), k)
∼→

⊕
x∈W

⊕
γ∈Γt,x

Rx.

We do not claim that this homomorphism is a monomorphism. However, this is true
under some restrictions on k (for example, if k has no zero divisors, refer to [S1,
Corollary 2.5]), in which case we say that the localization theorem holds.

6. Morphisms

6.1. The setup. In the notation of the rest of the paper, we replace any sequence t of
length 1 by its unique element t. For example, ϕr,t = ϕr,t, θt = θt, θr,t = θr,t,R⊗t = R⊗t,
and so forth. We also no longer write the symbol of the cup product between elements
of R.

We draw morphisms between bimodules H(t) as usual from bottom to top. The
easiest case is represented by trivial morphisms, which are drawn as vertical lines in
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the colors corresponding to the colors of the reflections:

Recall that for any reflection, we denote by αt the positive root such that t = ωαt

(Section 2.14) and set

Pt( f ) =
f + t( f )

2
, ∂t( f ) =

f − t( f )
αt

.

The operator ∂t in the last formula is called the Demazure operator. We get Pt( f ) ∈ Rt,
∂t( f ) ∈ Rt, and

f = Pt( f ) + ∂t( f )
αt

2
. (6-1)

An element m of an R-R-bimodule M is called central if rm = mr for every r ∈ R.
For example, if we consider R itself as R-R-bimodule, then all elements of R are
central. However, for any reflection t, only the zero element of the standard bimodule
Rt (Section 4.7) is central. Indeed, m ∈ Rt is central if and only if rm = t(r)m for
every r ∈ R. Substituting r = αt, we get 2αtm = 0. As 2 is invertible, we get m = 0.
Obviously, central elements are mapped to central ones by bimodule homomorphisms.

We use the shift of grading (Section 2.3) so that all homomorphisms of bimodules
we consider are grading preserving. For example, we get the following exact sequence
[EW, (3.4)]:

0 R(−1) R ⊗Rt R(1) Rt(1) 0,
λt σt (6-2)

where λt(r) = r(αt/2) ⊗ 1 + r ⊗ (αt/2) and σt( f ⊗ g) = f t(g). Therefore, any central
element of R ⊗Rt R is in the kernel of σt and thus in the image of λt. Note that in
[EW], t is supposed to be simple, but the above sequence is actually exact for any
reflection t.

6.2. One-color morphisms. Let us fix a reflection t. Consider the natural embed-
ding ιt : pt→ BS(t), which maps pt to [1�. We get ιt = i(1) in the notation of Section
5.4. We get the equivariant pull-back

ι�t : H(t)→ R,
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which we represent as the diagram

(ι�t )

This map is a homomorphism of R-R-bimodules by Lemma 3.5. By Theorem 5.7, we
get that the composition map

R ⊗R(t) R H(t) Rθt
∼

ι�t

is given by

ι�t θt(a ⊗ b) = ab. (6-3)

Now we consider the negated equivariant push-forward

−ιt� : R → H(t)(2).

Recall that a number in round brackets means the degree shift (Section 2.3). We
represent the above morphism as follows:

(−ιt�)

By Lemma 3.6, this map is a homomorphism of R-R-bimodules. We want to compute
the composition

R H(t)(2) R ⊗R(t) R(2).
−it� θ−1

t

∼ (6-4)

It suffices to compute the image of 1. As the element −θ−1
t it�(1) is central and of degree

2, the short exact sequence (6-2) and the argument following it show that

−θ−1
t is�(1) = cαt ⊗ 1 + c ⊗ αt

for some c ∈ k. To compute this constant, first apply −θt and then ι�t to the formula
above. By (5-7), Theorem 5.7, and (6-3),

−αt = EuK(ν[1�,BS(t)) = ι
�
s ιs�(1) = −ι�t θt(cαt ⊗ 1 + c ⊗ αt) = −2cαt.

Hence, c = 1/2. As all maps in (6-4) are homomorphisms of bimodules,

θ−1
t (−it�)(d) = d

αt

2
⊗ 1 + d ⊗ αt

2
.
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Let μt : BS(t, t)→ BS(t) be the map given by μt([g1 : g2�) = [g1g2�. Taking the
pull-back, we get the map

μ�t : H(t)→ H(t, t).

