
Canad. J. Math. Vol. 69 (6), 2017 pp. 1312–1337
http://dx.doi.org/10.4153/CJM-2017-001-9
©Canadian Mathematical Society 2017

On Asymptotically Orthonormal
Sequences

Emmanuel Fricain and Rishika Rupam

Abstract. An asymptotically orthonormal sequence is a sequence that is nearly orthonormal in the
sense that it satisûes the Parseval equality up to two constants close to one. In this paper, we ex-
plore such sequences formed by normalized reproducing kernels for model spaces and de Branges–
Rovnyak spaces.

1 Introduction

When working in Hilbert spaces, it is very natural and useful to deal with orthonor-
mal bases. However, inmany situations, the systemwe are interested in does not form
an orthonormal basis but is close to one. _e investigation of such bases has a long
history. It began with the works of Paley–Wiener [16] and Levinson [13], mainly for
exponential systems. In this context, functional models have been used in [12] to-
gether with some other tools from operator theory. _emodel spaces KΘ of the unit
disc are subspaces of the Hardy space H2(D) invariant under the adjoints of multi-
plications. _eir theory is connected to dilation theory for contractions on Hilbert
spaces. _e paper [12] has inspired a fruitful line of research on geometric properties
of systems formed by reproducing kernels for KΘ . Not only did it enable the recapture
of all classical results on exponential systems, but it also provided many new results
in a more general context. In [4], following the line of research in [12], the authors
studied the case when the system of normalized reproducing kernels (κΘ

λn
)n for KΘ

is asymptotically close to an orthonormal basis (see deûnition below). _is is a par-
ticular case of unconditional basiswheremore rigidity is required. It should be noted
that in [12] and [4], the additional assumption

(1.1) sup
n≥1

∣Θ(λn)∣ < 1

is required. Under that assumption, the projection method developed in [12] and
used in [4] linked the properties of (κΘ

λn
)n with those of normalized reproducing ker-

nels (κλn)n for H2(D). Volberg proved in [19] that (κλn)n is an asymptotically or-
thonormal basis for its closed span if and only if (λn)n is a thin sequence (a stronger
condition than Carleson’s condition). _is beautiful result was recently reproved by
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Gorkin,McCarthy, Pott, andWick [11] by a direct and easiermethod using ideas from
interpolation theory.
Following the work of Baranov [2] for Riesz bases, we are interested here in in-

vestigating asymptotically orthonormal bases of reproducing kernels for KΘ without
requiring assumption (1.1). In this situation, the projection method no longer applies,
and themain tool herewill be Bernstein’s type inequalities. We alsowork in themore
general context wheremodel spaces KΘ are replaced by de Branges–Rovnyak spaces
H(b). We should mention that we work in the upper-half plane, but most results
transfer easily to the unit disc.

_e plan of the paper is the following. _e next section contains preliminary ma-
terial; in particular, an analogue of Bari’s theorem is given, which completes a result
given in [4]. In Section 3, we study the stability of asymptotically orthonormal se-
quenceswith respect to perturbation of frequencies. _emain results of the paper are
_eorem 3.6, Corollary 3.13,_eorem 3.24, and Corollary 3.27. In Section 4,we study
the case of exponential systems. Finally, in the last section,we examinewhat happens
when one projects an AOB (κb1

λn
)n≥1 on a subspaceH(b2) ofH(b1).

2 Preliminaries

2.1 Asymptotically Orthonormal Sequences

LetH be aHilbert space, and letX = (xn)n≥1 be a sequence of vectors inH. We recall
that X is said to be:
(a) minimal if for every n ≥ 1, xn /∈ span(xℓ ∶ ℓ /= n), where span(⋅ ⋅ ⋅) denotes the

closure of the ûnite linear combination of (⋅ ⋅ ⋅);
(b) a Riesz sequence (RS) if there exists two constants c,C > 0 such that

c∑
n≥1

∣an ∣
2
≤ ∥∑

n≥1
anxn∥

2
H ≤ C∑

n≥1
∣an ∣

2

for every ûnitely supported sequence of complex numbers (an)n ;
(c) an asymptotically orthonormal sequence (AOS) if there exists N0 ∈ N such that for

all N ≥ N0 there are constants cN ,CN > 0 verifying

(2.1) cN ∑
n≥N

∣an ∣
2
≤ ∥ ∑

n≥N
anxn∥

2
H ≤ CN ∑

n≥N
∣an ∣

2

for every ûnitely supported sequence of complex numbers (an)n and

lim
N→∞

cN = 1 = lim
N→∞

CN ;

(d) an asymptotically orthonormal basic sequence (AOB) if it is an AOS with N0 = 1;
(e) a Riesz basis (RB) forH if it is a completeRiesz sequence, that is, aRiesz sequence

satisfying span(xn ∶ n ≥ 1) =H.
It is easy to see that (xn)n≥1 is anAOB if and only if it is anAOS aswell as an RS.Also,
(xn)n≥1 is an AOB if and only if it is minimal and an AOS. _e well-known result
of Köthe–Toeplitz ([14, p. 136]) says that if X = (xn)n≥1 is a complete and minimal
sequence of normalized vectors in H, then X is a Riesz basis for H if and only if X is
an unconditional basis for H. _e reader should pay attention to the fact that AOB
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does not imply completeness; anAOB is a basis for its span but not necessarily for the
whole space.

We recall also that for a sequence X = (xn)n≥1, the Gram matrix ΓX = (Γn ,p)n ,p≥1
is deûned by

Γn ,p = ⟨xn , xp⟩H , (n, p ≥ 1).

If X = (xn)n≥1 is a complete andminimal sequence and X∗ = (x∗n)n≥1 is its biorthog-
onal sequence, that is, the unique sequence (x∗n)n≥1 in H satisfying

⟨xℓ , x∗n⟩H = δn ,ℓ =
⎧⎪⎪
⎨
⎪⎪⎩

1 if n = ℓ,
0 if n /= ℓ,

then the interpolation operator JX is deûned as

JXx = (⟨ f , x∗n⟩H)n≥1 , (x ∈H).

We ûnally recall that X = (xn)n≥1 is a Riesz basis for H if and only if there exists a
(unique) invertible operatorUX∶H → ℓ2 such thatUX(xn) = en , n ≥ 1,where (en)n≥1
is the canonical orthonormal basis for ℓ2. _e operator UX is called the orthonormal-
izer of X. We refer the reader to [9, 14,20] for details on general geometric properties
of sequences in an Hilbert space.
Bari’s theorem (see [14, p. 132]) gives several characterizations for a sequence to

be a RB in terms of its Gram matrix and the interpolation operator. An analogue
of Bari’s result for complete AOB is also available. A part of this can be found in
[4]. To complete the picture, we need two preliminaries results. First, we introduce a
notation. Let T ∈ L(H1 ,H2). We say that T ∈ UK(H1 ,H2) if T is invertible from
H1 ontoH2 and can be written as T = U +K, whereU ,K ∈ L(H1 ,H2), U is unitary,
and K is compact.

Lemma 2.2 Let H1 ,H2 ,H3 be Hilbert spaces.
(i) If T1 ∈ UK(H1 ,H2) and T2 ∈ UK(H2 ,H3), then T2T1 ∈ UK(H1 ,H3).
(ii) If T ∈ UK(H1 ,H2), then T−1 ∈ UK(H2 ,H1).
(iii) If T ∈ UK(H1 ,H2), then T∗ ∈ UK(H2 ,H1).

Proof _e proofs of (i) and (iii) are straightforward and are le� to the reader. Let us
prove (ii). Assume that T = U + K is invertible with U unitary and K compact. _en
write T = U(I + U∗K) = UV with V = I + U∗K. It is clear that V is invertible and
I = V−1 + V−1U∗K. Hence, V−1 = I − V−1U∗K, and we get

T−1
= V−1U∗

= U∗
− V−1U∗KU∗ ,

which implies that T−1 ∈ UK(H2 ,H1).

Lemma 2.3 Let X = (xn)n≥1 be a complete AOB for H and let CN be the constant
appearing in the right inequality of (2.1). _en for every N ≥ 1 and f ∈H, we have

∑
n≥N

∣⟨ f , xn⟩H∣
2
≤ CN∥ f ∥2

H .
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Proof Let us denote by PN ∶ ℓ2 → ℓ2 the orthogonal projection deûned by

PN(∑
n≥1
anen) = ∑

n≥N
anen ,

where (en)n≥1 is the canonical orthonormal basis of ℓ2. For every a = (an)n≥1 ∈ ℓ2,
deûne

VXa =∑
n≥1
anxn .

Since X is a Riesz basis, this map VX deûnes a continuous and invertible operator
from ℓ2 onto H. Moreover, for a ∈ ℓ2, we have

∥VXPNa∥2
H = ∥ ∑

n≥N
anxn∥

2
H ≤ CN ∑

n≥N
∣an ∣

2
≤ CN∥a∥2

ℓ2 ,

which gives ∥PNV∗
X∥ = ∥VXPN∥ ≤

√
CN . But is is easy to see that V∗

X = JX∗ , whence
∥PN JX∗∥ ≤

√
CN , and we get the desired inequality.

