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Abstract. Let the locally finite group G be the product of two locally nilpotent
subgroups A4 and B, and assume that H is a subgroup of G belonging to a group
class . The question is considered whether there exists a subgroup X of G con-
taining H which belongs to & and satisfies X = (XN 4)(X N B). Under various
assumptions on G and §, necessary and sufficient conditions for the existence of
such a subgroup X are obtained.

A group G is the product of two subgroups 4 and B if G equals the set AB, that is, if
every element g € G can be expressed as g = ab with a € A and b € B. A subgroup H
of G will be called prefactorised if H is the product of a subgroup of 4 and a sub-
group of B, and in this case, H = (H N A)(H N B). A prefactorised subgroup H of G
is factorised if it contains 4 N B. If H is any subgroup of G = 4B, then the factoriser
X of H is defined as the intersection of all factorised subgroups of G which contain
H. By [1, Lemma 1.1.2], the subgroup X is a factorised subgroup of G.

Here, we consider the following question. Suppose that the group G is the pro-
duct of two locally nilpotent subgroups 4 and B, and let H be a subgroup of G
belonging to a group class . Does G possess a prefactorised or factorised subgroup
which contains H and belongs to the same class of groups #? For example, under
various hypotheses on G, it can be shown that the unique maximal locally nilpotent
normal subgroup of G is factorised; see [1] and [3]. Thus every normal locally nilpo-
tent subgroup H of G is contained in a factorised locally nilpotent subgroup.

If the subgroup H in question is not normal (characteristic) in G, one cannot
expect that all conjugates (Aut(G)-conjugates) of the F-group H are contained in
prefactorised or factorised F-group; for example, it is easy to see that every finite
product G = AB of two nilpotent subgroups A4 and B has exactly one prefactorised
Sylow p-subgroup for each prime p, namely 4,B,, where 4, and B, are the p-com-
ponents of 4 and B, respectively. Moreover, these Sylow subgroups form a Sylow
basis of G. More generally, if G = AB, where 4 and B are locally nilpotent, and G is
a CC-group, satisfies min-p for every prime p or is a lI-group then the sets 4,B, are
Sylow p-subgroups of G which form a Sylow generating basis of G; see [5] and [16].
Here, 11 denotes the largest subgroup-closed class of locally finite groups G such that
for every set 7 of primes, the maximal w-subgroups of G are conjugate. A group G is
a CC-group if G/Cg(x%) is a Cernikov group for every x € G, where x¢ denotes the
smallest normal subgroup of G which contains x, and the group G satisfies min-p if it
has the minimal condition on p-subgroups for the prime p. The class of all periodic
locally soluble nilpotent-by-finite groups, which is evidently a subclass of 1I, will
play an important role in the sequel and will be denoted by NNS*.

*This paper contains part of the author’s doctoral thesis [14] at the University of Mainz, Germany.

https://doi.org/10.1017/50017089599000294 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089599000294

324 BURKHARD HOFLING

Our main results, which improve the corresponding results about finite groups
in [2] and also generalise the above-mentioned ones about Sylow p-subgroups, are
Theorem 2.3, Theorem 3.2 and Theorem 4.1 below. They can be summarised as
follows.

THEOREM. Let D be a class of periodic locally soluble groups which is closed under
taking subgroups and factor groups and assume that ® is a class of CC-groups, of
NS -groups or groups satisfying min-p for all primes p. We assume that § is a locally
defined D-formation of characteristic . Let G € D be the product of two locally nil-
potent groups A and B. If H is an §-subgroup of G such that {A,B, | p € P} reduces
into H, then H is contained in a prefactorised §-subgroup of G. If m(A) N 7(B) C m,
then the factoriser of H is an §-subgroup of G.

Note that, if G is an 9t&*-group (a CC-group) with Sylow generating basis
{G, | p € P} and H is a subgroup of G, then it is always possible to find an inner
(locally inner) automorphism o« such that {G, | p € P} reduces into H*. Conse-
quently, in this case every §-subgroup in the above theorem has a conjugate (local
conjugate) which is contained in a prefactorised F-subgroup of G.

Here a Sylow generating basis {G, | p € P} of a group G reduces into a subgroup
H of G if {G,NH|peP}isa Sylow generating basis of G. Definitions of Sylow
generating bases and locally defined ©-formations can be found in [7]; for the latter
see also Section 2 below. The characteristic = of a class & of groups is the set of
primes p such that & contains a group of order p.

In particular, if H is §-maximal in G in the above theorem, that is, if H is not
properly contained in another -subgroup of G, then H is prefactorised if and only
if {4,B, | p € P} reduces into H (see Corollary 3.3 and Corollary 4.2). As a con-
sequence, G possesses exactly one prefactorised §-projector if © consists of groups
satisfying min-p for all primes p, or if ®© is the class of all periodic locally soluble
CC-groups (Theorem 3.7 and Theorem 4.7). Recall that if ¥ is any class of groups, a
subgroup H of G is an g-projector of G if HN/N is §-maximal in G/N for every
normal subgroup N of G. A similar result about §-projectors also holds if ® is
contained in the class 1l (see Theorem 5.5).

Most of the above results are based upon the close examination of $-subgroups
of NS*-groups G which are the product of two locally nilpotent subgroups 4 and B,
where © is an 9t&*-Schunck class (for a definition see Section 1). The main result
about 9-subgroups of nilpotent-by-finite products is Theorem 1.6.

Our notation is standard and follows [1] and [7]. In particular, if G is a group and
7 is a set of primes, then a Sylow sr-subgroup of G is just a maximal z-subgroup of G.

1. Factorisers of 9-subgroups of NS*-groups. A class  of NS*-groups is an
NES&*-Schunck class if § consists of all NS*-groups whose finite primitive image
belong to © and whose infinite semiprimitive images are the union of finite -
groups. A group is semiprimitive if it is the semidirect product of a finite subgroup M
with trivial core and a divisible abelian normal subgroup D all of whose proper M-
invariant subgroups are finite. Note that, in view of [23], this definition is equivalent
with that in [15]; see also [24].

The following lemma further investigates the structure of certain semiprimitive
groups.
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LEMMA 1.1. Let © be a Schunck class of NS -groups of characteristic w and
suppose that G = M x D is an infinite semiprimitive Cernikov group, where D is a
radicable abelian p-group for the prime p and M is finite and soluble. If G/ D is an H-
group and p € 7 but G is not an H-group, then M does not centralise any M-composi-
tion factor of D.

Proof. Since G ¢ O, the H-subgroup M is an H-projector of G by [15, Lemma
4.1]. Let U/V be an M-composition factor of D which is centralised by M. Then
MUV =MV]V x U/Vand U/V is an elementary abelian p-group and p € 7. Now
the class ©* of all finite groups in $ is a Schunck class of finite groups, hence is
closed with respect to finite direct products by [9, III, Corollary 6.2]. Therefore
MUV is an -group. On the other hand, by [15, Corollary 4.7 MV/V is an ©-
projector of MU/V. This contradiction shows that M does not centralise any M-
composition factor of D.

Next, we deduce a property of groups satisfying the hypotheses of the preceding
Lemma 1.1 which will be needed in the sequel.

LEMMA 1.2. Suppose that G is an infinite semiprimitive Cernikov group which is a
semidirect product of a radicable abelian normal p-group D and a finite soluble group
M. Further, assume that M does not centralise any M-composition factor of D (of a
given M-composition series of D). If M is not a p-group, then Np (M) =1 for every
Hall p'-subgroup M, of M.