We draw this diagram as follows:

(μ�t )

This map is a homomorphism of R-R-bimodules by Lemma 3.5. We are going to
compute the composition

R ⊗R(t) R H(t) H(t, t) R ⊗R(t) R ⊗R(t) R.
θt μ�t θ−1

(t,t) (6-5)

Computing in degree zero,

μ�t θt(1 ⊗ 1) = 1 = θ(t,t)(1 ⊗ 1 ⊗ 1),

where the central unit is the constant unit function on BS(t, t)K × E and all other units
are the constant unit function on K \E. These functions are considered as cohomology
classes and pull-back to constant unit functions, which explains the computation above.

As all maps in (6-5) are homomorphisms of bimodules,

θ−1
(t,t)μ

�
t θt(a ⊗ b) = a ⊗ 1 ⊗ b.

As expected, the merge diagram

(−μt�)

is defined to be the negated push-forward map −μt� : H(t, t)→ H(t)(−2). We postpone
the computation of its coordinate form until we manage to extend diagram (−ιt�)
horizontally.
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6.3. Horizontal extensions. We apply the concatenation properties proved in
Section 5.2. First, let us consider the planar diagram

(ι�r,t)

for a reflection t and a sequence of reflections r = (r1, . . . , rn) (the black solid strings
can be of any color). Let rt = (r1, . . . , rn, t) be the concatenated sequence and ιr,t :
BS(r) ↪→ BS(rt) be the embedding given by ιr,t([g1 : · · · : gn�) = [g1 : · · · : gn : 1�. We
claim that the diagram

H(r) ⊗R H(t) H(r) ⊗R R

H(rt) H(r)

id⊗ι�t

θr,t 
 θr,∅

ι�r,t

(6-6)

is commutative. Indeed, for any a ∈ H(r) and b ∈ H(t),

θr,∅(id ⊗ ι�t )(a ⊗ b) = θr,∅(a ⊗ ι�t (b)) = ϕ∗r,∅(pr∗1(a) ∪ pr∗2 ι
�
t (b)),

ι�r,tθr,t(a ⊗ b) = ι�r,tϕ
∗
r,t(pr∗1(a) ∪ pr∗2(b)).

Comparing the results, we see that it suffices to prove the equalities

pr1 ϕr,∅ = pr1 ϕr,t(ιr,t K× id), (ιt K× id) pr2 ϕr,∅ = pr2 ϕr,t(ιr,t K× id). (6-7)

They follow directly from the identification rule in (5-4) for concatenation operators
and the definition in (3-10).

Now let us extend (ι�r
¯

,t) to the right

(ι�r,t,v)

for another sequence of reflections v = (v1, . . . , vm). Let rtv = (r1, . . . , rn, t, v1, . . . , vm)
be the concatenated sequence and ιr,t,v : BS(rv) ↪→ BS(rtv) be the map defined
by ιr,t,v([g1 : · · · : gn : g′1 : · · · : g′m�) = [g1 : · · · : gn : 1 : g′1 : · · · : g′m�. We get the
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commutative diagram

H(rt) ⊗R H(v) H(r) ⊗R H(v)

H(rtv) H(rv)

ι�r,t⊗id

θrt,v 
 θr,v

ι�r,t,v

(6-8)

Inserting (6-3) to (6-6) and (6-8), we get the formula in coordinates

θ−1
rv ι
�
r,t,vθrtv(a1 ⊗ · · · ⊗ an+1 ⊗ b1 ⊗ · · · ⊗ bm+1)

= a1 ⊗ · · · ⊗ an ⊗ an+1b1 ⊗ b2 ⊗ · · · ⊗ bm+1.

Let us extend (−ιt�) horizontally. To this end, we first prove that the diagram

H(r) ⊗R R H(r) ⊗R H(t)(2)

H(r) H(rt)(2)

id⊗ιt�

θr,∅ θr,t

ιr,t�

(6-9)

is commutative. It is more difficult, as it involves push-forward operators. For any
a ∈ H(r) and b ∈ R, we get by the first equality of (6-7) and the projection formula
(Proposition 2.9),

ιr,t�θr,∅(a ⊗ b) = ιr,t�ϕ
∗
r,∅(pr∗1(a) ∪ pr∗2(b)) = ιr,t�((pr1 ϕr,∅)∗(a) ∪ (pr2 ϕr,∅)∗(b))

= ιr,t�(ι�r,t(pr1 ϕr,t)
∗(a) ∪ (pr2 ϕr,∅)∗(b))

= (pr1 ϕr,t)
∗(a) ∪ ιr,t�(pr2 ϕr,∅)∗(b). (6-10)