_eorem 2.4 Let X = (xn)n≥1 be a complete and minimal sequence of vectors in H,
X∗ = (x∗n)n≥1 its biorthogonal sequence. _e following assertions are equivalent:
(i) _e sequence X is a complete AOB for H.
(ii) _ere exists an operator UX ∈ UK(H, ℓ2) such that UX(xn) = en , n ≥ 1.
(iii) _eGrammatrix deûnes a bounded and invertible operator on ℓ2 of the form I+K

with K compact.
(iv) JX∗ ∈ UK(H, ℓ2).
(v) _e sequence X∗ is a complete AOB for H.
(vi) _ere exists an invertible operator UX∶H → ℓ2 such that UX(xn) = en , n ≥ 1,

and if UX,N ∶ span(xn ∶ n ≥ N) → span(en ∶ n ≥ N) is the restriction of UX to
span(xn ∶ n ≥ N), then

lim
N→∞

∥UX,N∥ = 1 = lim
N→∞

∥U−1
X,N∥.

(vii) For every N ≥ 1, there are two constants CN ,C∗N > 0 such that

(2.5) C∗N
−1
∥ f ∥2

H ≤ ∑
n≥N

∣⟨ f , xn⟩H∣
2
≤ CN∥ f ∥2

H

for every f ∈H ⊖ span(x1 , x2 , . . . , xN−1) and limN→∞ CN = 1 = limN→∞ C∗N .
(viii) _e sequence X∗ is complete in H and for every N ≥ 1, there are two constants

CN ,C∗N > 0 such that

(2.6) ∑
n≥N

∣⟨ f , xn⟩H∣
2
≤ CN∥ f ∥2

H and ∑
n≥N

∣⟨ f , x∗n⟩H∣
2
≤ C∗N∥ f ∥2

H ,

for every f ∈H and limN→∞ CN = 1 = limN→∞ C∗N .

Proof _e equivalences between (i), (ii), and (iii) are contained in [4, Proposi-
tion 3.2]. _e equivalence with (iv) follows from Bari’s theorem, the fact that JX∗ =

V∗
X = (U−1

X )∗, and Lemma 2.2. Let us now prove the others implications.
(ii)⇒ (v): Since

δn ,ℓ = ⟨UXxn ,UXxℓ⟩ℓ2 = ⟨xn ,U∗
XUXxℓ⟩H ,
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we have x∗ℓ = U∗
XUXxℓ = U∗

Xeℓ , ℓ ≥ 1. _us, UX∗ = (U∗
X)−1 andX∗ is a complete and

minimal sequence. Now (v) follows from Lemma 2.2 and the implication (ii)⇒ (i)
applied to X∗.

(v)⇒ (i): Use the implication (i)⇒ (v) applied to X∗.
(i) ⇒ (vi): By Bari’s theorem, UX is a bounded and invertible operator from H

onto ℓ2. Moreover, for every x = ∑n≥N anxn , we have

∥UX,Nx∥2
ℓ2 = ∥ ∑

n≥N
anen∥

2

ℓ2
= ∑

n≥N
∣an ∣

2 ,

and using (2.1), we get

cN∥UX,Nx∥2
ℓ2 ≤ ∥x∥2

H ≤ CN∥UX,Nx∥2
ℓ2 .

_us, C−1/2
N ≤ ∥UX,N∥ ≤ c−1/2

N and ∥UX,N∥ → 1 as N goes to ∞. Similarly, we prove
that ∥U−1

X,N∥→ 1 as N goes to∞.
(vi)⇒ (i): By Bari’s theorem, X is a Riesz basis. Moreover, we have

∥ ∑
n≥N

anxn∥
2

H
= ∥U−1

X,N( ∑
n≥N

anen)∥
2

H
≤ ∥U−1

X,N∥
2
∑
n≥N

∣an ∣
2 ,

∑
n≥N

∣an ∣
2
= ∥UX,N( ∑

n≥N
anxn)∥

2

ℓ2
≤ ∥UX,N∥

2
∥ ∑

n≥N
anxn∥

2

H
.

_en we obtain

∥UX,N∥
−2
∑
n≥N

∣an ∣
2
≤ ∥ ∑

n≥N
anxn∥

2

H
≤ ∥U−1

X,N∥
2
∑
n≥N

∣an ∣
2 .

Since ∥UX,N∥ and ∥U−1
X,N∥ go to 1 as N goes to ∞, we get that (xn)n≥1 is a complete

AOB for H.
(i)⇒ (vii): _e right inequality in (2.5) follows from Lemma 2.3. Since (x∗n)n≥1 is

also a complete AOB for H, for every N ≥ 1, there are two positive constants c∗N ,C
∗
N

satisfying

(2.7) c∗N ∑
n≥N

∣an ∣
2
≤ ∥ ∑

n≥N
anx∗n∥

2

H
≤ C∗N ∑

n≥N
∣an ∣

2 ,

and c∗N ,C
∗
N go to 1 asN goes to∞. Moreover, for every f ∈H⊖span(x1 , x2 , . . . , xN−1),

we have
f = ∑

n≥N
⟨ f , xn⟩Hx∗n ,

and (2.7) gives
∥ f ∥2

H ≤ C∗N ∑
n≥N

∣⟨ f , xn⟩H∣
2 .

_is proves the le� inequality in (2.5).
(vii)⇒ (v): Since

C∗1
−1
∥ f ∥2

H ≤∑
n≥1

∣⟨ f , xn⟩H∣
2
≤ C1∥ f ∥2

H ,

for every f ∈ H, the operator JX∗ is invertible from H onto ℓ2. Hence, accord-
ing to Bari’s theorem, the sequences X and X∗ are Riesz basis for H. Moreover,
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every f = ∑n≥N anx∗n with (an)n≥N ∈ ℓ2 satisûes f ∈ H ⊖ span(x1 , . . . , xN−1) and
⟨ f , xk⟩H = ak , k ≥ N . Hence by (2.5), we have

C∗N
−1
∥ ∑

n≥N
anx∗n∥

2

H
≤ ∑

n≥N
∣an ∣

2
≤ CN∥ ∑

n≥N
anx∗n∥

2

H
,

and (x∗n)n≥1 is an AOB.
(i)⇒ (viii): Follows immediately from Lemma 2.3 and the fact that (i)⇒(v).
(viii)⇒(i): Let f = ∑n≥N anxn , where (an)n≥N is a ûnitely supported sequence of

complex numbers. _en applying the second inequality in (2.6) gives us

∑
n≥N

∣an ∣
2
≤ C∗N∥ ∑

n≥N
anxn∥

2

H
.

On the other hand, by duality and Cauchy–Schwarz inequality, we have

∥ ∑
n≥N

anxn∥
2

H
= sup

g∈H
∥g∥H≤1

∣ ⟨ ∑
n≥N

anxn , g⟩H∣
2
= sup

g∈H
∥g∥H≤1

∣ ∑
n≥N

an⟨xn , g⟩H∣
2

≤ ∑
n≥N

∣an ∣
2 sup

g∈H
∥g∥H≤1

∑
n≥N

∣⟨xn , g⟩H∣
2
≤ CN ∑

n≥N
∣an ∣

2 .

We now give two simple conditions on the Gram matrix, one necessary and the
other one suõcient for a sequence to be an AOB.

Proposition 2.8 Let X = (xn)n≥1 be a sequence of normalized vectors in H and let
ΓX = (Γn ,p)n ,p≥1 be its Gram matrix. _e following hold:
(i) If

lim
N→∞

( sup
n≥N

∑
p≥N
p/=n

∣Γn ,p ∣) = 0,

then (xn)n≥1 is an AOS.
(ii) If (xn)n≥1 is an AOB, then

lim
n→∞(∑

p≥1
p/=n

∣Γn ,p ∣
2
) = 0.

Proof (i) Let (an)n≥1 be a ûnitely supported sequence of complex numbers and de-
note by

εN = sup
n≥N

∑
p≥N
p/=n

∣Γn ,p ∣.

Write

∥ ∑
n≥N

anxn∥
2

H
= ∑

n ,p≥N
anap⟨xn , xp⟩H = ∑

n≥N
∣an ∣

2
+ ∑

n ,p≥N
n/=p

anap Γn ,p .
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We will prove the inequality

(2.9) ∣ ∑
n ,p≥N
n/=p

anap Γn ,p∣ ≤ εN ∑
n≥N

∣an ∣
2 .

Using that ab ≤ (a2 + b2)/2, for every real numbers a and b, and ∣Γn ,p ∣ = ∣Γp,n ∣, we
have

∣ ∑
n ,p≥N
n/=p

anap Γn ,p∣ ≤
1
2
∑

n ,p≥N
n/=p

(∣an ∣
2
+ ∣ap ∣

2
)∣Γn ,p ∣

= ∑
n ,p≥N
n/=p

∣an ∣
2
∣Γn ,p ∣ = ∑

n≥N
∣an ∣

2
∑
p≥N
p/=n

∣Γn ,p ∣,

which gives (2.9). _erefore,

(1 − εN) ∑
n≥N

∣an ∣
2
≤ ∥ ∑

n≥N
anxn∥

2

H
≤ (1 + εN) ∑

n≥N
∣an ∣

2 .

