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AUTOMORPHISM GROUPS OF ALGEBRAS OF 
FINITE TYPE 

MATTHEW GOULD 

By "algebra" we shall mean a finitary universal algebra, that is, a pair 
(A ; F) where A and F are nonvoid sets and every element of F is a function, 
defined on A, of some finite number of variables. Armbrust and Schmidt 
showed in [1] that for any finite nonvoid set A, every group G of permutations 
of A is the automorphism group of an algebra defined on A and having only 
one operation, whose rank is the cardinality of A. In [6], Jônsson gave a 
necessary and sufficient condition for a given permutation group to be the 
automorphism group of an algebra, whereupon Plonka [8] modified Jonsson's 
condition to characterize the automorphism groups of algebras whose opera­
tions have ranks not exceeding a prescribed bound. 

The goal of the present paper is to characterize those permutation groups 
which are automorphism groups of algebras having finitely many operations 
(such algebras are said to be of finite similarity type, or simply of finite type). 
A problem posed by Jônsson in [7, p. 41] asks for such a characterization. It 
will follow from our characterization that the automorphism group of any 
algebra whose operations are of bounded rank, is the automorphism group of 
an algebra of finite type. Moreover, it will be shown that the automorphism 
group of any algebra of finite type is the automorphism group of an algebra 
having precisely one operation. As a byproduct of our characterization we 
shall obtain a new proof of Jonsson's result cited above; this new proof will 
use only a countable number of operations, whereas in the algebras constructed 
by Jônsson the number of operations was, in the infinite case, equal to the 
cardinality of the underlying set. 

1. Terminology. For the most part our notation will be taken from [5]. 
One exception is that we will use the symbol Aut(3I) to denote the automor­
phism group of an algebra 31. Moreover, we shall need the following ter­
minology: If G is a group of permutations of a nonvoid set A, and n is a 
natural number, we denote by Tn(G) the statement "A permutation $ of 
A is a member of G if for every ^-element subset X of A there is a member of 
G that agrees with </> on J " . 

Let T(G) denote the statement obtained from Tn(G) by substituting 
"finite" for "w-element". Tn(G) is a modification of the condition denoted 
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Pn(G) in [6], in which paper Jonsson showed that T(G) (therein denoted 
Pu(G)) is necessary and sufficient for G to be the automorphism group of 
an algebra. 

A final word on notation: if <j> is a mapping of a set A into itself, and x = 
Xi , . . . , Xn—\ ) is a sequence of elements of A, the symbol x# will denote 

the sequence (x0<£, Xi<fi, . . . , xn_i$). 

2. Results. The proof of our main result requires the following proposition, 
due to Vopënka, Hedrlin, and Pultr [9]. 

PROPOSITION. There exists on any set S a binary relation p such that the only 
endomorphism of the system (S; p) is the identity. 

THEOREM 1. Given a group G of permutations of a nonvoid set A, the following 
statements are equivalent. 

(i) G = Aut(Sl) for an algebra §1 whose operations are of bounded rank. 
(ii) Tn(G) holds for some n. 

(iii) G = Aut(3I) for an algebra 21 of finite type. 
(iv) G = Aut(2l) for an algebra 21 having precisely one operation. 

Proof, (i) => (ii): If A is finite, T\A\(G) holds, so suppose A is infinite. Let 
n be any integer exceeding the rank of every operation of 21 = {A ; F), and 
let 0 be a permutation of A having the property that for every ^-element 
subset of A there is a member of G agreeing with <j> on that set. If / G F has 
positive rank k, and x0, Xi, . . . , xfc_i G A, let X be any n-element subset of A 
containing {x0, Xj, . . . , #*-i, f(xo, Xi, . . . , xk-i)} and choose a G G such that 
a agrees with <j> on X. Then f(x0, xi, . . . , xfc_i)̂ > = /(x0 , Xi, . . . , xfc_i)a = 
f(xGa, Xia, . . . , Xfc-ia:) = f(x0(t>, Xi</>, . . . , x^-i^), and so # is compatible with/ . 
Similarly, by expanding every singleton subset of A to an ^-element subset, 
we see that <j> is also compatible with every miliary operation in F. Thus 
4> G Aut(2I) = G, and so Tn(G) holds. (This proof of (i) => (ii) differs only 
slightly from Jonsson's proof of a similar statement in [6].) 

