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Introduction. Many special cases of the equation x2 + C = y" where x and y are
positive integers and n 3= 3 have been considered over the years, but most results for
general n are of fairly recent origin. The earliest reference seems to be an assertion by
Fermat that he had shown that when C = 2, n = 3, the only solutions are given by x = 5,
y = 3; a proof was published by Euler [1]. The first result for general n is due to Lebesgue
[2] who proved that when C = 1 there are no solutions. Nagell [4] generalised Fermat's
result and proved that for C = 2 the equation has no solution other than JC = 5, y = 3,
n = 3. He also showed [5] that for C = 4 the equation has no solution except x = 2, y = 2,
n = 3 and x = 11, y = 5, n = 3, and claims in [6] to have dealt with the case C = 5. The
case C = - 1 was solved by Chao Ko, and an account appears in [3], pp. 302-304.

The method for C = 1, 2 or 4 consists of two parts. Firstly, using the fact that the
fields Q[V^T] and Q[V^2] have unique prime factorisation it is shown that y = a2 + C for
some suitable a. Then the fact that the fundamental unit in the field Q[V(a + C)\ can be
expressed simply in terms of a is used. For other values of C, even if the first step can be
followed, the second cannot, and a different method is required to complete the proof.
Nagell [6] found such a method for C = 8, and proved that there are no solutions.

It follows from [8, Theorem 12.2], an extension of a deep analytical result due to
Shorey, van der Poorten, Tijdeman and Schinzel [7], that any such equation has but
finitely many solutions, and moreover that these are effectively computable, in the usual
sense, viz., that it is possible to find them all by considering all values of say, x, up to
some bound K(C) which can be explicitly calculated. In practice, the power of that
method is limited by the huge size of the K that arises, but it does provide a theoretical
method for solving such problems.

T H E O R E M . The equation x 2 + 3 = y" has no solution in positive integers x , y and n > 3 .

Proof. The case in which n is even is easily dismissed, since then 3 is to be expressed
as the difference of two integer squares; this implies x = 1 which gives no solution. For n
odd there is no loss of generality in considering only odd primes p. If x were odd then
x2 + 3 = 4 (mod 8), yielding no solution. Thus x is even, and then y = 3 (mod 4), and so in
the field Q(V-3] with unique prime factorisation

where the factors on the left hand side have no common factor. Thus for some rational
integers A and B with the same parity

and y = \{A2 + 3fl2), where e is a unit of the field. Since there are just six units, ±1, ±co,
±a)2, where co = e\p(2jti/3), all of which satisfy e6 = 1, it follows that if p # 3 these can
be absorbed into the pth power, and so we find that

(1)
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On the other hand, for p = 3, we cannot necessarily do this, and obtain in addition two
more cases, viz.,

x + V=3 = l
2(l ± V^3)ti(A + B V^3))3. (2)

We deal with (2) first. Equating imaginary parts yields

16 = ±(A3 - 9AB2) + (3A2B - 3B3)

and we can ignore the lower sign by absorbing it into A if necessary. Then 16 =
A3 + 3A2B-9AB2-3B3 = (A + B)3-l2AB2-4B3. Since A and B have the same
parity, we write 2C = A + B, and obtain 2 = C3 — 3B2C + B3. This is easily seen to be
impossible, since the right hand side is odd unless both B and C are even, and is divisible
by 8 if they are. So this case does not arise.