Since εN → 0 as N →∞, the sequence (xn)n≥1 is an AOS.
(ii) SinceX = (xn)n≥1 is anAOB,we know from _eorem 2.4 that ΓX = I+K,with

K compact. In particular, we have

∥(ΓX − I)en∥2
ℓ2 = ∥Ken∥2

ℓ2 → 0, as n →∞.

It remains to note that
∥(ΓX − I)en∥2

ℓ2 = ∑
p≥1
p/=n

∣Γn ,p ∣
2 .

We end this subsection with two stability results. _e ûrst one is inspired by an
analogue result of Baranov for the Riesz basis property [2]. _e second one is a gen-
eralization of a result appearing in [4, Proposition 3.3].

Proposition 2.10 Let (xn)n≥1 and (x′n)n≥1 be two sequences inH. Assume that there
exists N0 ∈ N such that for all N ≥ N0 there is εN > 0 verifying

(2.11) ∑
n≥N

∣⟨x , xn − x′n⟩∣
2
≤ εN∥x∥2

H ,

for every x ∈ H and limN→∞ εN = 0. _en (xn)n≥1 is an AOS if and only if (x′n)n≥1 is
an AOS. Furthermore, if N0 = 1 and ε1 is suõciently small, then (xn)n≥1 is a complete
AOB for H if and only if (x′n)n≥1 is a complete AOB for H.

Proof Let (an)n be a ûnitely supported sequence of complex numbers. For the ûrst
part, since (2.11) is symmetric with respect to xn and x′n , it is suõcient to show that if
(xn)n≥1 is anAOS and if cN and CN are the constants appearing in (2.1), thenwe have

(cN + εN − 2
√
cN εN) ∑

n≥N
∣an ∣

2
≤ ∥ ∑

n≥N
anx′n∥

2

H
≤ (Cn + εN + 2

√
CN εN) ∑

n≥N
∣an ∣

2 .

For simplicity, deûne gN ∶= ∑n≥N anxn and g′N = ∑n≥N anx′n and write

∥gN − g′N∥
2
H = ⟨ gN − g′N , ∑

n≥N
an(xn − x′n)⟩

H
= ∑

n≥N
an⟨gN − g′N , xn − x′n⟩.
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_en using the Cauchy–Schwarz inequality and (2.11), we get

∥gN − g′N∥
2
H ≤ ( ∑

n≥N
∣an ∣

2
)

1/2
( ∑

n≥N
∣⟨gN − g′N , xn − x′n⟩∣

2
)

1/2

≤
√
εN( ∑

n≥N
∣an ∣

2
)

1/2
∥gN − g′N∥H .

We thus have ∥gN−g′N∥H ≤
√
εN∥(an)n≥N∥ℓ2 .Wenow obtain the desired inequalities

as follows:

∥ ∑
n≥N

anx′n∥
H
≥ ∥ ∑

n≥N
anxn∥

H
− ∥ ∑

n≥N
an(xn − x′n)∥

H

≥
√
cN( ∑

n≥N
∣an ∣

2
)

1/2
−
√
εN( ∑

n≥N
∣an ∣

2
)

1/2

= (
√
cN −

√
εN)( ∑

n≥N
∣an ∣

2
)

1/2
.

And similarly,

∥ ∑
n≥N

anx′n∥
H
≤ (

√
CN +

√
εn)( ∑

n≥N
∣an ∣

2
)

1/2
.

Assume now that (xn)n≥1 is a complete AOB for H. _en we know that the op-
erator JX∗ , deûned by JX∗x = (⟨x , xn⟩)n≥1, is an isomorphism from H onto ℓ2. _e
inequality (2.11) for N = 1 implies that ∥JX∗ − JX′∗∥ ≤

√
ε1. _erefore for ε1 suõciently

small, the operator JX′∗ is also an isomorphism fromH onto ℓ2. It follows from Bari’s
theorem that (x′n)n≥1 is a Riesz basis for H and thus a complete AOB for H.

Proposition 2.12 Let X = (xn)n≥1 be a complete AOB for H and let (x′n)n≥1 be a
sequence in H satisfying

∑
n≥1

∥xn − x′n∥
2
H < ∥UX∥

−2 .

_en (x′n)n≥1 is a complete AOB for H.

Proof Let x ∈H. _en we have

∑
n≥N

∣⟨x , xn − x′n⟩∣
2
≤ ∥x∥2

H ∑
n≥N

∥xn − x′n∥
2
H = εN∥ f ∥2

H ,

where εN = ∑n≥N ∥xn − x′n∥
2
H. It follows by hypothesis that εN → 0 as N goes to∞.

Hence, by Proposition 2.10, the sequence (x′n)n≥1 is an AOS. It remains to prove that
(x′n)n≥1 is minimal and complete. For that purpose, deûne T ∶H →H by T(xn) = x′n ,
n ≥ 1, and let δ > 0 such that

∑
n≥1

∥xn − x′n∥
2
H ≤ δ < ∥UX∥

−2 .
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_en for every ûnitely supported sequence of complex numbers (an)n≥1, we have

∥(I − T)∑
n≥1
anxn∥ = ∥∑

n≥1
an(xn − x′n)∥

≤ (∑
n≥1

∣an ∣
2
)

1/2
(∑

n≥1
∥xn − x′n∥

2
)

1/2

≤
√
δ(∑

n≥1
∣an ∣

2
)

1/2
≤
√
δ∥UX∥∥∑

n≥1
anxn∥ .

Since (xn)n≥1 is a Riesz basis for H, the operator I − T is bounded and ∥I − T∥ ≤
√
δ∥UX∥ < 1. _us, T = I − (I − T) is bounded and invertible. In particular, we

deduce that (x′n)n≥1 is complete andminimal.

2.2 De Branges–Rovnyak Spaces

Let H∞ denote the space of bounded analytic functions on the upper half-planeC+ =
{z ∈ C ∶ I(z) > 0}normed by ∥ f ∥∞ = supz∈C+ ∣ f (z)∣ and letH∞

1 = {g ∈ H∞ ∶ ∥g∥∞ ≤

1} be the closed unit ball of H∞. For b ∈ H∞
1 , the de Branges–Rovnyak spaceH(b)

is the reproducing kernel Hilbert space of analytic functions on C+ whose kernel is
given by

kbλ(z) =
i

2π
1 − b(λ)b(z)

z − λ
, λ, z ∈ C+ .

By deûnition, f (λ) = ⟨ f , kbλ⟩b for all f ∈ H(b) and λ ∈ C+, where ⟨ ⋅ , ⋅ ⟩b represents
the inner product in H(b). _e space H(b) can also be deûned as the range space
(I − TbT∗

b )
1/2H2 equippedwith the norm thatmakes (I−TbT∗

b )
1/2 a partial isometry.

Here H2 is the Hardy space of C+, that is, the space of analytic functions f on C+
verifying

∥ f ∥2
2 = sup

y>0
(∫

∞

−∞
∣ f (x + iy)∣2 dx) <∞,

and Tφ is the Toeplitz operator on H2 with symbol φ ∈ L∞(R) deûned by Tφ( f ) =
P+(φ f ), f ∈ H2, where P+ denotes the orthogonal projection of L2(R) onto H2.

_ese spaces (and,more precisely, their general vector-valued version)were intro-
duced by de Branges and Rovnyak [6, 7] as universal model spaces for Hilbert space
contractions. _anks to the pioneer works of Sarason, we know that de Branges–
Rovnyak spaces play an important role in numerous questions of complex analysis
and operator theory. _e book [17] is the classical reference forH(b) spaces. See also
the recent monograph [9].

In the special case where b = Θ is an inner function (that is, ∣Θ∣ = 1 a.e. on R),
the operator (Id−TΘT∗

Θ)
1/2 is an orthogonal projection andH(Θ) becomes a closed

(ordinary) subspace of H2 that coincides with the so-calledmodel subspace

KΘ = H2
⊖ΘH2

= H2
∩ΘH2 .

For themodel space theory, see [10, 15].
It turns out that the boundary behavior of functions in H(b) is controlled by the

boundary behavior of the function b itself. More precisely, let b = BIµOb be the
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canonical factorization of b, where

B(z) =∏
n
e iαn

z − zn
z − zn

is a Blaschke product, the singular inner function Iµ is given by

Iµ(z) = exp( iaz −
i
π ∫R

(
1

z − t
+

t
t2 + 1

) dµ(t))

with a positive measure µ on R singular with respect to Lebesgue measure dt such
that ∫R(1 + t2)−1 dµ(t) <∞ and a ≥ 0, and Ob is the outer function

Ob(z) = exp(
i
π ∫R

(
1

z − t
+

t
t2 + 1

) log ∣b(t)∣ dt) .