Proof. Let

1l=Dy<Dy<...<«Dy=D

be an M-composition series of D, where « is an ordinal, whose factors are not
centralised by M. Since D does not contain infinite M-invariant subgroups, we have
o < w, the least infinite ordinal number. Therefore it suffices to show that
Np,(My) =1 for every integer n. We proceed by induction on 7, assuming that
n>0and Np, (My)=1.

Let H= MD, and C = Cyx(D,/D,—;). Put K=CNMD,_, =(CNM)D,_; and
observe that K is a normal subgroup of H = CM because K/D,_; is centralised by C
and normalised by M. Since D, N K = D,_{(D, N M) = D,_; by Dedekind’s mod-
ular law, the factor group D, /D,_; is H-isomorphic with D,K/K = (CNM)D,/K =
C/K. Tt follows that C/K is a self-centralised minimal normal subgroup of H/K.
Therefore H/K = (MK/K)(C/K) is a primitive group by [9, A, Theorem 15.8 (b)].
Let R/C=0,(H/C) and Q=M,NR, then @ is nontrivial because
C/K = O,(H/K).

Since the p’-group OK/K = O,(MK/K) cannot be normal in H/K and MK/K is
a maximal subgroup of H/K, it follows that MK = Ny(QOK/K). Let g € Nu(M,K/K),
then Q%K is contained in Mf:,Kﬁ RE=My,KNR=(M,NR)K=0QK and so
g € Ny(QK/K) = MK. It follows that Ny(M,y) < Ny(M,K/K) < MK. Therefore

Np,(My)<MKND,=MCNM)D,_1ND, =MD, ND,=D,_y,

and it follows that Np,(M,) = Np, ,(My) = 1, as required.
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By a result of Gross [12, Theorem 1], (see also [1, Lemma 2.5.2]), a finite primitive
group G which is the product of two nilpotent subgroups 4 and B is either a p-group
or A and B are a Sylow p-subgroup and a Hall p’-subgroup of G. The following is a
weaker version for semiprimitive groups.

THEOREM 1.3. Suppose that G is an infinite semiprimitive group with finite residual
D and suppose that D is a p-group. If G is the product of two locally nilpotent sub-
groups A and B, then one of the groups AO,(G)/0,(G) and BO,(G)/0,(G) is a p-group
and the other is a p’-group. In particular, A or B is a p-group.

Proof. If G is a p-group, the statement is clear. Therefore suppose that G is not a
p-group. Since A, B, is a Sylow p’-subgroup of G, we must have 4, # 1 or B, # 1.
Assume without loss of generality that B, # 1. Then D N BY is either finite or equals
D. Assume first that DN BY is finite. Then DN B is contained in
D,={xeD|x”" =1} for some integer n and so D/D,N B/();,Dn/Dn =1, and in
particular, B, is contained in Cg(D/D,). As in the proof of [24, Proposition 2.3 (ii)],
there exists an isomorphism G — G/D, mapping D to D/D,, and so we have
D = Cg(D/D,). But then B, is contained in a p-group, contradicting B,y # 1. This
shows that we must have D < Bg.

Now O0,(G) is contained in Cg(D) = D and so Oy(G) = 1. Therefore [4,/, D] <
[45, BS] =1 by Lemma 2.7 and Lemma 2.1 of [10]. But then 4, is contained in
Cg(D) = D and A4 is a p-group. Thus Bg = B;’ is contained in the Sylow p-subgroup
AB, of G. Consequently ij is contained in O,(G) and so BO,(G)/0,(G) is a p'-group.

Combining Lemma 1.1 and Lemma 1.2 with Theorem 1.3, we obtain a first
result about $-maximal subgroups of infinite semiprimitive Cernikov groups which
are the product of two locally nilpotent subgroups.

PROPOSITION 1.4. Let § be a Schunck class of 1 &*-groups and suppose that G is an
infinite semiprimitive Cernikov group. Further, assume that every finite image of G is an §-
group and that G is not an -group. If G is the product of two locally nilpotent subgroups A
and B, then G possesses an H-projector which contains A or B, hence is factorised.

Proof. Let D denote the finite residual of G, which is a radicable abelian p-group
for a prime p. Suppose that B is not a p-group, then by Theorem 1.3, 4 is a p-group
and B, is a Sylow p’-subgroup of G. Let M be a complement of D in G which con-
tains B,, then by Lemma 1.1 and Lemma 1.2, M contains B < Ng(B,) because B is
locally nilpotent. Since M is an H-projector of G by [15, Lemma 4.1] and M contains
B, it follows that M is factorised.

The following proposition shows that not only semiprimitive Cernikov $-
groups are the union of an ascending chain of 9-groups.

PROPOSITION 1.5. Let § be a Schunck class of NS*-groups. Then a Cernikov
group G is an O-group if and only if it is the union of an ascending chain {G; | i € N} of
finite -groups.

Proof. If G is the union of an ascending chain {G; | i € N} of finite H-groups,
then G € © by [15, Lemma 3.1].
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Conversely, suppose that the Cernikov group G belongs to the class $ and let D
be the maximal radicable abelian normal subgroup of G and H a finite supplement
of D in G. Let L be an H-projector of H, then H = L(D N H) because H/HN D € 9.
Therefore G = LD and we may assume without loss of generality that H € .

Assume first that D does not have infinite G-invariant subgroups and let
N = Coreg(H). Then G/N is the union of a chain {G;/N | i € N} of finite H-groups:
If N < D, the group G/N is semiprimitive, and this follows from the definition of a
Schunck class. Otherwise, we obtain the same result by induction on |G : D| and the
fact that G/N = (H/N)(DN/N). Since H is finite, we may assume without loss of
generality that H < G; for every i. Hence G; = HD N G; = H(D N G;) by the modular
law. As N is finite, it suffices to show that every G; is an $-group.

Fix an i € N and let G;/K be a finite primitive image of G; with unique minimal
normal subgroup L/K = F(G;/K). If N < K, we have G;/K € 9, as required. There-
fore assume that L < NK. Then L =LNNK=(LNN)K by the modular law.
Moreover, the abelian normal subgroup (DKNG;)/K of G;/K is contained in
F(G;/K) = L/K. 1t follows that G; = HL = H(L N N)K. Since N is contained in H,
we even have G; = HK and so G;/K= H/HNK € .

This shows that every primitive image of G; is an 9-group, and so G; € H by the
definition of a Schunck class. Thus G is the union of the finite 9-groups {G; | i € N}.

Therefore suppose that D has a proper infinite G-invariant subgroup E. By
induction on the rank of a maximal radicable abelian normal subgroup of G, the
factor group G/E possesses an ascending chain {G,/E | i € N} of finite H-groups.

We may assume that each G; contains the subgroup H, so that G; = H(G; N D)
for every i € N. Let Hy = H, and for each i € N, let H; be an $-maximal supplement
of G;N D in G; containing H;_ ;. Then the H; form an ascending chain of H-groups:
let L denote their union. Since H; is an H-projector of G; and G;/E € , we have
G,=H/E,andso G=LE=LD.

Hence DN L is normal in G. Now G/D N L = H;E(DN L)/DN L is isomorphic
with HE/HLENDNL=H,E/(H;ND)ENL). Since G € 9, this shows that
H:E/(H; N D)(EN L) also belongs to ©.