(ii) =» (iii): Since the theorem is trivial if A has only one element, we 
assume that A has more than one element. Moreover, since To(G) implies 
Ti(G), which in turn implies T2(G), we assume that Tn(G) holds for some 
n > 1. H \A\ < n, then Tn(G) implies that G consists of all permutations of A, 
and so G = Aut(2Q for the algebra 21 whose only operation is the identity 
function on A. Thus, we further assume that \A\ ^ n. 

Let Ain) denote the set of all sequences x = (x0, Xi, . . . , xn-i) G An con­
sisting of n distinct elements of A. Define on A{n) an equivalence relation 
^ by: x ^ y if and only if there is some a G G such that x = y a. Set 5 = 
A(n)/~, the set of equivalence classes induced by ^ . If S has only one element 
then G consists of all permutations of A, so we assume that S has more 
than one element. For x G ^4(w\ the equivalence class of x under ~ will be 
denoted [x]. 
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Using the proposition quoted above, let p be a binary relation on S having 
the property that the only endomorphism of (5; p) is the identity. Since S has 
more than one element, no constant mapping is an endomorphism of (5; p), 
whence it follows that there is no [x] G 5 such that [x] p [x]. 

Define 2n-ary operations/ and gi (i < n) as follows: For all x, y G An, 

(xo if x, y G A{n) and x ^ 3; 
(xi otherwise 

Xi if x, 3/ G ^4(w) and [x] p [y] 
yt otherwise. 

Let 3Ï denote the algebra (A; {/} U {g*| i < «}). It is straight-forward 
to verify that G Ç Aut(2l): for cj> G G the key point in showing that 0 is 
compatible wi th / is the observation that for all x, y G A(w), x ^ y if and only 
if x<l> ~ y<t>\ the key point in showing compatibility with gf is the trivial 
observation that [x] = [x<£] for all x G ^4(w). 

We now show that Aut(Sl) C G. Let 0 G Aut(St). In view of Tn(G), to 
show that <j> G G it will suffice to show that [x<£] = [x] for all x G ^4(/°. To 
achieve this, we define a map 0*: 61—> 5 by [x]<£* = [x#] for all x G ^4(w), and 
we show that 0* is the identity map on 5. 

First it must be shown that <£* is well-defined. To this end, suppose there 
exist x, y G A^n) such that [x] = [3;] but [x<f>\ 9^ [y4]. Then xo0 = /(x, 3/)$ = 
f{x<j), y<t>) = Xi#, which implies x0 = Xi, a contradiction. Thus, <j>* is well-
defined. 

To show that </>* is the identity map on S it suffices, by the choice of p, to 
show that <£* is an endomorphism of (5; p). Suppose this is not the case. Then 
there exist [x], [y] G S such that [x] p [y] but it is false that [x<j>] p [y</>]. It 
follows that for each i < n, x^ = gt(x,y)<l> = gi(x<j>,y<j>) = (y0)< = 3/^ , 
whence Xi = yi. Since this holds for all i, we have x = y, hence [x] p [x], a 
contradiction. Thus 0* is the identity map on S, so [x<£] = [x] for all x G ^4(n), 
which by Tn(G) implies <j> G G, and (ii) => (iii) is established. 

(iii) => (iv): Since any operation may be replaced by one of higher rank 
without altering the automorphism structure (e.g., a nullary operation may 
be replaced by the corresponding unary operation, and a unary operation / 
may be replaced by the binary operation g defined by g(x,y) = fix)), we 
may assume that the operations in F all have the same positive rank n ; and 
clearly we may also assume that A contains more than one element. 