For x0 ∈ R and ℓ ≥ 1, let

Sℓ(x0) ∶=
∞
∑
n=1

I(zn)
∣x0 − zn ∣ℓ

+ ∫
R

dµ(t)
∣x0 − t∣ℓ

+ ∫
R

∣ log ∣b(t)∣∣
∣x0 − t∣ℓ

dt

and Eℓ(b) = {x0 ∈ R ∶ Sℓ(x0) <∞}. _e set Eℓ(b) is related to nontangential bound-
ary limits of functions (and their derivatives) inH(b). More precisely, if S2(x0) <∞,
then it was proved in [8] that for each f ∈H(b), the nontangential limit

f (x0) = lim
zÐ→x0∢

f (z)

exists, the function

kbx0(z) =
i

2π
1 − b(x0)b(z)

z − x0
, z ∈ C+ ,

belongs toH(b), and ⟨ f , kbx0⟩b = f (x0), f ∈H(b). In that case,we also have ∥kbx0∥
2
b =

S2(x0) = ∣b′(x0)∣. Moreover, if S4(x0) <∞, for every function f ∈ H(b), f (z), and
f ′(z) have ûnite limits as z tends nontangentially to x0. In [3], a Bernstein’s type
inequality is proved in the context ofH(b) spaces. To state this inequality, we need
to introduce the following kernel. For z0 ∈ C+ ∪ E4(b), we deûne

Kbz0(t) = b(z0)
2 − b(z0)b(t)

(t − z0)2 .

It is not diõcult to see that ρ1/qKbz0 ∈ Lq(R) if and only if

∫
R

∣ log ∣b(t)∣∣
∣t − z0∣2q

dt <∞,

where ρ(t) = 1 − ∣b(t)∣2, t ∈ R. Now, for 1 < p ≤ 2 and q its conjugate exponent, we
deûne

wp(z) ∶= min{∥(kbz )
2
∥
−p/(p+1)
q , ∥ρ1/qKbz ∥

−p/(p+1)
q } , z ∈ C+ ,

where ∥ ⋅ ∥q denotes the Lq(R)-norm with respect to Lebesguemeasure dt on R.
We assume thatwp(x) = 0,whenever x ∈ R and at least one of the functions (kbx)2

or ρ1/qKbx is not in Lq(R). Note that if f ∈ H(b) and 1 < p ≤ 2, then f ′wp is well
deûned on R. Indeed, if S4(x) < ∞, then f ′(x) and wp(x) are ûnite. If S4(x) = ∞,
then as shown in [3, 8], ∥(kbx)2∥q = ∞, which, by deûnition, implies that wp(x) = 0,
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and thus we can assume that ( f ′wp)(x) = 0. Moreover, note that in the inner case,
we have ρ(t) = 0 for a.e. t ∈ R, and the second term in the deûnition of theweightwp
disappears. Wewill need two useful estimates for theweightwp . _e ûrst one, proved
in [3, Lemma 3.5], is valid for every function b ∈ H∞

1 : there is a constantC = C(p) > 0
such that

(2.13) wp(z) ≥ C
Iz

(1 − ∣b(z)∣)
p

q(p+1)
, (z ∈ C+).

_e second one, proved in [1] and valid when b = Θ is an inner function, says that
there is two constants C1 ,C2 > 0 such that

C1v0(x) ≤ wp(x) ≤ C2∣Θ′
(x)∣−1 , (x ∈ R),

where v0(x) = min(d0(x), ∣Θ′(x)∣−1), d0(x) = dist(x , σ(Θ)) and σ(Θ) is the spec-
trum of the inner function Θ deûned as the set of all ζ ∈ C+ ∪ {∞} such that

lim inf
z→ζ z∈C+

∣Θ(z)∣ = 0.

It is known that every function f ∈ KΘ has an analytic continuation through R ∖

(σ(Θ) ∩R). Moreover, the quantity v0 has a simple geometrical meaning related to
the sublevel sets Ω(Θ, δ) = {z ∈ C+ ∶ ∣Θ(z)∣ ≤ δ}. Namely, v0(x) ≍ dist(x ,Ω(Θ, δ))
with the constants depending only on δ ∈ (0, 1).

We also recall that a Borel measure µ on the closed upper half-plane C+ is said to
be a Carleson measure if there is a constant C > 0 such that

(2.14) µ(S(x , h)) ≤ C h,

for all squares S(x , h) = [x , x + h] × [0, h], x ∈ R, h > 0, with the lower side on
the real axis. We denote the class of Carleson measures by C, and the best constant
satisfying (2.14) is called the Carleson constant of µ and is denoted by Cµ . Recall that,
according to a classical theoremof Carleson, µ ∈ C if and only ifHp ⊂ Lp(µ) for some
(all) p > 0. In [3], it is proved that if µ ∈ C, 1 < p < 2, then there exists a constant
K = K(µ, p) > 0 such that

(2.15) ∥ f ′wp∥L2(µ) ≤ K∥ f ∥b , f ∈H(b).

In other words, the map f ↦ f ′wp is a bounded operator from H(b) into L2(µ). If
p = 2, then this map is of weak type (2, 2) as an operator from H(b) to L2(µ).

3 Some Stability Results

_is section contains results about the stability of AOBs under certain perturbations.
Wewill o�en use techniques developed by Baranov [2] concerning the stability prob-
lem for the Riesz bases for KΘ .
For λ ∈ C+∪E2(b),we denote by κbλ thenormalized reproducing kernel at thepoint

λ, that is, κbλ = kbλ/∥k
b
λ∥b . Let (λn)n≥1 ⊂ C+ ∪ E2(b) and G = ⋃n Gn ⊂ C+ ∪ E2(b).

We say that G is an admissible set for (λn)n≥1 if it satisûes the following properties:
(i) λn ∈ Gn .
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(ii) For every zn ∈ Gn , we have

lim
n→∞

∥kbzn∥b
∥kbλn

∥b
= 1.

(iii) For every zn ∈ Gn , themeasure ν = ∑n δ[λn ,zn] is a Carlesonmeasure. Moreover,
the Carleson constants Cν of such measures (see (2.14)) are uniformly bounded
with respect to zn . Here [λn , zn] is the straight line interval with the endpoints
λn and zn , and δ[λn ,zn] is the Lebesguemeasure on the interval.

For (λn)n≥1 ⊂ C+ to be such that the sequence (κbλn
)n≥1 is an AOS inH(b), we show

that there always exist non-trivial admissible sets G = ⋃n Gn . More precisely, we can
take

Gn ∶= {z ∈ C+ ∶ ∣z − λn ∣ < εnIλn},
where (εn)n is any sequence of positive numbers tending to 0. We ûrst begin with a
technical lemma.

Lemma 3.1 Let b ∈ H∞
1 , (εn)n be a sequence of positive numbers tending to 0 and

let (λn)n and (µn)n be two sequences in C+ satisfying

(3.2) ∣λn − µn ∣ ≤ εnIλn , n ≥ 1.

_en

lim
n→∞

∥kbµn∥b

∥kbλn
∥b

= 1.

Proof We easily check from (3.2) that

(3.3) 1 − εn ≤
Iµn

Iλn
≤ 1 + εn , n ≥ 1.

Since

∥kbz ∥
2
b =

1 − ∣b(z)∣2

4πIz
,

it is suõcient to prove that

(3.4)
1 − εn
1 + εn

≤
1 − ∣b(λn)∣

1 − ∣b(µn)∣
≤

1 + εn
1 − εn

.

Using the Schwarz–Pick inequality, we have

∣
b(λn) − b(µn)

1 − b(λn)b(µn)
∣≤ ∣

λn − µn

λn − µn
∣ ≤

∣λn − µn ∣

Iλn
≤ εn ,

and (3.4) follows from [18, Lemma 7], which says that if λ, µ ∈ D and satisûes

∣
λ − µ
1 − λµ

∣ ≤ ε,

then
1 − ε
1 + ε

≤
1 − ∣λ∣
1 − ∣µ∣

≤
1 + ε
1 − ε

.
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Corollary 3.5 Let b ∈ H∞
1 , (λn)n≥1 ⊂ C+ be such that (κbλn

)n is an AOS in H(b),
and let (εn)n≥1 be a sequence of positive numbers tending to 0. Deûne

Gn ∶= {z ∈ C+ ∶ ∣z − λn ∣ < εnIλn}, n ≥ 1.

_en the set G = ⋃n Gn is an admissible set for (λn)n≥1.

Proof It is obvious that the sets Gn satisfy (i) and that condition (ii) follows from
Lemma 3.1. According to Proposition 2.8, there exists a constant C > 0 such that for
every n ≥ 1, we have

∑
p≥1

∣Γn ,p ∣
2
≤ C ,

where Γn ,p = ⟨κbλn
, κbλp

⟩b . Since

∣Γn ,p ∣
2
=

4IλnIλp

∣λp − λn ∣2

∣1 − b(λn)b(λp ∣
2

(1 − ∣b(λn ∣2)(1 − ∣b(λp)∣2
≥

IλnIλp

∣λp − λn ∣2
,

we obtain

∑
p≥1

IλnIλp

∣λp − λn ∣2
≤ C .

It is known (see, for instance, [14, Lecture VII]) that this condition implies that the
measure ν = ∑n Iλnδλn is a Carlesonmeasure. _erefore, the setsGn also satisfy (iii).

Note that in [2, 3], similar sets were considered in connection with the stability of
theRiesz basis property. In that situation, condition (ii) can be replaced by theweaker
condition that there exist two positive constants c,C > 0 such that

c ≤
∥kbzn∥b
∥kbλn

∥b
≤ C , zn ∈ Gn , n ≥ 1,

and the set Gn can be taken as Gn ∶= {z ∈ C+ ∶ ∣z − λn ∣ < rIλn}, for suõciently small
r > 0.