Since H; is an 9-projector of G; = H;E, it follows that G;= H,E=
H;(H; N D)(EN L) is contained in L. Now this holds for every i € N, and therefore
G = L is the union of the subgroups H; € $. Thus we may assume without loss of
generality that the G; are §-groups.

Since the G; are Cernikov groups, by induction on the rank of a maximal
radicable abelian normal subgroup, each G; possesses an ascending chain
{G:; |/ € N} of finite H-groups. We define an ascending chain {G} | i € N} of finite
H-groups satisfying G < G; for every positive integer i: firstly, let G; = G ;. Now
let n > 1. Since G, is the union of the subgroups {G,; | j € N}, there exists an integer
m such that the ©-group G,,, =G: contains the (finite) subgroups
Gip-1,Gon-2,...,Gu22,Gp—11 and G;_, of G,. By construction, {G}} is an
ascending chain of 9-groups and G;; < G}, for every i, j € N. Therefore G is the
union of the chain {G% | n € N} of finite H-groups, as required.

Recall that by [5] (see also [16]) every ll-group G which is the product of two
locally nilpotent subgroups 4 and B possesses a Sylow generating basis of the form
{4,B, | p € P}. Now if G is a U-group with Sylow generating basis {G, | p € P} and
H is a subgroup of G, then by [13, Lemma 2.1] and [11, Theorem 2.10], there exists a
g € G such that {G, | p € P} reduces into H%. Thus, with the notation of the following
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theorem, every 9-subgroup possesses a conjugate H into which the Sylow generat-
ing basis {4,B, | p € P} reduces.

THEOREM 1.6. Let © be an NS*-Schunck class of characteristic w and suppose
that the NS"-group G is the product of two locally nilpotent subgroups A and B.
Further, let H be an $-subgroup of G into which the Sylow generating basis
{A,B, | p € P} of G reduces.

(a) If  contains w(A) N (B), then the factoriser of H is an H-group.
(b) If H is a m-group, then the factoriser of H in A;By is an ©-group. Hence H is
contained in a prefactorised O-subgroup of G.

Proof. (a) Let X denote the factoriser of H. Since the Sylow generating basis

{(XNA)XNB,)|pePt={XNA,B,|pecP}

of X reduces into H, we may assume without loss of generality that G = X. There-
fore it remains to show that G € ©. As © is a Schunck class and our hypotheses are
inherited by factor groups, it suffices to consider the cases when G is a finite primi-
tive group or an infinite semiprimitive Cernikov group.

Suppose first that G is finite and primitive. Then by [12, Theorem 1], either
G = A = B is a cyclic p group for some prime p, or 4 is a Sylow p-subgroup of G
and B is a Hall p’-subgroup of G. In the first case, we have p € w and so G € 9.
Otherwise, the Sylow generating basis {4,8, | p € P} of G reduces into H, and so
H=(HNA,B,)(HN AyBy)=(HN A)(HN B) is factorised. Hence G=X=H € .

If G is an infinite semiprimitive Cernikov group, we have G = M x D, where D
is a radicable abelian p-group for the prime p and M is finite. Since every primitive
image of G/D belongs to 9, we have M = G/D €  because $ is a Schunck
class. Now suppose that G ¢ £. Then, by Theorem 1.3 and Proposition 1.4, without
loss of generality, A is a p-group containing D and B < M is finite. Thus
MD, = MD,NAB = (MD, N A)B is factorised for every n e N, where D, =
{x e D| X" =1}. Since G = |,y MD,, this shows that every finite subgroup U of
G is contained in a finite factorised subgroup of G. In particular, the factoriser of
every finite subgroup of G is finite.

By Proposition 1.5, the Cernikov group H is the union of an ascending
chain {H; | i€ N} of finite H-groups. Since H N D has finite index in H, we may
assume without loss of generality that H = H,(H N D). Since G is a lI-group, there is
a g € G such that the Sylow generating basis {4,B, | p € P} of G reduces into H.
Replacing H; by Hf for every i € N, we may assume that the Sylow generating
basis {A4,B, | p € P} of G reduces into H;. Now H; = H|(H;N D) by the modular
law, and so by [15, Proposition 2.3(d)], the Sylow generating basis {4,8,} reduces
into every H;. Therefore the factorisers X; of the H; are $-groups by the finite case.
The union U of the factorisers of the H; is clearly a factorised subgroup of G which
contains H, and so G = U. It follows that {X; | i € N} is an ascending chain of finite
$-subgroups of the semiprimitive group G, and so G € by the definition of a
Schunck class.

(b) Since H is a m-group and the Sylow generating basis {4,B, | p € P} of G
reduces into H, we have H < A, B;. Applying (a) to the group 4,B,, we obtain that
the factoriser of H in A, B, is an H-group, as required.
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From this theorem, we derive a necessary and sufficient condition for an -
maximal subgroup of G to be factorised.

COROLLARY 1.7. Let § be an NW&S*-Schunck class of characteristic m and suppose
that the NS*-group G is the product of two locally nilpotent subgroups A and B. Let H
be an H-maximal subgroup of G

(a) If  contains w(A) N w(B), then H is prefactorised if and only if the Sylow
generating basis {A,B, | p € P} of G reduces into H. Thus an -maximal
subgroup of G is prefactorised if and only if it is factorised.

(b) If H is a m-group, then H is prefactorised if and only if the Sylow generating
basis {A,B, | p € P} of G reduces into H.

Proof. If H is any prefactorised subgroup of G, then by [16, Theorem 4.7], the
Sylow generating basis {4,B, | p € P} of G reduces into H. This shows the necessity
of our conditions.

Conversely, if m contains m(A4) Nw(B) and the Sylow generating basis
{4,B, | p € P} of G reduces into H, then the factoriser X of H is an ©-group, by
Theorem 1.6. Hence H = X by the $-maximality of H, and so H is factorised.

As in the proof of Theorem 1.6, statement (b) now follows by considering the
Sylow m-subgroup A, B, instead of G.

Since every subgroup of an 9t&*-group possesses a conjugate into which a given
Sylow generating basis of G reduces, we also have the following result.

COROLLARY 1.8. Let  be an NS -Schunck class of characteristic m and suppose
that the WS*-group G is the product of two locally nilpotent subgroups A and B.

(a) If  contains w(A) N\ 7(B), then every D-maximal subgroup of G has a fac-
torised conjugate.

(b) Every $-maximal subgroup of G which is a m-group has a prefactorised
conjugate.

Proof. Let H be an H-maximal subgroup of G; then, by [13, Lemma 2.1], a Sylow
generating basis of H can be extended to a Sylow generating basis {G, | p € P} of G.
Therefore, by [11, Theorem 2.10], there exists an element g€ G such that
{GyIpe P} ={4,B, | p € P}. Thus {4,B, | p € P} reduces into H®'. The result
now follows from Corollary 1.7.

Since $-projectors are in particular 9-maximal subgroups, we also obtain

COROLLARY 1.9. Let § be an N&*-Schunck class of characteristic w and suppose that
the NS -group G is the product of two locally nilpotent subgroups A and B. If = contains
7(A) N w(B) or an H-projector of G is a w-group, then G possesses a unique H-projector
H which is prefactorised. If w contains n(A) N w(B), then H is even factorised.

Proof. By [15 Corollary 5.2], the Sylow generating basis {4,B, | p € P} of G

reduces into a unique 9-projector H of G. Therefore the statements follow from
Corollary 1.7.
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The above results can also be applied to trifactorised groups.