Equating imaginary parts in (1), we obtain

i(p-l

If B were odd, then B = ±1, and then modulo p, we should find that 2 = 2P =
± (—3)*(p~1) = ±(—3 \p), which is impossible. So A and B are both even, and so
substituting A = la, B = 2b gives

and so b = ±1, y = a2 + 3. Since y = 3 (mod 4), a is even and

and we may reject the lower sign modulo 4. Hence

Thus 3 -(- a and /? = 1 (mod 3). Now let § = a2 - 1. Then the right hand side of (3) becomes

say, where /40,/I,,. . . ,/lj(P-i) are integers. Since p = 1 (mod 6), let 3V || (p - 1). We
assert that:

A0 = 2p-u, At = 0; A2=-p(p-l).2p-6; 3v+2~r | Ar, 3 « r « v + 2,

which we prove below. Subject to these assertions, we can now complete the proof. For
we then have from (3)

2"-'-l=/7(p-l).2"-V-l)2- (£V(a2-l)r

and this is impossible as the left hand side is divisible by precisely 3V+1 whereas every
term on the right is divisible by at least 3V+2.

To prove the assertion we shall expand fp{%) as a Taylor series. This will be valid for
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all §, since it terminates. Define for all positive integers m the real function

f,~ ( ( l + g>*

Then for m 3=3,

/„,(£) = 2(1 + S)i/m_,(§) - (4 + §)/m_2(§) (5)
and

- (-2co)

2{co - co2)

C O - (O

{ 0 if m = 0(mod3)

(-2)"1"1 if m s l ( m o d 3 ) . (6)
- ( -2)" 1 - ' if m =2 (mod3)

Thus since /? = 1 (mod 6) we obtain immediately A0 = fp(0) = 2p~l. Differentiating (4)
yields

2(l + i ) i / U | ) = m/m_1(|), (7)
and so from (6), At =f'p(0) = 0 since p - 1 = 0 (mod 6). Again

4(1 + §)i ^ {(1 + &!'„{£)) = «("» - 1^-2(1)

yielding

4(1 + | )C(§) + 2/^(g) = m(m - l)/m_2(£) (8)

and so 4/^(0) = -p(p - 1)2P~3 in view of (6), since p-2 = 5 (mod 6). Thus A2 =
-p(p - VfiP-6. Now use (7) and (8) in (5) to obtain

4(£2 + 5§ + 4)#(§) - 2{^(2p - 3) + (2p - 6)}/;(§) +p(p - l)/p(§) = 0.

Now let rL4r=/£r)(0) = 2"~2r~1/>(/?-l)Br. Then the above equation yields without
difficulty B, = 0, B2 = - 1 and for r > 0 Br+2 = (p-5r- 3)Br+1 - (p - 2r)(p -2r- \)Br.
Thus Br is an integer for each r 5= 1. Hence rL4r=/£r)(0) is divisible by (p -1) and in

particular by 3V. But the power of 3 dividing r! is E [r/3p] *s r - 2, which completes the

proof.

REFERENCES

1. L. Euler, Algebra, Volume 2.
2. V. A. Lebesgue, Sur l'impossibilitg en nombres entiers de liquation xm =y2 + 1, Nouvelles

Annales des Mathematiques (1) 9 (1850) 178.

https://doi.org/10.1017/S0017089500009757 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500009757


206 J. H. E. COHN

3. L. J. Mordell, Diophantine equations (Academic Press, 1969).
4. T. Nagell, Verallgeminerung eines Fermatschen Satzes, Archiv der Mathematik 5 (1954),

153-159.
5. T. Nagell, Contributions to the theory of a category of Diophantine equations of the second

degree with two unknowns, Nova Acta Regiae Soc. Sc. Upsaliensis (4) 16 No. 2 (1955), 1-38.
6. T. Nagell, On the Diophantine equation x2 + 8D=y", Arkiv for Matematik 3 (1955),

103-112.
7. T. N. Shorey, A. J. van der Poorten, R. Tijdeman and Schinzel, Applications of the

Gel'fond-Baker method to diophantine equations, in Transcendence Theory: Advances and
Applications, (Academic Press, 1977), 59-77.

8. T. N. Shorey and Tijdeman, Exponential Diophantine equations, (Cambridge University
Press, 1986).

DEPARTMENT OF MATHEMATICS,

RHBNC
EGHAM

SURREY TW20 OEX.

https://doi.org/10.1017/S0017089500009757 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500009757