Let us consider the compatibly oriented Cartesian square

BS(r) K×EN K\EN

BS(rt) K×EN BS(t) K×EN

pr2 ϕ
N
r,∅

ιr,t K× id ιt K× id

pr2 ϕ
N
r,t

By (2-4), we get (ιr,t K× id)∗(pr2 ϕ
N
r,∅)∗ = (pr2 ϕ

N
r,t)
∗(ιt K× id)∗. Taking the limit N → ∞,

we get ιr,t�(pr2 ϕr,∅)∗ = (pr2 ϕr,t)∗ιt�. Applying this substitution to the right-hand side
of (6-10),

ιr,t�θr,∅(a ⊗ b) = (pr1 ϕr,t)
∗(a) ∪ (pr2 ϕr,t)

∗ιt�(b)

= ϕ∗r,t(pr∗1(a) ∪ pr∗2 ιt�(b)) = θr,t(a ⊗ ιt�(b)) = θr,t(id ⊗ ιt�)(a ⊗ b).
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This equality proves the commutativity of (6-9). We prove similarly that the diagram

H(r) ⊗R H(v) H(rt) ⊗R H(v)(2)

H(rv) H(rtv)(2)

ιr,t�⊗id

θr,v θrt,v

ιr,t,v�

is commutative. Computing in coordinates,

θ−1
rtv(−ιr,t,v�)θrv(a1 ⊗ · · · ⊗ an ⊗ d ⊗ b2 ⊗ · · · ⊗ bm+1)

= a1 ⊗ · · · ⊗ an ⊗
(
d
αt

2
⊗ 1 + d ⊗ αt

2

)
⊗ b2 ⊗ · · · ⊗ bm+1. (6-11)

This morphism is represented by the diagram

(−ιr,t,v�)

The split map μ�t can be extended horizontally in the same way. Consider the diagram

(μ�r,t,v)

for sequences of reflections r = (r1, . . . , rn) and v = (v1, . . . , vm). Let μr,t,v : BS(rttv)→
BS(rtv) be the map given by

μr,t,v([g1 : · · · : gn : g′1 : g′2 : g′′1 : · · · : g′′m�) = [g1 : · · · : gn : g′1g′2 : g′′1 : · · · : g′′m�,

where rttv = (r1, . . . , rn, t, t, v1, . . . , vm). Arguing as for ι�r,t,v,

θ−1
rttvμ

�
r,t,vθrtv(a1 ⊗ · · · ⊗ an+1 ⊗ b1 ⊗ · · · ⊗ bm+1) = a1 ⊗ · · · ⊗ an+1 ⊗ 1 ⊗ b1 ⊗ · · · ⊗ bm+1.

At this point, we can compute the coordinate form of the merge diagram (−μt�).
We clearly have μtιt,t,∅ = id. Taking the push-forwards, we get (−μt�)(−ιt,t,∅�) = id.
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Expressed diagrammatically, we get our first relation:

Note that we have proved this relation without resorting to coordinatization. By (6-11),

1 ⊗ 1 = θ−1
t μt�ιt,t,∅�θt(1 ⊗ 1) = θ−1

t (−μt�)θ(t,t)
(
1 ⊗ αt

2
⊗ 1 + 1 ⊗ 1 ⊗ αt

2

)
= θ−1

t (−μt�)θ(t,t)
(
1 ⊗ αt

2
⊗ 1

)
− θ−1

t μt�θ(t,t)(1 ⊗ 1 ⊗ 1)
αt

2
.

As θ−1
t μt�θ(t,t)(1 ⊗ 1 ⊗ 1) = 0 for the degree reason,

θ−1
t (−μt�)θ(t,t)

(
1 ⊗ αt

2
⊗ 1

)
= 1 ⊗ 1.

Let us take any b ∈ H(t). Applying (6-1) and the above formula,

θ−1
t (−μt�)θ(t,t)(1 ⊗ b ⊗ 1)

= −Pt(b) θ−1
t μt�θ(t,t)(1 ⊗ 1 ⊗ 1) + ∂t(b) θ−1

t (−μt�)θ(t,t)
(
1 ⊗ αt

2
⊗ 1

)
= ∂t(b) ⊗ 1.

As this map is a homomorphism of bimodules,

θ−1
t (−μt�)θ(t,t)(a ⊗ b ⊗ c) = a∂t(b) ⊗ c.

