
SUBGROUPS OF LOCALLY FINITE PRODUCTS OF
LOCALLY NILPOTENT GROUPS

BURKHARD HOÈ FLING*
Mathematisches Institut, Friedrich-Schiller-UniversitaÈt, D-07740 Jena, Germany

e-mail: hoe¯ing@mathematik.uni-jena.de

(Received 20 October, 1997)

Abstract. Let the locally ®nite group G be the product of two locally nilpotent
subgroups A and B, and assume that H is a subgroup of G belonging to a group
class F. The question is considered whether there exists a subgroup X of G con-
taining H which belongs to F and satis®es X � �X \ A��X \ B�. Under various
assumptions on G and F, necessary and su�cient conditions for the existence of
such a subgroup X are obtained.

A group G is the product of two subgroups A and B if G equals the set AB, that is, if
every element g 2 G can be expressed as g � ab with a 2 A and b 2 B. A subgroup H
of G will be called prefactorised if H is the product of a subgroup of A and a sub-
group of B, and in this case, H � �H \ A��H \ B�. A prefactorised subgroup H of G
is factorised if it contains A \ B. If H is any subgroup of G � AB, then the factoriser
X of H is de®ned as the intersection of all factorised subgroups of G which contain
H. By [1, Lemma 1.1.2], the subgroup X is a factorised subgroup of G.

Here, we consider the following question. Suppose that the group G is the pro-
duct of two locally nilpotent subgroups A and B, and let H be a subgroup of G
belonging to a group class F. Does G possess a prefactorised or factorised subgroup
which contains H and belongs to the same class of groups F? For example, under
various hypotheses on G, it can be shown that the unique maximal locally nilpotent
normal subgroup of G is factorised; see [1] and [3]. Thus every normal locally nilpo-
tent subgroup H of G is contained in a factorised locally nilpotent subgroup.

If the subgroup H in question is not normal (characteristic) in G, one cannot
expect that all conjugates (Aut�G�-conjugates) of the F-group H are contained in
prefactorised or factorised F-group; for example, it is easy to see that every ®nite
product G � AB of two nilpotent subgroups A and B has exactly one prefactorised
Sylow p-subgroup for each prime p, namely ApBp, where Ap and Bp are the p-com-
ponents of A and B, respectively. Moreover, these Sylow subgroups form a Sylow
basis of G. More generally, if G � AB, where A and B are locally nilpotent, and G is
a CC-group, satis®es min-p for every prime p or is a U-group then the sets ApBp are
Sylow p-subgroups of G which form a Sylow generating basis of G; see [5] and [16].
Here, U denotes the largest subgroup-closed class of locally ®nite groups G such that
for every set � of primes, the maximal �-subgroups of G are conjugate. A group G is
a CC-group if G=CG�xG� is a CÏ ernikov group for every x 2 G, where xG denotes the
smallest normal subgroup of G which contains x, and the group G satis®es min-p if it
has the minimal condition on p-subgroups for the prime p. The class of all periodic
locally soluble nilpotent-by-®nite groups, which is evidently a subclass of U, will
play an important role in the sequel and will be denoted by NS�.
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Our main results, which improve the corresponding results about ®nite groups
in [2] and also generalise the above-mentioned ones about Sylow p-subgroups, are
Theorem 2.3, Theorem 3.2 and Theorem 4.1 below. They can be summarised as
follows.

Theorem. Let D be a class of periodic locally soluble groups which is closed under
taking subgroups and factor groups and assume that D is a class of CC-groups, of
NS�-groups or groups satisfying min-p for all primes p. We assume that F is a locally
de®ned D-formation of characteristic �. Let G 2D be the product of two locally nil-
potent groups A and B. If H is an F-subgroup of G such that fApBp j p 2 Pg reduces
into H, then H is contained in a prefactorised F-subgroup of G. If ��A� \ ��B� � �,
then the factoriser of H is an F-subgroup of G.