COROLLARY 1.10. Let © be an NS*-Schunck class and suppose that the group G €
NS" has subgroups A, B and C such that G = AB = AC = BC, where A and B are locally
nilpotent and C € 9. If 7(A) N w(B) is contained in the characteristic of , then G € 9.

Proof. In view of [15, Lemma 3.1], we may assume without loss of generality
that C is an $-maximal subgroup of G. Hence C has a factorised conjugate by
Corollary 1.8, and G = C by [2, Lemma 1].

2. Factorisers of -subgroups of NS*-groups. The results of the preceding
section can also be applied to §-subgroups, where § is locally defined ®-formation
for some gs-closed subclass ® of 9S*. In order to accomplish this, we will prove
that every locally defined ®-formation % can be obtained by intersecting an NS"*-
Schunck class $ with D.

We briefly recall the definition of a locally defined ®-formation given in [7]. Let
D be a class of periodic locally soluble groups which is o-closed and s-closed, that is,
closed under taking factor groups and subgroups. Let X be a class of groups con-
tained in ©, and for every group G € D, let Cg(X, p) denote the intersection of the
centralisers of all p-principal factors U/V such that G/Cg(U/V) belongs to X. The
subclass X of ® is a (D, p)-preformation if it is g-closed and for every G € D, the
factor group G/Cqs(X, p) belongs to X.

A class § is a D-formation if there exists a set of primes 7 and a function f
assigning to every p € 7 a (D, p)-preformation f{p), such that G € D belongs to ¥ if
and only if G is a w-group and for every prime p, the group G belongs to the class
S, Spf(p). For equivalent definitions, see for example [7, Corollary 6.2.5]. Here,
S, Gpf(p) is the class of all periodic locally soluble groups G having normal sub-
groups M and N such that G/M € f(p), M/N is a p-group and N is a p’-group.

LEMMA 2.1. Let © be a o-closed class of finite soluble groups and suppose that X
is a subclass of ® such that every D-group has an X-projector.

(a) There exists an ©*-Schunck class § such that X = HND.

(b) Let X be an X-projector of the D-group G. Then X is an H-projector of G if
L €D for every subgroup L of G with X < L which contains a G-invariant
subgroup N such that L/N € 9.

Proof. (a) Let © be the class of all finite soluble groups whose primitive factor
groups belong to X. Since every X-group has X-projectors, X is g-closed, and so
XCHND. Now let G e HND and suppose that X is an X-projector of G. If
G¢X, then X is contained in a maximal subgroup M of G. But then
X Coreg(M)/Coreg(M) < M/Coreg(M) is a proper subgroup of the X-group
G/Coreg(M). This contradiction shows that X = H N D.

(b) Assume that X is not an $-projector of G, then there exists a normal sub-
group N of G such that XN/N is properly contained in an $-group L/N. Let M be a
maximal subgroup of L containing XN, then X Core;(M)/Core;(M)=<M/Corer (M)
is a proper subgroup of L/Core (M) € ©. But since L/Corer (M) is primitive, it
belongs to X. This contradicts the fact that X is an X-projector of L.
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Note that condition (b) above holds in particular if the class ® is subgroup-
closed, or if the X-projectors of every ®-group G are X-covering subgroups of G,
that is, if an X-projector X of G is an X-projector of L for every subgroup L of G
which contains X. Observe also that condition (b) is necessary in the following sense:
if X is an 9-projector of G, then by [9, III, Theorem 3.21], X is an $-covering sub-
group of G, and since X € X C 9, it follows that X is also an X-projector of L for
every subgroup L of G which contains X.

However Lemma 2.1 (b) does not hold for 9t&*-Schunck classes: let p be a
prime, X the class of all quasicyclic p-groups and ® be the class of all cyclic and
quasicyclic p-groups. Then every ®-group has an X-projector. But every NS*-
Schunck class which contains X also contains ®. This example even shows that
there does not exist an 9t&*-Schunck class § such that the X-projectors of a -
group coincide with its -projectors. However, locally defined ®©-formations are still
induced from N&*-Schunck classes.

PROPOSITION 2.2. Let ® be a gs-closed subclass of NS" and § a locally
defined D-formation. Then there exists a N&"-Schunck class © such that
F=Dnp.

Proof. Let 9, be the class of all finite soluble groups whose primitive images
belong to & and let § denote the class of all 9t&*-groups G such that every finite
primitive and every infinite semiprimitive factor group is the union of an ascending
chain of §,-groups. By [15, Proposition 3.3], § is a 9t&*-Schunck class satisfying
H* = Ho.

Assume that f'is a preformation function for % and let G € . In order to show
that G € 9, it clearly suffices to show that every infinite semiprimitive image of G is
the union of finite §-groups. Thus we may assume that G is an infinite semiprimitive
group. In particular, G = M x D, where M is finite, Coreg(M) =1 and D is an
abelian p-group. Therefore 0,(G) =1 and hence G € ©,f(p). It follows that
M € ©,f(p), and so also MD, € ©,f(p) foreveryn € N, where D, = {x € D | ¥ = 1}.
Similarly, if ¢ is a prime # p, then G € ©,&,f(¢), and so also M and the subgroups
MD, (n€N) belong to ©,S,/(q). Thus MD, € F* < 9, for every n € N, and so
G =U,en MD, € . Thus § C .

Now let G € HN D and let F be an F-projector of G. If G ¢ F, then F is con-
tained in a major subgroup M of G. By [23], G/Coreg(M) is either finite and primi-
tive or infinite and semiprimitive, and M/Coreg(M) is finite. Thus in both cases
F Coreg(M)/Coreg(M) is a proper finite subgroup of G/Coreg(M). Since the latter
is the union of an ascending chain of finite §-groups and F* = H* N D, the sub-
group F Coreg(M)/Coreg(M) cannot be F-maximal in G/Coreg(M). This contra-
diction shows that G € .

If % is a locally defined formation of characteristic , then every -group is a
m-group. This shows that the hypothesis of Theorem 1.6.(b) is always satisfied if
$ = § is a locally defined formation. Thus we obtain:

THEOREM 2.3. Let D be a os-closed class of NS*-groups and § a locally defined
D-formation of characteristic w. Further, suppose that the D-group G is the product of
two locally nilpotent groups A and B. If H is an &-subgroup of G into which the Sylow
generating basis {A,B, | p € P} of G reduces, then H is contained in a prefactorised
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&-subgroup of G. If w(A) N 7(B) C 7, then H is even contained in a factorised §-sub-
group of G.

Proof. By the definition of ¥, the §-group H is a m-group. Hence H is contained
in the Sylow m-subgroup A,B, of G. Moreover, by Proposition 2.2, there exists an
NS*-Schunck class $ such that F = D N H. Now it follows from Theorem 1.6 that
the factoriser X of H in A,B, is an $-group, hence an F-group. Since A,B, is a
prefactorised subgroup of G, the subgroup X is the required prefactorised subgroup
of G. If m(A) N n(B) C m, then AN B is a w-group and so AN B = A, N B, is con-
tained in X. Hence X is a factorised subgroup of G.

Note that Corollary 1.7, Corollary 1.8, Corollary 1.9 and Corollary 1.10 can
also be formulated in terms of locally defined ®©-formations, where ® is a gs-closed
subclass of t&*.