Partition F into disjoint pairs of distinct operations, possibly with one 
operation left over. If there is a left-over operation replace it by an operation 
of rank n + 1 inducing the same automorphisms. For each pair {/1, f2\ in 
the partition define an (n + l)-ary operation/3 by: 

, / x _ (fl(X0, • • • , * » - l ) if 0Cn = Xo 

M*O, . . . ,* , ; - y2{xoj _ f Xn_x) if Xn ^ x^ 

f(x, y) 

and 

gt(x,y) 
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It is straight-forward to verify that / 3 induces the same automorphisms as 
{/i, /2Î • In this way F has been replaced by a set F' of in + l)-ary operations 
such that Aut(3l) = Aut(^4; F') and the cardinality of F' is the first integer 
not less than \F\/2. Now partition F' in the same way and continue until a 
single operat ion/ is obtained such that Aut(2l) = Aut(^4;/); the rank of/ 
will be n plus the first integer not less than log2|^|. 

The implication (iv) => (i) being trivial, the theorem is proved. 

As mentioned earlier, the equivalence (i) <=> (ii) in the following theorem 
was first proved by Jônsson in [6]. 

THEOREM 2. Given a group G of permutations of a nonvoid set A, the following 
statements are equivalent. 

(i) G = Aut(Sl) for some algebra 21. 
(ii) T(G) holds. 

(iii) G = Aut(2l) for an algebra SI having countably many operations. 

Proof. Since the proof of (i) ==> (ii) is essentially the same as in Theorem 1, 
and since (iii) =» (i) is trivial, we need only prove (ii) => (iii). If A is finite, 
T\A\(G) holds, whence (iii) follows from Theorem 1. 

We now assume that A is infinite and T(G) holds. For each n < œ let Gn 

denote the set of all permutations <j> of A having the property that for every 
-^-element subset X of A there is a member of G that agrees with <j> on X. It is 
easily verifiable that Gn is a group and that Tn(Gn) holds. By Theorem 1 choose 
for each n a finite set Fn of operations such that Gn = Aut(^4; 7^). Now, 
T(G) implies that G is the intersection of all the groups Gn, whence G = Aut 
(A ; F) where F is the union of the sets Fn. 

3. Examples and questions. Although it seems intuitively clear, an 
example is needed to show that the conditions of Theorem 1 are not equivalent 
with those of Theorem 2; i.e., an example is needed of a permutation group 
G for which T(G) holds but Tn(G) fails for every n. For each n < co Jônsson 
gives in [6, Example 2] an example of a group Gn of permutations of a set An, 
such that T(Gn) holds but Tn{Gn) fails. Taking the sets An to be disjoint, 
set A = U (An\ n < co) and G = {a\ a is a permutation of A and for all n, 
OL\A G Gn). It readily follows that G is a group and that T(G) holds, but 
Tn(G) fails for every n. 

The equivalence of (i), (iii), and (iv) in Theorem 1 provides an interesting 
contrast with the situation that obtains when subalgebra structures are 
considered instead of automorphism groups. In [3] it is shown that in the 
subalgebra context (iii) and (iv) remain equivalent, but (i) no longer implies 
(iii). However, the subalgebra structure of any algebra whose operations are 
of bounded rank and countable in number, can be realized as the subalgebra 
structure of an algebra having precisely one operation [3, Lemma 2.1]. 

One can ask in reference to automorphism structure all the questions 
studied in [3] concerning the relationship between subalgebra structure and 
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the number of operations that an algebra has of each rank. For example, 
it is shown in [3] that for every n < œ and every non-zero cardinal m, there is 
an algebra whose operations are w-ary and m in number, and whose subalgebra 
structure is not the subalgebra structure of any algebra whose operations are 
n-ary but fewer than m in number. We pose the question of whether the same 
result holds with "automorphism group" in place of "subalgebra structure". 

Finally, we mention one special case of Theorem 1. In [2], Birkhoff showed 
that for any abstract group A, the set R(A) of all right-translations of A is 
the automorphism group of an algebra defined on A whose operations are all 
unary and form a set whose cardinality is that of a generating set for the 
group. It follows from Theorem 1 that R{A) is the automorphism group of an 
algebra having a single operation. This operation, if constructed as indicated 
in the proof of the theorem, will have rank 6. In this special case the proof 
can be modified to show that a single operation of rank 5 will work. The author 
has been unable to decrease the rank any further, except under the assumption 
that G is finite or countably infinite, in which case a single binary operation 
will suffice (see [4]). 
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