The arguments described in this section allow us to extend −μt� to the morphism
−μr,t,v� represented by the diagram

(−μr,t,v�)

and prove the coordinate formula

θ−1
rtv(−μr,t,v�)θrttv(a1 ⊗ · · · ⊗ an ⊗ a ⊗ b ⊗ c ⊗ b2 ⊗ · · · ⊗ bm+1)

= a1 ⊗ · · · ⊗ an ⊗ a∂t(b) ⊗ c ⊗ b2 ⊗ · · · ⊗ bm+1.

6.4. Generalized Bott–Samelson varieties. For any nonempty set S of simple
reflections, let GS be the subgroup of G generated by all groups Gs, where s ∈ S. Let
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S = (S1, . . . , Sn) be a sequence of nonempty sets of simple reflections. Then we define

BS(S) = GS1 ×K GS2 ×K · · · ×K GSn/K.

Clearly, if each Si is a singleton, then BS(S) = BS(s), where Si = {si} and s =
(s1, . . . , sn). Bearing in mind this fact, we omit brackets for singletons. For example,
we abbreviate BS({s}, {s′, s̃}, {s̊}, {s̈}) to BS(s, {s′, s̃}, s̊, s̈). We denote the equivari-
ant cohomology by H(S) = H•K(BS(S), k), use the similar abbreviation, and draw
H(S) and the identical morphisms between them similarly to the cohomologies and
morphisms for the usual Bott–Samelson varieties. For example, the identity map
H(s, {s′, s̃}, s̊, s̈)→ H(s, {s′, s̃}, s̊, s̈) is depicted as

The variety BS(S) has a complex structure coming from the following algebraic
realization:

BS(S) � PS1 ×B PS2 ×B · · · ×B PSn/B,

where B and PSi are the Borel subgroup and the minimal parabolic subgroup
containing Si of the complexification Gc of G, respectively. In this way, BS(S) receives
a complex structure and thus an orientation. We also get G/K � Gc/B and thus the
quotient G/K also receives a complex structure. Also note that H•B(pt, k) � H•T (pt, k) �
H•K(pt, k), where T is the maximal complex torus in Gc containing K.

In what follows, we consider only the case where each set Si is a singleton with at
most one exception where this set consists of two distinct simple reflections (as in the
example above).

6.5. Two-color morphisms. In the rest of the paper, we consider only sequences of
simple reflections. For the simplicity of exposition, we omit the coordinatization maps
θs, and thus think of them as identity maps. We denote

xs =
αs

2
, cs = xs ⊗ 1 + 1 ⊗ xs

for any simple reflection s.
If we consider H(s), where s = (s1, . . . , sn), as a left R-module, then it has the

following R-basis:

{1 ⊗ xε1
s1
⊗ · · · ⊗ xεn

sn
| ε1, . . . , εn ∈ {0, 1}}.

ThisR-basis consists of 2n elements. We denote by H(s)< the leftR-submodule of H(s)
generated by all above basis elements such that εi = 0 for some i. The remaining basis
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element 1 ⊗ xs1 ⊗ · · · ⊗ xsn is called the normal element of H(s); refer to [Li, Définition
4.6].

We leave the proof of the following result to the reader.

PROPOSITION 6.1. cs1 · · · csn = 1 ⊗ xs1 ⊗ · · · ⊗ xsn + h for some h ∈ H(s)<.

For any distinct simple reflections s and s̃, we denote by ms,s̃ the order of the product
ss̃. We have ms,s̃ = ms̃,s ∈ {2, 3, 4, 6}. We define the following sequence:

[s, s̃] =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(s, s̃) if ms,s̃ = 2,
(s, s̃, s) if ms,s̃ = 3,
(s, s̃, s, s̃) if ms,s̃ = 4,
(s, s̃, s, s̃, s, s̃) if ms,s̃ = 6.

The product of the reflections of [s, s̃] is denoted by ws,s̃. The braid relation for this
pair reads as ws,s̃ = ws̃,s. We use the notation BS(s, s̃, . . .) = BS([s, s̃]) and H(s, s̃, . . .) =
H([s, s̃]), and denote by 1 ⊗ xs ⊗ xs̃ ⊗ · · · the normal element of H(s, s̃, . . .). Similarly,
cscs̃ · · · denotes one of the products cscs̃, cscs̃cs, cscs̃cscs̃, cscs̃cscs̃cscs̃, depending on
ms,s̃.