3. Factorisers of F-subgroups of FC- and CC-groups. Since the concept of
Schunck classes has not yet been extended to the class of all periodic locally soluble
CC-groups, we formulate our theorems for locally defined ®-formations of periodic
locally soluble CC-groups only. Recall that a group G is an FC-group (a CC-group),
if G/C(x%) is finite (is a Cernikov group). Note also that FC-groups are CC-
groups, so that our results hold in particular for locally defined formations of peri-
odic locally soluble FC-groups.

First, we show that, as in the case of S*-groups, every F-subgroup of a CC-
group G is contained in an F-maximal subgroup of G.

LEMMA 3.1. Let D be a gs-closed class of periodic locally soluble CC-groups and
& a locally defined ‘D-formation of characteristic w. Moreover, let G be a D-group.

(@) The group G is an §-group if and only if G is a w-group and G/Cg(x%) € ¥
for every x € G.
(b) The class % is closed with respect to unions of chains of subgroups.

Proof. (a) If G is an §-group, then clearly every factor group of G belongs to .
Conversely, suppose that G/C(x%) e & for every xeG. Since Z(G)=
Nica Co(x9), we have G/Z(G) € § by [7, Lemma 6.2.8], and so it follows from the
definition of a locally defined formation that also G € .

(b) Let {G;} be a chain of §-subgroups of the D-group G and assume without
loss of generality that G = | J G;. If x € G, then G/Cg(x%) is a Cernikov group. Since
FNNGS* is obviously a locally defined (D N NS*)-formation, by Proposition 2.2,
there exists an 9t ©*-Schunck class $ such that § N NS* = H N D. Hence it follows
from [15, Lemma 3.1] that the factor groups G/Cg(x%) are H-groups for every x € G.
Since every factor group of G is a D-group, it follows that G € § by (a).

Now we can prove an analogue of Theorem 2.3 for periodic CC-groups which
are the product of two locally nilpotent subgroups.

THEOREM 3.2. Let D be a gs-closed class of periodic locally soluble CC-groups
and § a locally defined D-formation of characteristic . Further, suppose that the
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D-group G is the product of two locally nilpotent groups A and B. If H is an §-sub-
group of G into which the Sylow generating basis {A,B, | p € P} of G reduces, then H
is contained in a prefactorised §-subgroup of G. If m(A) N w(B) C 7, then the factoriser
of H is an §-subgroup of G.

Proof. Suppose first that w(4) N w(B) € m and let X denote the factoriser of H in
G. By [16, Theorem 4.7], the Sylow generating basis {4,B, | p € P} of G reduces into
X. Therefore we may assume without loss of generality that G = X. Hence it remains
to show that G € §.

Let x € G, then G/Cg(x%) is a Cernikov group. Moreover, the Sylow generating
basis

{4,B,C6(x%)/Co(x%) | p € P}

of G/Cg(x%) reduces into the group HCg(x%)/Cg(xY). Since ¥ N NS* is a locally
defined NS*-formation, by Theorem 2.3 the factoriser Y/Cg(x%) of the ¥-group
HC;(x%)/Cg(x9) is also an ¥-group. Now Y is a factorised subgroup of G contain-
ing H, and so G = Y and G/C;(x%) € &. Therefore G € § by Lemma 3.1 (a).

As in the case of Theorem 1.6, we deduce a number of useful consequences,
whose proofs are similar to the corresponding results about nilpotent-by-finite
groups. First, we derive a necessary and sufficient condition for an F-maximal sub-
group of G to be factorised.

COROLLARY 3.3. Let ® be a gs-closed class of periodic locally soluble CC-groups
and § a locally defined D-formation of characteristic w. Further, suppose that the -
group G is the product of two locally nilpotent subgroups A and B and let H be an -
maximal subgroup of G.

(a) The subgroup H is prefactorised if and only if the Sylow generating basis
{4,B, | p € P} of G reduces into H.

(b) If r contains w(A) N w(B), then the subgroup H is factorised if and only if the
Sylow generating basis {A,B, | p € P} of G reduces into H.

Since the Sylow bases of a periodic locally soluble CC-groups are locally con-
jugate by [19, Theorem 4.3], the following lemma shows that in Theorem 3.2, every
&-subgroup H has a local conjugate into which the Sylow generating basis
{4,B, | p € P} of G reduces. Recall that an automorphism « of a group G is called
locally inner if, for every finite subset X of G, there exists an element g € G such that
x* = x* for every x € X. Two Sylow bases {G, | p € P} and {H, | p € P} of G are
locally conjugate if there exists a locally inner automorphism o such that G = H,
for every p € P.

LeEmMA 3.4. Let G be a periodic locally soluble CC-group and H a subgroup of G.
Then every Sylow generating basis of H can be extended to a Sylow generating basis of G.

Proof. Let {H, | p € P} be a Sylow generating basis of H. For every prime p, put

Hy =(H;|q€P,q+#p).
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Moreover, let G,y be a Sylow p’-subgroup of G which contains H,,. Define

G,= () Gy

q€P.q#p

then {G, | p € P} is a Sylow generating basis of G by [19, Lemma 4.2]. Since H, is
contained in G, for every prime p, the Sylow generating basis {G, | p € P} reduces
into H.

For §-maximal subgroups, this has the following consequence.

THEOREM 3.5. Let D be a gs-closed class of periodic locally soluble CC-groups
and § a locally defined D-formation of characteristic . Suppose that the CC-group G
is the product of two locally nilpotent subgroups A and B. Then:

(a) Every §-maximal subgroup of G is locally conjugate to a prefactorised §-
maximal subgroup of G.

(b) If © contains w(A) N 7(B), then every F-maximal subgroup of G is locally
conjugate to a factorised §-maximal subgroup of G.

To prove that a periodic locally soluble CC-group which is the product of two
locally nilpotent subgroups has at most one prefactorised F-projector, we need the
following result.

PROPOSITION 3.6. Let D be a gs-closed class of periodic locally soluble CC-groups
and § a locally defined D-formation of characteristic . If the D-group G possesses an
&-projector, then every Sylow generating basis of G reduces into a unique -projector
of G. Thus the §-projectors of G are locally conjugate.

Proof. Let H be an §-projector of G, then by Lemma 3.4, there exists a Sylow
generating basis {G, | p € P} of G which reduces into H. Now assume that L is
another §-projector into which {G, | p € P} reduces. Let x € G, then the Sylow
generating basis

{G,C(x%)/Ca(x) | p € P}

of G/Cg(x%) reduces into both HC;(x%)/Ca(x®) and LC(x%)/Cg(x%). Therefore
HC(x)/Ca(x°) = LCo(x7)/Ce(x%)
by [15, Corollary 5.2]. Put H* = (,.; HCG(x?), then
H*Cg(x%)/Ce(x?) = HC(x%)/Ce(x%) € .

Thus by [7, Lemma 6.2.8], H*/Z(G) € §, and it follows from the definition of a
locally defined formation that H* € §. Since H* contains both H and L, it follows
from the §-maximality of H and L that H = H* = L.

Now let H and H* be arbitrary ¥-projectors of G and suppose that {G, | p € P}

and {G}, | p € PP} are Sylow bases of G reducing into H and H*, respectively. Since
the Sylow bases of G are locally conjugate by [19, Theorem 4.3], there exists a locally
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inner automorphism ¢ of G such that Gﬁ = G, for every p € P. The Sylow generat-
ing basis {G}, | p € PP} reduces into H? and H*, and so we have H* = H? by the first
part.