Note that, if G is an NS�-group (a CC-group) with Sylow generating basis
fGp j p 2 Pg and H is a subgroup of G, then it is always possible to ®nd an inner
(locally inner) automorphism � such that fGp j p 2 Pg reduces into H�. Conse-
quently, in this case every F-subgroup in the above theorem has a conjugate (local
conjugate) which is contained in a prefactorised F-subgroup of G.

Here a Sylow generating basis fGp j p 2 Pg of a group G reduces into a subgroup
H of G if fGp \H j p 2 Pg is a Sylow generating basis of G. De®nitions of Sylow
generating bases and locally de®ned D-formations can be found in [7]; for the latter
see also Section 2 below. The characteristic � of a class F of groups is the set of
primes p such that F contains a group of order p.

In particular, if H is F-maximal in G in the above theorem, that is, if H is not
properly contained in another F-subgroup of G, then H is prefactorised if and only
if fApBp j p 2 Pg reduces into H (see Corollary 3.3 and Corollary 4.2). As a con-
sequence, G possesses exactly one prefactorised F-projector if D consists of groups
satisfying min-p for all primes p, or if D is the class of all periodic locally soluble
CC-groups (Theorem 3.7 and Theorem 4.7). Recall that if F is any class of groups, a
subgroup H of G is an F-projector of G if HN=N is F-maximal in G=N for every
normal subgroup N of G. A similar result about F-projectors also holds if D is
contained in the class U (see Theorem 5.5).

Most of the above results are based upon the close examination of H-subgroups
of NS�-groups G which are the product of two locally nilpotent subgroups A and B,
where H is an NS�-Schunck class (for a de®nition see Section 1). The main result
about H-subgroups of nilpotent-by-®nite products is Theorem 1.6.

Our notation is standard and follows [1] and [7]. In particular, if G is a group and
� is a set of primes, then a Sylow �-subgroup of G is just a maximal �-subgroup of G.

1. Factorisers of H-subgroups of NS*-groups. A class H of NS�-groups is an
NS�-Schunck class if H consists of all NS�-groups whose ®nite primitive image
belong to H and whose in®nite semiprimitive images are the union of ®nite H-
groups. A group is semiprimitive if it is the semidirect product of a ®nite subgroup M
with trivial core and a divisible abelian normal subgroup D all of whose proper M-
invariant subgroups are ®nite. Note that, in view of [23], this de®nition is equivalent
with that in [15]; see also [24].

The following lemma further investigates the structure of certain semiprimitive
groups.
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Lemma 1.1. Let H be a Schunck class of NS�-groups of characteristic � and
suppose that G �M ---�D is an in®nite semiprimitive CÏernikov group, where D is a
radicable abelian p-group for the prime p and M is ®nite and soluble. If G=D is an H-
group and p 2 � but G is not an H-group, then M does not centralise any M-composi-
tion factor of D.

Proof. Since G 62 H, the H-subgroup M is an H-projector of G by [15, Lemma
4.1]. Let U=V be an M-composition factor of D which is centralised by M. Then
MU=V �MV=V�U=V and U=V is an elementary abelian p-group and p 2 �. Now
the class H� of all ®nite groups in H is a Schunck class of ®nite groups, hence is
closed with respect to ®nite direct products by [9, III, Corollary 6.2]. Therefore
MU=V is an H-group. On the other hand, by [15, Corollary 4.7] MV=V is an H-
projector of MU=V. This contradiction shows that M does not centralise any M-
composition factor of D.

Next, we deduce a property of groups satisfying the hypotheses of the preceding
Lemma 1.1 which will be needed in the sequel.

Lemma 1.2. Suppose that G is an in®nite semiprimitive CÏernikov group which is a
semidirect product of a radicable abelian normal p-group D and a ®nite soluble group
M. Further, assume that M does not centralise any M-composition factor of D (of a
given M-composition series of D). If M is not a p-group, then ND �Mp0 � � 1 for every
Hall p0-subgroup Mp0 of M.