The image of the twisting map A[s,s̃], refer to (5-1), is actually contained in the
Schubert variety Xs,s̃ = Kws,s̃/K = BS({s, s̃}). Thus, A[s,s̃] can be regarded as the map
ηs,s̃ : BS(s, s̃, . . .)→ Xs,s̃. The twisting maps for both sides are A[s,s̃] and the natural
inclusion to G/K, respectively. Note also that both these spaces are smooth manifolds
having real dimension 2ms,s̃. Therefore, we get the following two morphisms of
R-R-bimodules:

η�s,s̃ : H•K(Xs,s̃, k)→ H(s, s̃, . . .), ηs,s̃� : H(s, s̃, . . .)→ H•K(Xs,s̃, k)

presented by the diagrams

Here the dash-dotted line can be either dotted or solid, depending on the parity of ms,s̃.
First, we calculate the following composition.

LEMMA 6.2. ηs,s̃�η
�
s,s̃ = id.

PROOF. Applying the projection formula (Proposition 2.9),

ηs,s̃�η
�
s,s̃(h) = ηs,s̃�(1 ∪ η�s,s̃(h)) = ηs,s̃�(1) ∪ h

for any h ∈ H•K(Xs,s̃, k). Therefore, it suffices to prove that ηs,s̃�(1) = 1. There is an
open subset V ⊂ Xs,s̃ such that ηs,s̃ induces the orientation-preserving diffeomorphism
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η′s,s̃ : U
∼→ V , where U = η−1

s,s̃ (V). Consider the following Cartesian square:

U BS(s, s̃, . . .)

V Xs,s̃

jU


η′s,s̃ ηs,s̃

jV

By (the equivariant version of) (2-4),

j�Vηs,s̃�(1) = η′s,s̃�j�U(1) = η′s,s̃�(1) = 1.

As Xs,s̃ is connected, the above calculation proves that ηs,s̃�(1) = 1. �

Diagramatically expressed, this lemma looks as follows:

6.6. The 2ms, s̃-valent vertex. Here, we are going to consider the composition
η�s̃,sηs,s̃� : H(s, s̃, . . .)→ H(s̃, s, . . .), which is a morphism of R-R-bimodules. It is
depicted as follows:

Note that all such morphisms are proportional by [Li, Proposition 4.3]. In this paper,
2 was assumed to be invertible in k.

LEMMA 6.3. ker μs,s̃� ⊂ H(s, s̃, . . .)<.

PROOF. Let h ∈ ker μs,s̃�. We have h = α ⊗ xs ⊗ xs̃ ⊗ · · · + h′ for some h′ ∈ H(s, s̃, . . .)<.
For reasons of degree, we get η�s̃,sηs,s̃�(h′) ∈ H(s̃, s, . . .)<. Therefore, it follows from
η�s̃,sηs,s̃�(h) = 0 that

α η�s̃,sηs,s̃�(1 ⊗ xs ⊗ xs̃ ⊗ · · · ) ∈ H(s̃, s, . . .)<.

By [Li, Proposition 4.3 and Lemme 4.7], this is only possible if α = 0. �
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Our next aim is to prove the following normalization condition.

LEMMA 6.4. η�s̃,sηs,s̃�(1 ⊗ xs ⊗ xs̃ ⊗ · · · )=1 ⊗ xs̃ ⊗ xs ⊗ · · ·+h for some h ∈H(s̃, s, . . .)<.

PROOF. Let us consider the following chain of inclusions:

pt BS(s) BS(s, s̃) · · · BS(s, s̃, . . .),
ι∅,s,∅ ι(s),s̃,∅ ι(s,s̃),s,∅ ι(s,s̃,...),s′ ,∅

where s′ = s or s′ = s̃ depending on the parity of ms,s̃. We denote the resulting
composition by ι. Its image is [1 : 1 : · · · : 1�. Taking the equivariant push-forward

we get by (6-11) that the image of (−1)ms,s̃ is equal to cscs̃ · · · . Hence, ηs,s̃�(cscs̃ · · · ) =
(ηs,s̃ι)�((−1)ms,s̃ ). Arguing similarly, we get ηs̃,s�(cs̃cs · · · ) = (ηs̃,sι)�((−1)ms,s̃ ). As ηs,s̃ι =
ηs̃,sι, we get by Lemmas 6.2 and 6.3 that

η�s̃,sηs,s̃�(cscs̃ · · · ) − cs̃cs · · · ∈ ker ηs̃,s� ⊂ H(s̃, s, . . .)<.