The next theorem shows that a result similar to Corollary 1.9 holds for gs-
closed classes of periodic locally soluble CC-groups if they admit projectors. Note
that F§-projectors exist (and are locally conjugate) if ® is the class of all periodic
locally soluble CC-groups [20], or if D is a gs-closed class of periodic locally soluble
FC-groups [21]; see also [22].

THEOREM 3.7. Let © be a ¢s-closed class of periodic locally soluble CC-groups.
Suppose that § is a locally defined D-formation of characteristic w, where D is either
the class of all periodic locally soluble CC-groups, or a gs-closed class of FC-groups. If
G is a D-group which is the product of two locally nilpotent subgroups A and B, then G
has at most one prefactorised §-projector. If G has §-projectors, then G possesses a
unique §-projector which is prefactorised. If w contains w(A) N 7(B), then this §-pro-
Jector is factorised.

Despite the fact the Sylow bases of a periodic locally soluble CC-group need not
be conjugate, also a result similar to Corollary 1.10 can be obtained.

THEOREM 3.8. Let D be a gs-closed class of periodic locally soluble CC-groups
and § a locally defined D-formation of characteristic . Moreover, suppose that the
D-group G has subgroups A, B and C such that G = AB= AC = BC. If A and B are
locally nilpotent, C € § and w(A) N w(B) is contained in 7, then G € F.

Proof. Let x € G, then G/Cg(x%) is a Cernikov group. By Proposition 2.2, there
exists an NES*-Schunck class $ such that HND=FNNRS". Therefore
G/Cq(x%) e HND C F by Corollary 1.10 and G € § by Lemma 3.1 (a).

4. Factorisers of F-subgroups of groups with min-p for all primes p.  Since periodic
locally soluble groups satisfying the minimal condition on p-subgroups for every
prime p are residually Cernikov groups by [18, Theorem 3.17], the methods
applied to periodic CC-groups which are the product of two locally nilpotent
subgroups yield essentially the same results for periodic locally soluble groups
satisfying min-p for every prime p. The main difficulties are due to the fact that
Sylow bases of the latter class of groups are not so well-behaved as in the case of
CC-groups.

THEOREM 4.1. Let D be a gs-closed class of periodic locally soluble groups satis-
[fying min-p for every prime p and § a locally defined D-formation of characteristic .
Further, suppose that the D-group G is the product of two locally nilpotent groups A
and B. If H is an §-subgroup of G into which the Sylow generating basis
{4,B, | p € P} of G reduces, then H is contained in a prefactorised §-subgroup of G. If
7(A) N (B) C 7, then H is even contained in a factorised F-subgroup of G.

Proof. Let X denote the factoriser of H in A, B, then we may assume without
loss of generality that G = X. Since by [18, Theorem 3.17], the factor group
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G/0-(G)isa Cernikov group for every finite set o of primes, an argument similar to
that in the proof of Theorem 3.2 shows that G/O,(G) € §. Now the intersection of
all subgroups O,(G), where o is a finite set of primes, is trivial, and we have G € ¥
by [7, Lemma 6.2.8].

For §-maximal subgroups, this has the following consequence.

COROLLARY 4.2. Let D be a ¢s-closed class of periodic locally soluble groups
satisfying min-p for every prime p and § a locally defined D-formation of character-
istic . Further, suppose that the D-group G is the product of two locally nilpotent
subgroups A and B and let H be an §-maximal subgroup of G.

(a) The subgroup H is prefactorised if and only if the Sylow generating basis
{4,B, | p € P} of G reduces into H.

(b) If 7 contains w(A) N w(B), then the subgroup H is factorised if and only if the
Sylow generating basis {A,B, | p € P} of G reduces into H.

The proof of the next theorem does not use the above results about periodic
locally soluble products satisfying min-p. Instead, it relies on the nilpotent-by-finite
case.

THEOREM 4.3. Let D be a gs-closed class of periodic locally soluble groups satis-
fying min-p for all primes p and § a locally defined O-formation of characteristic .
Further, suppose that the D-group G has a triple factorisation G = AB = AC = BC by
three subgroups A, B and C, where A and B are locally nilpotent and C € §. If
7(A) N w(B) C x, then G € §.

Proof. Let o be a finite set of primes. By [18, Theorem 3.17], the factor group
G/0,(G) is a Cernikov group and so by Corollary 1.10, we have G/0,(G) € § for
every finite set o of primes. Since the intersection of the subgroups O, (G), where o is
a finite set of primes, is trivial, we have G € § by [7, Lemma 6.2.8].

The following result is probably well known.

LEMMA 4.4. Let D be a gs-closed class of periodic locally soluble groups and
assume that § is a locally defined D-formation. Further, let H be an §-maximal sub-
group of the D-group G and assume that N is a set of normal subgroups of G such that
the intersection of all N € N is trivial. Then

H= ﬂ HN.
NeN

Proof. Let L ={\yen HN, then LN = HN for every N e N. This shows that
L/LNN=LN/N=HN/N € §. Therefore by [7, Lemma 6.2.8], we have L € .
Since H is contained in L and H is §-maximal, we have H = L, as required.

The next proposition will be used to show that a periodic locally soluble group

satisfying min-p for every prime p which is the product of two locally nilpotent
subgroups has at most one prefactorised F-projector.
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PROPOSITION 4.5. Let D be a gs-closed class of periodic locally soluble groups
satisfying min-p for every prime p and §§ a locally defined D-formation. If the D-group
G has an §-projector, then every Sylow generating basis of G reduces into at most one
&-projector of G.

Proof. Let H and L be -projectors of G into which the Sylow generating basis
{G, | p € P} of G reduces. Let p € P, then the Sylow generating basis

{G,0p(G)/0y(G) | g € P}

of G/0,(G) reduces into HO,(G)/Oy,(G) and LO,(G)/O,(G). Thus by [15, Cor-
ollary 5.2], we have HO,(G) = LO,(G). Since (),p Oy(G) =1, it follows from
Lemma 4.4 that H = L.

peP

Although the Sylow bases of a periodic locally soluble group G satisfying min-p
for every prime p are locally conjugate by [8], G may have rJt-projectors into which
no Sylow generating basis reduces [6, Section 5], even if G is countable. Therefore
our next result might also be of independent interest. Recall that a group G is co-
Hopfian if it does not contain a proper subgroup isomorphic with G. In particular,
every periodic radical group satisfying min-p is co-hopfian, see [4].

PROPOSITION 4.6. Let D be a os-closed class of countable locally finite-soluble
group satisfying min-p for all primes p. If G € D and the locally defined D-formation
& is a class of co-Hopfian groups, then every Sylow generating basis of G reduces into
a unique §-projector of G.

Proof. Let {G, | p € P} be a Sylow generating basis of G and let {p1, p>, ...}
denote the set of all primes in their natural order. Set N; = Oyp,,, p,,,...) for every
i€ N, then G/N; is a Cernikov group by [18, Theorem 3.17]. Hence it has an -
projector H;/N; into which the Sylow generating basis {G,N;/N; | p € P} of G/N;
reduces. Let H = ("), Hi, then by [15, Proposition 2.3 (a)], the Sylow generating
basis {G, | p € P} also reduces into H. Continuing as in the proof of [6, Theorem
3.4], H is an §-projector of G. The uniqueness statement now follows from Propo-
sition 4.5.