Proof. Let

1 � D0 /D1 / . . . /D� � D

be an M-composition series of D, where � is an ordinal, whose factors are not
centralised by M. Since D does not contain in®nite M-invariant subgroups, we have
� � !, the least in®nite ordinal number. Therefore it su�ces to show that
NDn
�Mp0 � � 1 for every integer n. We proceed by induction on n, assuming that

n > 0 and NDnÿ1�Mp0 � � 1.
Let H �MDn and C � CH�Dn=Dnÿ1�. Put K � C \MDnÿ1 � �C \M�Dnÿ1 and

observe that K is a normal subgroup of H � CM because K=Dnÿ1 is centralised by C
and normalised by M. Since Dn \ K � Dnÿ1�Dn \M� � Dnÿ1 by Dedekind's mod-
ular law, the factor group Dn=Dnÿ1 is H-isomorphic with DnK=K � �C \M�Dn=K �
C=K. It follows that C=K is a self-centralised minimal normal subgroup of H=K.
Therefore H=K � �MK=K��C=K� is a primitive group by [9, A, Theorem 15.8 (b)].
Let R=C � Op0 �H=C� and Q �Mp0 \ R, then Q is nontrivial because
C=K � Op�H=K�.

Since the p0-group QK=K � Op0 �MK=K� cannot be normal in H=K and MK=K is
a maximal subgroup ofH=K, it follows thatMK � NH�QK=K�. Let g 2 NH�Mp0K=K�,
then QgK is contained in Mg

p0K \ Rg �Mp0K \ R � �Mp0 \ R�K � QK and so
g 2 NH�QK=K� �MK. It follows that NH�Mp0 � � NH�Mp0K=K� �MK. Therefore

NDn
�Mp0 � �MK \Dn �M�C \M�Dnÿ1 \Dn �MDnÿ1 \Dn � Dnÿ1;

and it follows that NDn
�Mp0 � � NDnÿ1 �Mp0 � � 1, as required.

PRODUCTS OF LOCALLY NILPOTENT GROUPS 325

https://doi.org/10.1017/S0017089599000294 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089599000294


By a result of Gross [12, Theorem 1], (see also [1, Lemma 2.5.2]), a ®nite primitive
group G which is the product of two nilpotent subgroups A and B is either a p-group
or A and B are a Sylow p-subgroup and a Hall p0-subgroup of G. The following is a
weaker version for semiprimitive groups.

Theorem 1.3. Suppose that G is an in®nite semiprimitive group with ®nite residual
D and suppose that D is a p-group. If G is the product of two locally nilpotent sub-
groups A and B, then one of the groups AOp�G�=Op�G� and BOp�G�=Op�G� is a p-group
and the other is a p0-group. In particular, A or B is a p-group.

Proof. If G is a p-group, the statement is clear. Therefore suppose that G is not a
p-group. Since Ap0Bp0 is a Sylow p0-subgroup of G, we must have Ap0 6� 1 or Bp0 6� 1.
Assume without loss of generality that Bp0 6� 1. Then D \ BG

p0 is either ®nite or equals
D. Assume ®rst that D \ BG

p0 is ®nite. Then D \ BG
p0 is contained in

Dn � fx 2 D j xpn � 1g for some integer n and so D=Dn \ BG
p0Dn=Dn � 1, and in

particular, Bp0 is contained in CG�D=Dn�. As in the proof of [24, Proposition 2.3 (ii)],
there exists an isomorphism G! G=Dn mapping D to D=Dn, and so we have
D � CG�D=Dn�. But then Bp0 is contained in a p-group, contradicting Bp0 6� 1. This
shows that we must have D � BG

p0 .
Now Op0 �G� is contained in CG�D� � D and so Op0 �G� � 1. Therefore �Ap0 ;D� �

�AG
p0 ;B

G
p0 � � 1 by Lemma 2.7 and Lemma 2.1 of [10]. But then Ap0 is contained in

CG�D� � D and A is a p-group. Thus BG
p � BA

p is contained in the Sylow p-subgroup
ABp of G. Consequently B

G
p is contained inOp�G� and so BOp�G�=Op�G� is a p0-group.