_eorem 3.6 Let b ∈ H∞
1 , 1 < p < 2, and (λn)n ⊂ C+ ∪ E2(b) be such that (κbλn

)n≥1
is an AOS in H(b). Assume that G = ∪n≥1Gn is an admissible set for (λn)n≥1, and let
µn ∈ Gn , n ≥ 1. If there exists N0 ∈ N such that for all N ≥ N0 there is εN > 0 verifying

(3.7) sup
n≥N

1
∥kbλn

∥2
b
∫[λn ,µn]

w−2
p (z)∣dz∣ ≤ εN

and limN→∞ εN = 0, then the sequence (κbµn)n≥1 is an AOS in H(b). Moreover, if
(κbλn

)n≥1 is a complete AOB for H(b) and if we can take N0 = 1 and ε1 suõciently
small, then (κbµn)n≥1 is also a complete AOB for H(b).

Proof Let

hbn =
kbµn

∥kbλn
∥b
, n ≥ 1.
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Since by condition (ii), ∥kbµn∥b/∥k
b
λn
∥b → 1 as n →∞,we easily see that (κbµn)n≥1 is an

AOS if and only if (hbn)n≥1 is an AOS. In view of Proposition 2.10, it is then suõcient
to check the estimate

(3.8) ∑
n≥N

∣⟨ f , κbλn
− hbn⟩∣

2
≲ εN∥ f ∥2

b , f ∈H(b).

It follows from (3.7) and [3, Corollary 5.4] that every function f ∈ H(b) is diòeren-
tiable on ]λn , µn[, and the set of all functions inH(b) that are continuous on [λn , µn]

is dense inH(b). _erefore, it is suõcient to prove (3.8) for functions f ∈H(b) con-
tinuous on [λn , µn]. _en

∣⟨ f , κbλn
− hbn⟩∣

2
=

∣ f (λn) − f (µn)∣
2

∥kbλn
∥2
b

=
1

∥kbλn
∥2
b
∣∫[λn ,µn]

f ′(z) dz∣
2
.

By the Cauchy–Schwartz inequality and (3.7), we get

∣⟨ f , κbλn
− hbn⟩∣

2
≤ εN ∫[λn ,µn]

∣ f ′(z)wp(z)∣2 ∣dz∣.

for n ≥ N . It follows from condition (iii) that ν = ∑n δ[λn ,µn] is a Carleson measure
with a constant Cν that does not exceed some absolute constant depending only on
G. Hence, according to (2.15), we have

∑
n≥N

∣⟨ f , κbλn
−hbn⟩∣

2
≤ εN ∑

n≥N
∫[λn ,µn]

∣ f ′(z)wp(z)∣2 ∣dz∣ ≤ εN∥ f ′wp∥
2
L2(ν) ≤ KεN∥ f ∥2

b .

Since εN → 0 as N → ∞, Proposition 2.10 implies that (hbn)n≥1 is an AOS, and so is
(κbµn)n≥1. _e second part for complete AOB follows also from Proposition 2.10.

Remark 3.9 If (λn)n≥1 ⊂ C+ and (κbλn
)n≥1 is a complete AOB for H(b), then it is

suõcient to have (3.7) for N large enough to get that (κbµn)n≥1 is a complete AOB for
H(b). Indeed, apply _eorem 3.6 with the sequence

γn =

⎧⎪⎪
⎨
⎪⎪⎩

λn if n ≤ N ,
µn if n > N ,

and part (i) of the following lemma which shows that we can replace a ûnite number
of terms keeping theminimality and completeness.

Lemma 3.10 Let b ∈ H∞
1 and Λ = (λn)n≥1 ⊂ C+.

(i) Assume that (kbλn
)n≥1 is a minimal and complete sequence in H(b). _en for

every µ ∈ C+ ∖ Λ, the system {kbλn
}n≥2 ∪ {kbµ} is still minimal and complete in

H(b).
(ii) Assume that (kbλn

)n≥1 is not complete in H(b). _en, for every µ ∈ C+ ∖ Λ, the
system {kbλn

}n≥1 ∪ {kbµ} is minimal.

_is result was proved in [12] for the inner case. _e general version is proved
similarly; see [9, Lemma 31.2]. We also need a version of this result for real frequen-
cies. We do not know if it is true in general, but we prove it when b = Θ is an inner
function. _e proof is based on the following key lemma.
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Lemma 3.11 Let Θ be an inner function, x0 ∈ R ∖ (σ(Θ) ∩ R), and let f ∈ KΘ be
such that f (x0) = 0. _en there exists a Blaschke factor J such that {J = −1} = {x0}
and f /(1 + J) ∈ KΘ .

Proof Fix any a > 0, deûne

γ = x0 + ia ∈ C+ and J(z) = bγ(z) =
z − γ
z − γ

.

_en
1 + J(z) =

2(z − x0)
z − γ

and {J = −1} = {x0}.

To check that f /(1 + J) ∈ KΘ , ûrst note that
f (z)

1 + J(z)
=

1
2
( f (z) + ia

f (z)
z − x0

) .

Since x0 ∈ R∖ (σ(Θ)∩R), the function f extends analytically through a neighbour-
hood Vx0 of x0, and we have

∣ f (z)∣ ≤ C∣z − x0∣, z ∈ Vx0 .

Hence, f /(z − x0) ∈ L2(R) ∩N+ = H2, where N+ is the Smirnov class. We deduce
that f /(1 + J) ∈ H2. It remains to note that

Θ f
1 + J

=
JΘ f
1 + J

,

and since f ∈ KΘ , we have Θ f ∈ H2. _us Θ f /(1 + J) ∈ L2(R) ∩N+ = H2. Finally,
f /(1 + J) ∈ H2 ∩ΘH2 = KΘ .

Lemma 3.12 Let Θ be an inner function and let (tn)n≥1 ⊂ E2(Θ).
(i) Assume that t1 /∈ σ(Θ) and (kΘ

tn)n≥1 is a minimal and complete sequence in KΘ .
_en for every t ∈ R∖ (σ(Θ)∩R) and t /= tn , n ≥ 1, the system {kΘ

tn}n≥2 ∪ {kΘ
t }

is still minimal and complete in KΘ .
(ii) Assume that tn /∈ σ(Θ), n ≥ 1, and (kΘ

tn)n≥1 is not complete in KΘ . _en for every
t ∈ R ∖ (σ(Θ) ∩R) and t /= tn , n ≥ 1, the system {kΘ

tn}n≥1 ∪ {kΘ
t } is minimal.

Proof (i) First, let us prove that the system {kΘ
tn}n≥2 ∪{kΘ

t } is complete. Let f ∈ KΘ
such that f (tn) = 0, n ≥ 2 and f (t) = 0. According to Lemma 3.11, there is an inner
function J such that {J = −1} = {t} and f /(1 + J) ∈ KΘ . Deûne

g =
J − J(t1)
1 + J

f = f − (J(t1) + 1)
f

1 + J
.

_e function g belongs to KΘ and it vanishes at every point tn , n ≥ 1. Hence, the com-
pleteness of (kΘ

tn)n≥1 implies that g ≡ 0 and thus f ≡ 0. _is proves the completeness
of {kΘ

tn}n≥2 ∪ {kΘ
t }. As far as theminimality is concerned, note that for every n ≥ 1,

there exists a function fn ∈ KΘ such that fn(tℓ) = δn ,ℓ , ℓ ≥ 1. By the completeness
of {kΘ

tn}n≥2 ∪ {kΘ
t }, we necessarily have f1(t) /= 0 and thus kΘ

t /∈ span(kΘ
tn ∶ n ≥ 2).

Now ûx n ≥ 2. Using Lemma 3.11 one more time, there is an inner function J1
such that {J1 = −1} = {t1} and fn/(1 + J1) ∈ KΘ . Now consider the function gn =
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((J1 − J1(t)) f )/(1 + J1). It is clear that gn ∈ KΘ . Moreover, we have gn(t) = 0,
gn(tℓ) = 0, ℓ /= n, and gn(tn) = (J1(tn)− J1(t))/(1+ J1(tn)) /= 0 (since J1 is a Blaschke
factor and thus is one-to-one). Hence, we get that kΘ

tn /∈ span({kΘ
tℓ}ℓ≥2,ℓ/=n ∪ {kΘ

t }).
_is proves theminimality of {kΘ

tn}n≥2 ∪ {kΘ
t }.

(ii) Since (kΘ
tn)n≥1 is not complete in KΘ , there exists a function f ∈ KΘ , f /≡ 0,

such that f (tn) = 0, n ≥ 1. Fix n ≥ 1. By Lemma 3.11, there is a Blaschke factor
Jn such that {Jn = −1} = {tn} and f /(1 + Jn) ∈ KΘ . Now consider the function
fn = ((Jn − Jn(t)) f )/(1 + Jn). _en fn ∈ KΘ , and we have fn(t) = 0, fn(tℓ) = 0,
ℓ /= n. Dividing onemore time by 1 + Jn if necessary, we can assume that fn(tn) /= 0.
Hence, we deduce that kΘ

tn /∈ span({kΘ
tℓ}ℓ≥1,ℓ/=n ∪ {kΘ

t }). On the other hand, if f (t) /=

0, we immediately get that kΘ
t /∈ span(kΘ

tn ∶ n ≥ 1). If f (t) = 0, then we can use
Lemma 3.11 one more time to drop that extra zero. _is proves the minimality of
{kΘ

tn}n≥1 ∪ {kΘ
t }.