Thus we obtain the following result about projectors of groups which are the
product of two locally nilpotent subgroups and satisfy min-p for every prime p.

THEOREM 4.7. Let D be a gs-closed class of periodic locally soluble groups satis-
fying min-p for every prime p and § a locally defined D-formation of characteristic 7.
Then every D-group G which is the product of two locally nilpotent subgroups A and B
has at most one prefactorised §-projector. If § is a class of co-Hopfian groups, then G
possesses a unique §-projector which is prefactorised. If, in addition, w contains
7(A) N w(B), then this F-projector is factorised.

Proof. Suppose that H is a prefactorised §-projector of G. By [16, Theorem 5.7],

the group G is countable with Sylow generating basis {4,B, | p € P} which reduces
into H. Thus by Proposition 4.5, G possesses at most one prefactorised F-projector.
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Now assume that § is a class of co-hopfian groups. Since G is countable, we
may clearly suppose that ® and § consist of countable groups. Thus by Proposition
4.6, G possesses an §-projector L into which {4,B, | p € P} reduces. Thus the sec-
ond statement of the theorem follows from Corollary 4.2.

5. Projectors in soluble and hypoabelian ll-groups. Let i be a locally defined 11-
formation. Although we have not been able to prove the existence of prefactorised
&-maximal subgroups of a ll-group G which is the product of two locally nilpotent
subgroups, we have nevertheless obtained positive results for the most important
class of §-maximal subgroups of G, namely for F-projectors of G. As a first step, we
consider periodic locally soluble groups which are the extension of a p-group by an
&-group. N

Let G be a group and suppose that § is any class of groups. Then G denotes
the intersection of all normal subgroups N of G such that G/N € §. Observe that if
¥ is a D-formation for some o-closed class D of groups, then G/G% € ¥.

PROPOSITION 5.1. Suppose that § is a locally defined ‘D-formation of character-
istic 7 for some gs-closed class °® of locally finite groups. Let G be a D-group such
that GO is a p-group for some p € m and suppose that H is an §-maximal subgroup of
G which satisfies G = HGS. Then:

(a) H = No(Op(H)).

(b) If the Sylow p’-subgroups of every subgroup S of G are conjugate in S, then
every Sylow p'-subgroup of G reduces into at most one conjugate of H.

(c) If G is abelian, then H complements G°.

(d) If G¥ is abelian, then every Sylow p'-subgroup of G reduces into at most one
complement of G¥.

Proof. (a) Let Q = Oy(H) and set L = Ng(Q), then clearly, H < L. We will
show that L € §§. Then the desired result will follow from the §-maximality of H. If
g # p is a prime, then G/N € ©,5,f(q) by hypothesis, where N = G%, and so also
L/LN N belongs to that class. Since N is a ¢’-group, this shows that L € ©,8,/(q)
for every prime ¢ # p.

Now L=LNHN=H(LNN) and (HNN)NQ(LNN)=Q(HNN) by the
modular law, and so

L/Q(LON) = HILNN)/Q(LNN) = H/Q(H N N) € S,f(p)

because H/Q € ©,f(p). Therefore also L/Q e ©,f(p) and consequently
L € S,5,f(p). Since G is a w-group contained in D, the same is true for L, and we
have L € by the definition of a locally defined ®-formation. Therefore
H = L = No(Oy (). )
(b) Suppose that the Sylow p’-subgroup G, reduces into A and H%. Then G§,
reduces into H. Let H, be a Sylow p-subgroup of H, then H = (H N G,)H), by [11,
Lemma 2.1]. Therefore G, =G, NHN =G, N(HNG,)H,N = (HNG,)(GyN
Hpjl\’) = (HNGy) is a Sylow p’-subgroup of H, and by the same argument, also
Gi, is a Sylow p’-subgroups of H. Since H is a lI-group, it follows that Gi, = GZ,
for some i € H. Therefore gh € Ng(Gy). Since G,y is contained in H, we clearly have
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N¢(Gy) < Ng(Op(H)) and so gh € H by (a). This shows that g € H, proving that
H = H&.

(c) Put N = G% and Q = O,(H) and observe that NQ is a normal subgroup of
G. Therefore also K =[N, Q] =[N, NQ] is normal in G.

First, we show that G/K € 3. Since N/K is a p-group, we have G/K € ©,5,(q)
for every prime ¢ # p. Now G/NQ € ©,f(p) as in the proof of (a). Since
0N = 0[0, N] = OK and Q<H, the subgroup QK is normalised by NH = G and so
QK is a normal subgroup of G. Moreover, QN/QK is a p-group, and so also
G/0OK € S,f(p). But then G/K € ©,3,f(p), and so G/K € §. Therefore we have
N=G% <Kandso N=|[N,OQ].

Next, we show that Cy(Q)=1. Let x € Cy(Q). Since x € N, we have
x =[1L,vi ¢, where y; € N and ¢; € Q. Let Qo = {(q1,...,¢s) < Q which is a
finitely generated subgroup of Q, hence is finite, and so also ¥ = (x, yy,...y,)% < N
is finite. Applying [17, II1.13.4] to the finite group Q)Y, we obtain that
Y =1Y, Qo] x Cy(Qyp). In particular, we have x €[Y, Q¢]N Cy(Qp) =1 and so
CnQ) =1

Now the normal p-subgroup HNN of H centralises Q = O,(H) and so
HN N =1, as required.

(d) Suppose that the Sylow p’-subgroup G, of G reduces into H and H*. Since
both H and H* complement N = G% by (c), we have Oy(H)N/N = 0,(G/N) =
Oy(H*)N/N. So O,(H*) = Gy N NOy(H) = O,(H) and thus H = H* by (a).

Our next lemma is the key to finding prefactorised F-projectors.

LEMMA 5.2. Let 7w be a set of primes and suppose that the group G is the product of
two subgroups A and B. Further, assume that A and B have Sylow subgroups A, Ay,
B, and By respectively such that A = Ay X Ay and B = B, x By. If A;By is a Sylow
s-subgroup of G and N is a normal 7'-subgroup of G such that L/N = O,(G/N) is a
prefactorised subgroup of G/ N, then L N A, By is a prefactorised Sylow w-subgroup of L.

Proof. By hypothesis, we have L/N = (L/NN AN/N)(L/N N BN/N) and so

L =(LNAN)LN BN) = (LN ANLN B)

by the modular law. Since L/N is a m-group, it follows that 4, N L < N and
ByNL<N.Since A=A, x Ay, wehave LN A= (LNA,;)x (LNA,), and hence
we obtain L = (L N A,)(L N B;)N. Now the set (L N A,)(L N By) is clearly contained
in LN A, B, which is a w-group. Put 4* = (L N 4,;)N and B* = (L N B;)N, then [5,
Lemma 2], applied to L = A*B*, shows that (L N 4,)(L N By) is a Sylow w-subgroup
of L, and so LN A,B, = (LN A,)(L N By), as required.

Recall that a group is hypoabelian if it has a descending series with abelian
factors. Hence every soluble group is hypoabelian. Note also that the following
theorem does not claim that F-projectors or Sylow generating bases do exist in the
group G or, in case they exist, that any Sylow generating basis of G reduces into an
&-projector of G.

THEOREM 5.3. Let © be a gs-closed class of periodic locally soluble groups and
suppose that § is a locally defined D-formation. Assume that G € D and that H is an
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&-projector of G. If G is hypoabelian or a I-group, then every Sylow generating basis
of G reduces into at most one §-projector of G.