To conclude the proof, it suffices to apply Proposition 6.1 and the fact that η�s̃,sηs,s̃�,
being a degree-preserving homomorphism H(s, s̃, . . .)→ H(s̃, s, . . .) of leftR-modules,
maps H(s, s̃, . . .)< to H(s̃, s, . . .)<. �

We have just proved that the composition η�s̃,sηs,s̃� is just the map fs,s̃ from [Li,
Lemme 4.7].

6.7. The Jones–Wenzl projector. This map is given by the composition η�s,s̃ηs,s̃�
and is represented by the diagram:

(η�s,s̃ηs,s̃�)
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From Lemma 6.2, we immediately get the relations:

6.8. Two-color dot contraction. As an example for ms,s̃ = 3, let us prove the
following relation:

Indeed, the left-hand side and the right-hand side are equal to

ι�(s̃,s),s̃,∅η
�
s̃,sηs,s̃� = (ηs̃,sι(s̃,s),s̃,∅)�ηs,s̃�, ι�

∅,s,(s̃,s)η
�
s,s̃ηs,s̃� = (ηs,s̃ι∅,s,(s̃,s))

�ηs,s̃�,

respectively. Hence, it suffices to prove that ηs̃,sι(s̃,s),s̃,∅ = ηs,s̃ι∅,s,(s̃,s), which is obvious.

6.9. Horizontal extensions of two-color morphisms. Finally, it remains to extend
the morphisms η�s,s̃ and ηs,s̃� horizontally. It can be done similarly to the method used
in Section 6.3. First, let s̊ = (s̊1, . . . , s̊n) be a sequence of simple reflections. Then we
define the map

ηs̊,s,s̃ : BS(s̊1, . . . , s̊n, s, s̃, . . .)→ BS(s̊1, . . . , s̊n, {s, s̃})
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by [g1 : · · · : gn : g′1 : · · · : g′ms,s̃
� 
→ [g1 : · · · : gn : g′1 · · · g

′
ms,s̃
�. We have the following

commutative diagram:

H(s̊) ⊗R H•K(Xs,s̃, k) H(s̊) ⊗R H(s, s̃, . . .)

H(s̊1, . . . , s̊n, {s, s̃}) H(s̊1, . . . , s̊n, s, s̃, . . .)

θs̊,s,s̃ 


id⊗η�s,s̃

θs̊,[s,s̃]

η�s̊,s,s̃

where θs̊,s,s̃ corresponds to

ϕs̊,s,s̃ : BS(s̊1, . . . , s̊n, {s, s̃}) K× E → (BS(s̊) K× E) × (Xs,s̃ K× E)

as in Section 3.4 for the following set of data:

X = Gs̊1 ×K Gs̊2 ×K · · · ×K Gs̊n , Y = Xs,s̃, L = R = P = Q = K,

and α : X → G defined by [g1 : · · · : gn] 
→ g1 · · · gn.
Now let s̈ = (s̈1, . . . , s̈m) be another sequence of simple reflections. We define the

map

ηs̊,s,s̃,s̈ : BS(s̊1, . . . , s̊n, s, s̃, . . . , s̈1, . . . , s̈m)→ BS(s̊1, . . . , s̊n, {s, s̃}, s̈1, . . . , s̈m)

by

[g1 : · · · : gn : g′1 : · · · : g′ms,s̃
: g′′1 : · · · : g′′m� 
→ [g1 : · · · : gn : g′1 · · · g

′
ms,s̃

: g′′1 : · · · : g′′m�.

We have the following commutative diagram:

H(s̊1, . . . , s̊n, {s, s̃}) ⊗R H(s̈) H(s̊1, . . . , s̊n, s, s̃, . . .) ⊗ H(s̈)

H(s̊1, . . . , s̊n, {s, s̃}, s̈1, . . . , s̈m) H(s̊1, . . . , s̊n, s, s̃, . . . , s̈1, . . . , s̈m)

θs̊,s,s̃,s̈ 


η�s̊,s,s̃⊗id

θs̊[s,s̃],s̈

η�s̊,s,s̃,s̈

where θs̊,s,s̃,s̈ is defined similarly to θs̊,s,s̃. We leave it to the reader to write down similar
diagrams for push-forwards, to draw the corresponding diagrams and to compose them
(refer to the examples of diagrams in Section 1).
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