Let Θ be an inner function, (λn)n ⊂ C+ satisfying supn≥1 ∣Θ(λn)∣ < 1. It is proved
in [4] that if (κΘ

λn
)n≥1 is an AOS, there exists ε > 0 such that (κbµn)n≥1 is an AOS for

all sequences (µn)n≥1 ∈ C+ satisfying

∣
λn − µn

λn − µn
∣ ≤ ε.

It is easy to see that this can be generalized to the general case when the inner func-
tion Θ is replaced by a function b ∈ H∞

1 ; see [9]. Without the additional hypothesis
that supn≥1 ∣b(λn)∣ < 1, we obtain the following stability result concerning pseudo-
hyperbolic perturbations.

Corollary 3.13 Let b ∈ H∞
1 and (λn)n≥1 ⊂ C+ be such that (κbλn

)n≥1 is an AOS in
H(b). Let γ > 1/3 and (εn)n≥1 a sequence of positive numbers tending to 0. For every
sequence (µn)n≥1 satisfying

(3.14) ∣
λn − µn

λn − µn
∣ ≤ εn(1 − ∣b(λn)∣)

γ , n ≥ 1,

the sequence (κbµn)n≥1 is an AOS. Moreover, if (κbλn
)n≥1 is a complete AOB for H(b),

then (κbµn)n≥1 is also a complete AOB for H(b).

Proof According to Corollary 3.5, if we deûne the sets

Gn = {z ∈ C+ ∶ ∣z − λn ∣ ≤ εnIλn},

then G = ⋃n Gn is an admissible set for (λn)n≥1. Let (µn)n≥1 satisfy (3.14). _en we
have

(3.15) ∣λn − µn ∣ ≤ εn( 1 − ∣b(λn)∣)
γ
Iλn ≤ εnIλn .

_erefore, µn ∈ Gn . Without loss of generality, we can assume that γ < 1, and since
γ > 1/3, there exists 1 < p < 2 such that 2 p−1

p+1 = 1 − γ. Let q be the conjugate exponent

of p and note that 2p
q(p+1) = 1 − γ. Using (2.13), (3.3), and (3.4), we have

w−2
p (z) ≤ C1

(1 − ∣b(λn)∣)
1−γ

(Iλn)2 ,
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for z ∈ [λn , µn]. Hence,

1
∥kbλn

∥2
b
∫[λn ,µn]

wp(z)−2
∣dz∣ ≤ C2

Iλn

1 − ∣b(λn)∣
∣λn − µn ∣

(1 − ∣b(λn)∣)
1−γ

(Iλn)2 .

Using (3.15), we obtain

1
∥kbλn

∥2
b
∫[λn ,µn]

wp(z)−2
∣dz∣ ≤ C3εn .

_e conclusion for AOS now follows from _eorem 3.6.
For complete AOB, we argue as follows. Let

γn =

⎧⎪⎪
⎨
⎪⎪⎩

λn if n < N0,
µn if n ≥ N0,

where N0 will be chosen later. Since (γn)n≥1 satisûes (3.14), we get from the ûrst part
that

sup
n≥1

1
∥kbλn

∥2
b
∫[λn ,γn]

wp(z)−2
∣dz∣ ≤ C3 sup

n≥N0

εn .

Using that limn→∞ εn = 0, we can choose N0 such that C3 supn≥N0
εn is suõciently

small so that, according to _eorem 3.6, we will get that (κbγn)n≥1 is a complete AOB
for H(b). _en we can apply Lemma 3.10 to get that (κbµn)n≥1 is a complete and
minimal sequence in H(b). Since it is also an AOS, it is ûnally a complete AOB for
H(b).

Remark 3.16 Note that in the case when limn→∞ ∣b(λn)∣ = 1, condition (3.14) can
be replaced by the existence of a constant C > 0 such that

∣
λn − µn

λn − µn
∣ ≤ C(1 − ∣b(λn)∣)

γ , n ≥ 1.

Indeed, it is suõcient to take γ > γ0 > 1/3 and note that

C( 1 − ∣b(λn)∣)
γ
= εn( 1 − ∣b(λn)∣)

γ0 ,

with εn = C(1 − ∣b(λn)∣)
γ−γ0 → 0 as n →∞.

In the inner case, we can also give a stability result when the sequences (λn)n and
(µn)n are on the real line. We ûrst need a result on the construction of admissible
sets.

Lemma 3.17 Let Θ be an inner function, (tn)n≥1 ⊂ E2(Θ) such that (κΘ
tn)n≥1 is a

Riesz sequence in KΘ and (εn)n≥1 a sequence of positive numbers tending to 0. Deûne

(3.18) Gn = { t ∈ R ∶ ∣t − tn ∣ ≤ εnv0(tn)} , n ≥ 1,

where v0(t) = min(d0(t), ∣Θ′(t)∣−1) and d0(t) = dist(t, σ(Θ)). _en the set G =

⋃n Gn is an admissible set for (λn)n≥1.
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Proof Consider the nontrivial case when v0(tn) > 0. In particular, we have

∣t − tn ∣ ≤ εnd0(tn), t ∈ Gn .

Hence,

(3.19) (1 − εn)d0(tn) ≤ d0(t) ≤ (1 + εn)d0(tn), t ∈ Gn .

Now remember that when t ∈ R, kΘ
t ∈ KΘ if and only if

∣Θ′
(t)∣ = a +

∞
∑
ℓ=1

2Izℓ
∣t − zℓ ∣2

+ ∫
R

dσ(x)
∣t − x∣2

<∞,

and in that case,

(3.20) ∥kΘ
t ∥

2
2 = ∣Θ′

(t)∣.

Here, (zℓ)ℓ is the sequence of zeros of Θ, and σ is its associated singular measure.
Using (3.19), it is not diõcult to check that for every ℓ ≥ 1 and t ∈ Gn ,

1 − εn ≤
∣t − zℓ ∣
∣tn − zℓ ∣

≤ 1 + εn ,

and for any x ∈ supp σ ,

1 − εn ≤
∣t − x∣
∣tn − x∣

≤ 1 + εn .

Hence,

(3.21)
1

(1 + εn)2 ∣Θ
′
(tn)∣ ≤ ∣Θ′

(t)∣ ≤
1

(1 − εn)2 ∣Θ
′
(tn)∣.

It then follows from (3.20) that

1
1 + εn

≤
∥kΘ

t ∥2

∥kΘ
tn∥2

≤
1

1 − εn
,

and we get that Gn satisûes condition (ii). Condition (i) is trivial, and condition (iii)
follows along the same line as in [2, Lemma 5.1]. More precisely, using an increasing
continuous branch of the argument of Θ on Gn (note that σ(Θ) ∩Gn = ∅), it can be
proved that for t ∈ Gn , we have

(3.22) kΘ
t (tn) ≥

∣Θ′(tn)∣
8π2 .

Now using the fact that

∑
n≥1

∣kΘ
t (tn)∣2

∣Θ′(tn)∣
=∑

n≥1
∣⟨kΘ

t , κ
Θ
tn ⟩∣

2
≤ C∥kΘ

t ∥
2
2 = C∣Θ

′
(t)∣

we see that the number of integers n such that t ∈ Gn is uniformly bounded. Hence,
condition (iii) is also satisûed.

Remark 3.23 It is natural to ask if Lemma 3.17 is satisûedwhenwe replace the inner
function Θ by a general function b in the unit ball of H∞. _e diõculty is indeed to
get estimate (3.22).
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_eorem 3.24 Let Θ be an inner function, let (tn)n≥1 ⊂ E2(Θ) such that (κΘ
tn)n≥1 is

a complete AOB for KΘ , and let (sn)n≥1 be a sequence of real numbers. Suppose there
exists N0 such that for all n ≥ N0, there is εn > 0 verifying

(3.25) ∫[tn ,sn]
( ∣Θ′

(t)∣ + ∣Θ′
(t)∣−1d−2

0 (t)) dt ≤ εn

or

(3.26) ∣sn − tn ∣ ≤ εn ∣Θ′
(tn)∣min(d2

0(tn), ∣Θ
′
(tn)∣−2

),

and limn→∞ εn = 0. _en (κΘ
sn)n≥1 is a complete AOB for KΘ .

Proof We can of course assume that sn /= tn and εn < 1/2. Both (3.25) and (3.26)
imply that there exists a point un ∈ [sn , tn] such that ∣sn − tn ∣ ≤ εnv0(un). _en
v0(un) ≤ 4v0(tn) and ∣sn − tn ∣ ≤ 4εnv0(tn). In particular, sn ∈ Gn , where Gn is
deûned as in (3.18) (replacing εn by 4εn). Moreover, using (2.13) and (3.21), we can
write

1
∥kΘ

tn∥
2
2
∫[tn ,sn]

w−2
p (z) ∣dz∣ ≲ ∫[tn ,sn]

∣Θ′
(t)∣−1 max(d−2

0 (t), ∣Θ′
(t)∣2) dt

≲ ∫[tn ,sn]
(∣Θ′

(t)∣−1d−2
0 (t) + ∣Θ′

(t)∣) dt ≲ εn .