Proof. Suppose that {G, | p € P} is a Sylow generating basis of G and that H
and L are ¥-projectors of G into which {G, | p € P} reduces.

Since G is hypoabelian or a ll-group, there exists an ordinal o such that G pos-
sesses a descending series

G=Ny>Ni>-->N,=1

whose factors Ng/Npg; are p-groups for some prime p depending on B < «. In case
G is hypoabelian, we may also assume that every factor Ng/Ngy is abelian. Let
B <a, then by [15, Proposition 2.3 (b)] the Sylow generating basis
{G,Ng/Npg | p € P} reduces into the F-projectors HNg/Nyg and LNg/Ng of G/Ng,
and so by transfinite induction, we have HNg = LNy for all 8 < «. Thus if o is a
limit ordinal, then we have

H=(\HNy=()LNsg=L,
B<a B<a
by Lemma 4.4.

Otherwise, o has a predecessor « — 1. Then N,_; is a p-group for a prime p, and
HN,_ | = LN, ;. Now H and L are F-maximal subgroups of HN,_; and
{G, | p € P} reduces into HN,_; by [15, Proposition 2.3 (d)]. In particular, if
Gy =(G,|q€P,q+#p), then G, reduces into HN,_;, H and L. The result now
follows from Proposition 5.1 (b) if G € Il and from Proposition 5.1 (d) if G is
hypoabelian.

Since every ll-group G possesses F-projectors by [11] and by [13, Lemma 2.1],
there exists a Sylow generating basis of G reducing into a given subgroup of G, we
have:

COROLLARY 5.4. Let © be a os-closed class of U-groups and suppose that § is a
locally defined D-formation. If G € D, then every Sylow generating basis of G reduces
into exactly one §-projector of G.

Now we are ready to prove the main theorem of this section.

THEOREM 5.5. Let ® be a gs-closed class of U-groups and suppose that § is a
locally defined D-formation of characteristic . Moreover, let the D-group G be the
product of two locally nilpotent subgroups A and B. If G has a normal subgroup N such
that G/N € § and N has a hypoabelian Sylow w-subgroup, then G has a unique pre-
factorised §-projector H, and this §-projector contains A, N By. Thus if the char-
acteristic w of § contains w(A) N w(B), then H is factorised.

Proof. By Corollary 5.4, there exists a unique §-projector H of G into which the
Sylow generating basis {4,B, | p € P} of G reduces, and by [16, Theorem 4.7], this is
the only -projector of G which may be prefactorised.

Since every §-group is a w-group, H is contained in the Sylow m-subgroup 4, B,
of G. Since H is also an §-projector of A,B, by [11, Theorem 5.4], it will suffice to
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show that H is a factorised subgroup of A4,B,. Since N N A, B, is hypoabelian, we
may assume without loss of generality that G = 4, B, and that N is hypoabelian.
Now let

N=Ni>Noy>...0N, =1

be a descending normal series of N with abelian factors which are p-groups for sui-
table primes p. Clearly, we may assume that « > 1. Let 8 < «, then the Sylow gen-
erating basis

{A,B,Ng/Ng | p € P}

of G/Njg reduces into the F-projector HNg/Ng of G/Ng and hence by induction on
«, the subgroup HNg is factorised for all B <. If o is a limit ordinal, then by
Lemma 4.4,

H=)HNy

p<o

and so H is factorised. Therefore assume that o has a predecessor. Now the Sylow
generating basis {4,B, | p € P} of G reduces into the factorised subgroup HN,_i,
and consequently it suffices to consider the case when G = HN,_; and N = N,_;.
Since G/N € & and N is an abelian p-group, also the F-residual G% of G is an abe-
lian p-group. Thus we may assume without loss of generality that N = G5. Then H
complements N by Proposition 5.1 (c), and so O,(G/N)= O,(H)N/N. Since
O,(G/N) is a prefactorised subgroup of G/N by [16, Theorem 5.3], it follows from
Lemma 5.2 that Op(H)=AyB,y NOy(H)N is prefactorised. Moreover,
Ay N Oy(H)N = Ay N Oy(H) is a normal subgroup of 4,,, hence of 4, and similarly,
B, N O,(H) is a normal subgroup of B. Therefore by [26, Hilfssatz 7] (see also [1,
Lemma 1.2.2]), the normaliser Ng(Oy(H)) of Oy(H) = (4y N Oy (H))(By N O, (H))
is factorised. Since we have H = N¢(O,(H)) by Proposition 5.1 (a), it follows that H
is factorised.

Since by [25, Theorem Al], every periodic locally soluble linear group is a
soluble lI-group, we also have:

COROLLARY 5.6. Let © be a gs-closed class of periodic locally soluble linear
groups and suppose that % is a locally defined D-formation of characteristic w. More-
over, let the D-group G be the product of two locally nilpotent subgroups A and B.
Then G has a unique prefactorised §-projector, and this §-projector contains Ay N By.
Thus if the characteristic 7w of § contains w(A) N w(B), then this §-projector is factorised.

6. System normalisers and Carter subgroups of ll-groups. Let G be a l-group
which is the product of two locally nilpotent subgroups. If G is not hypoabelian, the
techniques used in the last section to prove the existence of a prefactorised F-pro-
jector of G cannot be applied any more. This is mainly due to the fact that then
Proposition 5.1 (c) does not hold if G¥ is a nonabelian p-group. However, we have a
positive result about Carter subgroups of ll-groups. Recall that a Carter subgroup is
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simply an rJi-projector, where It denotes the class of all locally nilpotent groups.
Also, if G is a group with Sylow generating basis {G, | p € PP}, then the subgroup
H= ﬂpep Ng(G,) is the system normaliser of G associated with the Sylow generating
basis {G, | p € P}.

PROPOSITION 6.1. Suppose that the U-group G is the product of two locally nil-
potent subgroups. Then G has a factorised system normaliser.

Proof. Let {4,B, | p € P} be the Sylow generating basis of G consisting of pre-
factorised Sylow subgroups of G. Then for each p € P, 4, and B, are normal
subgroups of 4 and B, respectively, and so by [26, Hilfssatz 7], Ng(A,B,) is fac-
torised. Therefore also the system normaliser D = ﬂpep N¢(A4,B,) is factorised.

The preceding result about system normalisers can now be used to prove the
existence of a unique factorised Carter subgroup.

THEOREM 6.2. Suppose that the U-group G is the product of two locally nilpotent
subgroups. Then G has a unique prefactorised Carter subgroup, and this Carter sub-
group is factorised.

Proof. By Corollary 5.4, there exists a unique Carter subgroup C of G into
which the Sylow generating basis {4,B8, | p € P} of G reduces. Therefore by [16,
Theorem 4.7], this is the only Carter subgroup of G which may be prefactorised.

Let n denote the length of the Hirsch-Plotkin series of G. If n < 2, the Carter
subgroups of G coincide with its system normalisers [11, Theorem 5.1]. So in this
case, the result follows from Proposition 6.1. Therefore assume that » > 3 and let R
denote the Hirsch-Plotkin radical of G. Then CR/R is a Carter subgroup of G/R
into which the Sylow generating basis {4,B8,R/R | p € P} of G/R reduces. Thus by
induction on #n, the subgroup CR of G is factorised. Since C is also a Carter sub-
group of CR and n(CR) =2 < n, the subgroup C is factorised in CR, hence in G.
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