Applying Lemma 3.17 and_eorem 3.6, we get that (κΘ
sn)n≥1 is an AOS. It remains to

prove the completeness and the minimality of (κΘ
sn)n≥1. We argue as in the proof of

Corollary 3.13 replacing Lemma 3.10 by Lemma 3.12. More precisely, deûne

xn =

⎧⎪⎪
⎨
⎪⎪⎩

tn if n < N0,
sn if n ≥ N0,

for some positive integer N0. _en we have

sup
n≥1

1
∥kΘ

tn∥
2
2
∫[tn ,xn]

w−2
p (z) ∣dz∣ ≲ sup

n≥N0

εn ,

and we can ûnd N0 such that, according to _eorem 3.6, the sequence (kΘ
xn)n≥1 is a

complete AOB for KΘ . Note that if tn ∈ σ(Θ), then v0(tn) = 0 and then sn = tn ,
and if tn /∈ σ(Θ), then Gn ⊂ R ∖ σ(Θ) and then sn /∈ σ(Θ). Hence, we can apply
Lemma 3.12 to get that (κΘ

sn)n≥1 is minimal and complete in KΘ .

We also give an analogue of a result of Cohn [5] who studied small perturbations
with respect to the change of the argument of the inner function Θ. First, we need to
introduce somemore deûnitions. An inner function Θ inC+ is said to be ameromor-
phic inner function if it has ameromorphic extension toC. In that case, we know that
the argument of Θ is a real analytic increasing function on R. Moreover, we say that
an inner functionΘ satisûes the connected level set condition (abbreviatedΘ ∈ (CLS))
if there is δ ∈ (0, 1) such that the set Ω(Θ, δ) = {z ∈ C+ ∶ ∣Θ(z)∣ < δ} is connected.

Corollary 3.27 Let Θ be a meromorphic inner function such that Θ ∈ (CLS), let φ
be its argument, and let (tn)n≥1 ⊂ R be such that (κΘ

tn)n≥1 is a complete AOB for KΘ .
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Let (εn)n≥1 be a sequence of positive numbers tending to 0. If

∣φ(sn) − φ(tn)∣ ≤ εn ,

then (κΘ
sn)n≥1 is a complete AOB for KΘ .

Proof As noted in [2, Remark 1, p. 2419], since Θ is (CLS) and (κΘ
tn)n is a Riesz

sequence, there exits a constant C > 0 such that

∣Θ′
(t)∣−1

≤ Cd0(t), t ∈ Gn .

_erefore,

∫[tn ,sn]
(∣Θ′

(t)∣ + ∣Θ′
(t)∣−1d−2

0 (t)) dt ≲ ∫[tn ,sn]
∣Θ′

(t)∣ dt = ∣φ(tn) − φ(sn)∣ ≤ εn .

_en apply _eorem 3.24.

Example 3.28 Let Θa(z) = e iaz , a > 0, and α ∈ [0, 2π). _en

Θ−1
a ({e iα}) = {tn = (α + 2nπ)/a ∶ n ∈ Z},

and (κΘa
tn )n∈Z is an orthonormal basis for KΘa , the so-called Clark basis. If (sn)n∈Z ⊂

R is a sequence satisfying

lim
n→±∞∣ sn −

α + 2nπ
a

∣ = 0,

then Corollary 3.27 implies that (κΘa
sn )n∈Z is a complete AOB for KΘa .

4 Example of Exponential Systems

In the particular case where Θa(z) = e iaz , the Fourier transform F maps unitarily
KΘa onto L2(0, a) and F(κΘa

λ ) = χaλ , where

χaλ(t) = (
2Iλ

1 − e−2aIλ )
1/2
e i λt , λ ∈ C+ .

_us, the geometric properties (completeness, minimality, Riesz basis, AOS, AOB,
. . . ) of system of normalized reproducing kernels (κΘa

λn
)n in KΘa and of normalized

exponentials system (χaλn
)n in L2(0, a) are the same. In [4], AOS (or AOB) formed

by reproducing kernels kΘ
λn
are studied under the additional condition that

(4.1) sup
n≥1

∣Θ(λn)∣ < 1.

In the particular case when Θ = Θa , condition (4.1) is equivalent to

(4.2) inf
n≥1(Iλn) > 0.

Under that assumption, it is proved in [4, Proposition 7.2] that (χaλn
)n is an AOB in

L2(0, a) if and only if (λn)n is a thin sequence, which means that

lim
n→∞∏k/=n

∣
λk − λn

λk − λn
∣ = 1.

Using Proposition 2.8, we construct a class of example of AOS where (4.1) (or
equivalently (4.2)) is not necessarily satisûed.
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Proposition 4.3 Let (λn)n≥1 ⊂ C be a sequence such that
(i) supn ∣Iλn ∣ <∞;
(ii) there exists a q > 1 such that ∣ λn+1

λn
∣ > q for all n ≥ 1.

_en the sequence (χaλn
)n≥1 is an AOS in L2(0, a) for all a > 0.

Proof We apply Proposition 2.8. Observe that

Γn ,m = ⟨χaλn
, χaλm

⟩ = (
4IλnIλm

(1 − e−2aIλn)(1 − e−2aIλm)
)

1/2 e i(λn−λm)a − 1
i(λn − λm)

,

sup
n ,m≥1

∣
4IλnIλm

(1 − e−2aIλn)(1 − e−2aIλm)
∣ <∞,

provided supn Iλn < ∞. If Iλn = 0 (that is λn ∈ R), the normalized factor
Iλn/(1 − e−2aIλn) should be understood as a−1 and corresponds to ∥χaλn

∥2
L2(0,a) = a.

It follows from (ii) that for m > n, we have ∣λm ∣ > qm−n ∣λn ∣. Since q > 1 that implies
that limn→∞ ∣λn ∣ =∞. In particular, we can pick an integer N such that for all n ≥ N ,
we have ∣λn ∣ ≥ 1. For n ≥ N , write

∑
m≥N
m/=n

∣Γn ,m ∣ ≲ ∑
m≥N
m/=n

∣
e i(λn−λm)a − 1
i(λn − λm)

∣ ≲ ∑
N≤m<n

1
∣λm ∣∣ λn

λm
− 1∣

+ ∑
n<m

1

∣λn ∣∣1 − λm
λn

∣

≤ ∑
N≤m<n

1
∣λm ∣(∣ λn

λm
∣ − 1)

+ ∑
n<m

1
∣λn ∣(∣

λm
λn

∣ − 1)

≤
1

q − 1
∑

N≤m<n

1
∣λm ∣

+
1

∣λn ∣
∑
n<m

1
qm−n ∣λn ∣ − 1

≤
1

q − 1
1

∣λN ∣
∑
N≤m

1
qm−N +

1
∣λN ∣

∑
n<m

1
qm−n − 1

.

_us,

sup
n≥N

∑
m≥N
m/=n

∣Γn ,m ∣ ≲
1

∣λN ∣
→ 0, as N →∞.

Proposition 2.8 implies now that (χaλn
)n≥1 is an AOS in L2(0, a).

Example 4.4 _e sequence λn = rn + i/n , (r > 1) satisûes the assumptions of
Proposition 4.3 and Iλn → 0 as n goes to∞.

5 Projecting onto a Closed Subspace

Let b1 , b2 ∈ H∞
1 such that b2∣b1, in the sense that b1 = b2b where b ∈ H∞

1 . In this case,
we know that H(b2) ⊂H(b1), andmore precisely, we have

H(b1) =H(b2) + b2H(b).

See [17, I.10–I.11] or [9, Section 18.7] for details on this decomposition.
It should be noted that, in general, the above decomposition is not orthogonal.

However, for reproducing kernels, we do have such an orthogonal decomposition.
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Lemma 5.1 Let b1 = b2b with b2 , b ∈ H∞
1 . Let Λ be a ûnite subset in C+. _en for

every aλ ∈ C, λ ∈ Λ, we have

(5.2) ∥∑
λ∈Λ

aλkb1
λ ∥

2

b1
= ∥∑

λ∈Λ
aλkb2λ ∥

2

b2
+ ∥∑

λ∈Λ
aλb2(λ)kbλ∥

2

b
.

Proof First note that

(5.3) kb1
λ = kb2λ + b2b2(λ)kbλ .

Now if LH and RH denote the le�-hand side and right-hand side of (5.2), we have

LH = ∑
λ ,µ∈Λ

aλaµkb1
λ (µ),

RH = ∑
λ ,µ∈Λ

aλaµkb2λ (µ) + ∑
λ ,µ∈Λ

aλaµb2(λ)b2(µ)kbλ(µ).

It remains to use (5.3) to get (5.2).

Let (λn)n≥1 ⊂ C+ and assume that (κb1
λn
)n≥1 is a complete AOB for H(b1). It is

very natural to ask if the sequence (κb2λn
)n≥1 remains an AOB in H(b2). _e answer

depends on the following ratio:

Rb1 ,b2(n) ∶=
∥kb1

λn
∥2
b1

∥kb2λn
∥2
b2

=
1 − ∣b1(λn)∣

2

1 − ∣b2(λn)∣2
.

_e following result says that if the behavior of b1(λn) and b2(λn) are comparable
as n → ∞, then we can transfer AOBs between the respective de Branges–Rovnyak
spaces.

_eorem 5.4 Let b1 = b2b, where b2 , b ∈ H∞
1 , and (λn)n≥1 ⊂ C+ satisfying

∑
n
∣Rb1 ,b2(n) − 1∣ <∞.

If the sequence (κb1
λn
)n≥1 is a complete AOB for H(b1), then there is an integer p ≥ 1

such that (κb2λn
)n≥p is a complete AOB for H(b2). Conversely, if (κb2λn

)n≥1 is an AOB in
H(b2), then (κb1

λn
)n≥1 is an AOB in H(b1).

Proof First note that (kb2λn
)n≥1 is complete inH(b2). Indeed, let f ∈H(b2), f ⊥ kb2λn

,
n ≥ 1. SinceH(b2) ⊂H(b1), we can write

0 = ⟨ f , kb2λn
⟩b2 = f (λn) = ⟨ f , kb1

λn
⟩b1 .

_us, f is orthogonal to kb1
λn
, n ≥ 1, and the completeness of (kb1

λn
)n≥1 inH(b1) implies

that f ≡ 0.
Since (κb1

λn
)n≥1 is an AOB in H(b1), for every ε > 0, there exists N ∈ N such that

(5.5) (1 − ε) ∑
n≥N

∣an ∣
2
≤ ∥ ∑

n≥N
anκb1

λn
∥
b1
≤ (1 + ε) ∑

n≥N
∣an ∣

2 .
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Moreover, since the sequence (Rb1 ,b2(n) − 1)n is in ℓ1, we can also assume that N
satisûes

(5.6) ∑
n≥N

(
∥kb1

λn
∥2
b1

∥kb2λn
∥2
b2

− 1) < ε.

In particular, this guarantees that

(5.7) 1 − ε <
∥kb1

λn
∥2
b1

∥kb2λn
∥2
b2

< 1 + ε.

We now prove that (κb2λn
)n≥1 is an AOS in H(b2). Using Lemma 5.1, we have

∥ ∑
n≥N

an
kb1
λn

∥kb2λn
∥b2

∥
2

b1
= ∥ ∑

n≥N
an

kb2λn

∥kb2λn
∥b2

∥
2

b2
+ ∥ ∑

n≥N
an
b2(λn)kbλn

∥kb2λn
∥b2

∥
2

b
.

_us,

∥ ∑
n≥N

anκb2λn
∥

2

b2
= ∥ ∑

n≥N
an

∥kb1
λn
∥b1

∥kb2λn
∥b2

κb1
λn
∥

2

b1
− ∥ ∑

n≥N
an
b2(λn)kbλn

∥kb2λn
∥b2

∥
2

b
.

= I1 − I2 .

For I1, use estimates (5.5) and (5.7) to get

(1 − ε)2
∑
n≥N

∣an ∣
2
≤ (1 − ε) ∑

n≥N
∣an ∣

2 ∥k
b1
λn
∥2
b1

∥kb2λn
∥2
b2

≤ ∥ ∑
n≥N

an
∥kb1

λn
∥b1

∥kb2λn
∥b2

κb1
λn
∥

2

b1
= I1

≤ (1 + ε) ∑
n≥N

∣an ∣
2 ∥k

b1
λn
∥2
b1

∥kb2λn
∥2
b2

≤ (1 + ε)2
∑
n≥N

∣an ∣
2 .

For I2, we use (5.2), (5.6), and Cauchy–Schwarz inequality to obtain

I2 = ∥ ∑
n≥N

an
b2(λn)kbλn

∥kb2λn
∥b2

∥
2

b
≤ ( ∑

n≥N
∣an ∣

2
)( ∑

n≥N

∥b2(λn)kbλn
∥2
b

∥kb2λn
∥2
b2

)

= ( ∑
n≥N

∣an ∣
2
) ∑

n≥N
(
∥kb1

λn
∥2
b1

∥kb2λn
∥2
b2

− 1) ≤ ε ∑
n≥N

∣an ∣
2 .

It follows that (κb2λn
)n is an AOS. Now let p be the smallest integer such that (κb2λn

)n≥p
is an AOB in H(b2). If p = 1, then since (κb2λn

)n≥1 is complete in H(b2), we have the
result. Otherwise combining Lemma 3.10(ii) and the fact that a sequence is an AOB
if and only if it is a minimal AOS, we conclude that (κb2λn

)n≥p is a complete AOB for
H(b2).
Conversely, assume that (κb2λn

)n≥1 is an AOB in H(b2). We note that

(Rb2 ,b1(n) − 1)n = (1/Rb1 ,b2(n) − 1)n ∈ ℓ1 .

_en using similar computations as before, we see that (κb1
λn
)n is an AOS in H(b1).

It remains to check theminimality of (kb1
λn
)n≥1. Since (kb2λn

)n≥1 is minimal in H(b2),
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there exists a sequence of functions ψn ∈ H(b2), n ≥ 1, such that ⟨ψn , kb2λℓ
⟩b2 = δn ,ℓ .

From the inclusion H(b2) ⊂H(b1), we can write

⟨ψn , kb1
λℓ
⟩b1 = ψn(λℓ) = ⟨ψn , kb2λℓ

⟩b2 = δn ,ℓ ,

which proves that (kb1
λn
)n≥1 is aminimal sequence in H(b1).

Corollary 5.8 Let b1 and b2 be two functions in H∞
1 such that they have a common

factor b, i.e., both b1/b and b2/b are in H∞
1 . Moreover, assume that (Rb1 ,b(n)−1)n ∈ ℓ1

and (Rb2 ,b(n)− 1)n ∈ ℓ1. If (κb1
λn
)n≥1 is an AOB inH(b1), then there is an integer p ≥ 1

such that (κb2λn
)n≥p is an AOB in H(b2).

_e assumption that (Rb1 ,b2(n) − 1)n ∈ ℓ1 may appear very restrictive. However,
as the following result shows, in some particular cases, it is indeed also necessary.

Corollary 5.9 Let b1 = Θ2b where b ∈ H∞
1 and Θ2 is an inner function such that

∞ ∉ σ(Θ2). Let (λn)n≥1 be a sequence of points inC+ such that (κb1
λn
)n≥1 is a complete

AOB for H(b1) and

(5.10) sup
n≥1

∥kbλn
∥b <∞.

_en the following are equivalent:

(i) _ere is an integer p ≥ 1 such that (κΘ2
λn

)n≥p is a complete AOB for KΘ2 .
(ii) (Rb1 ,Θ2(n) − 1)n ∈ ℓ1.

Proof (ii)⇒ (i): Follows from _eorem 5.4.
(i)⇒ (ii): We recall a well known fact (see [2, Lemma 4.4]) that supn ∣λn ∣ < ∞, pro-
vided∞ /∈ σ(Θ2) and (κΘ2

λn
)n≥p is an AOB in KΘ2 (in fact, it is suõcient that (κΘ2

λn
)n

is a frame).
Let γ ∈ C+. _en the function

f (z) ∶= Θ2(z)
1 − b(γ)b(z)

z − γ

belongs to Θ2H(b) ⊂ KΘ2 +Θ2H(b) = H(b1). Since (κb1
λn
)n is an AOB in H(b1), we

must have

∑
n≥1

∣⟨ f , κb1
λn
⟩∣

2
<∞

i.e., ∑
n≥1

∣Θ2(λn)∣
2
∣
1 − b(γ)b(λn)

λn − γ
∣
2 2Iλn

1 − ∣b1(λn)∣2
<∞.

We observe that, since supn ∣λn ∣ <∞, when ∣γ∣ is large enough, we have

∣
1 − b(γ)b(λn)

λn − γ
∣ ≳

1 − ∣b(γ)∣
∣γ∣

.

_us,

∑
n≥1

∣Θ2(λn)∣
2 2Iλn

1 − ∣b1(λn)∣2
<∞.
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Since 1 − ∣b(λn)∣
2 ≲ Iλn , we have

∑
n≥1

∣Θ2(λn)∣
2 1 − ∣b(λn)∣

2

1 − ∣b1(λn)∣2
<∞,

i.e.,

∑
n≥1

∣Θ2(λn)∣
2 ∥kbλn

∥2
b

∥kb1
λn
∥2
b1

<∞.

Finally, we get

∑
n≥1

(1 −RΘ2 ,b1(n)) =∑
n≥1

∥kb1
λn
∥2
b1
− ∥kΘ2

λn
∥2
2

∥kb1
λn
∥2
b1

<∞.

In other words, (RΘ2 ,b1(n) − 1)n ∈ ℓ1 . Since Rb1 ,Θ2(n) = 1/RΘ2 ,b1(n), it follows that
the sequence (Rb1 ,Θ2(n) − 1)n is in ℓ1.

Example 5.11 Note that (5.10) is, in particular, satisûed in the case when b = Θ is
an inner function such that Θ′ ∈ L∞(R). Indeed, as was shown in [1, Corollary 4.7],
we have

∥kΘ
λn
∥2 ≤ ∥kΘ

xn∥2 = ∣Θ′
(xn)∣

1/2 ,
where xn =Rλn .

Remark 5.12 _e results given in that section can also be proved when b1 = Θ1 is
an inner function and the sequence (λn)n≥1 belongs to C+ ∪R ∖ (σ(Θ) ∩R).
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