Combining Lemma 1.1 and Lemma 1.2 with Theorem 1.3, we obtain a ®rst
result about H-maximal subgroups of in®nite semiprimitive CÏ ernikov groups which
are the product of two locally nilpotent subgroups.

Proposition 1.4. Let H be a Schunck class of NS�-groups and suppose that G is an
in®nite semiprimitive CÏernikov group. Further, assume that every ®nite image of G is anH-
group and that G is not anH-group. If G is the product of two locally nilpotent subgroups A
and B, then G possesses an H-projector which contains A or B, hence is factorised.

Proof. Let D denote the ®nite residual of G, which is a radicable abelian p-group
for a prime p. Suppose that B is not a p-group, then by Theorem 1.3, A is a p-group
and Bp0 is a Sylow p0-subgroup of G. Let M be a complement of D in G which con-
tains Bp0 , then by Lemma 1.1 and Lemma 1.2, M contains B � NG�Bp0 � because B is
locally nilpotent. Since M is an H-projector of G by [15, Lemma 4.1] and M contains
B, it follows that M is factorised.

The following proposition shows that not only semiprimitive CÏ ernikov H-
groups are the union of an ascending chain of H-groups.

Proposition 1.5. Let H be a Schunck class of NS�-groups. Then a CÏernikov
group G is an H-group if and only if it is the union of an ascending chain fGi j i 2 Ng of
®nite H-groups.

Proof. If G is the union of an ascending chain fGi j i 2 Ng of ®nite H-groups,
then G 2 H by [15, Lemma 3.1].
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Conversely, suppose that the CÏ ernikov group G belongs to the class H and let D
be the maximal radicable abelian normal subgroup of G and H a ®nite supplement
of D in G. Let L be an H-projector of H, then H � L�D \H� because H=H \D 2 H.
Therefore G � LD and we may assume without loss of generality that H 2 H.

Assume ®rst that D does not have in®nite G-invariant subgroups and let
N � CoreG�H�. Then G=N is the union of a chain fGi=N j i 2 Ng of ®nite H-groups:
If N � D, the group G=N is semiprimitive, and this follows from the de®nition of a
Schunck class. Otherwise, we obtain the same result by induction on jG : Dj and the
fact that G=N � �H=N��DN=N�. Since H is ®nite, we may assume without loss of
generality that H � Gi for every i. Hence Gi � HD \ Gi � H�D \ Gi� by the modular
law. As N is ®nite, it su�ces to show that every Gi is an H-group.

Fix an i 2 N and let Gi=K be a ®nite primitive image of Gi with unique minimal
normal subgroup L=K � F�Gi=K�. If N � K, we have Gi=K 2 H, as required. There-
fore assume that L � NK. Then L � L \NK � �L \N�K by the modular law.
Moreover, the abelian normal subgroup �DK \ Gi�=K of Gi=K is contained in
F�Gi=K� � L=K. It follows that Gi � HL � H�L \N�K. Since N is contained in H,
we even have Gi � HK and so Gi=K � H=H \ K 2 H.

This shows that every primitive image of Gi is an H-group, and so Gi 2 H by the
de®nition of a Schunck class. Thus G is the union of the ®nite H-groups fGi j i 2 Ng.

Therefore suppose that D has a proper in®nite G-invariant subgroup E. By
induction on the rank of a maximal radicable abelian normal subgroup of G, the
factor group G=E possesses an ascending chain fGi=E j i 2 Ng of ®nite H-groups.

We may assume that each Gi contains the subgroup H, so that Gi � H�Gi \D�
for every i 2 N. Let H0 � H, and for each i 2 N, let Hi be an H-maximal supplement
of Gi \D in Gi containing Hiÿ1. Then the Hi form an ascending chain of H-groups:
let L denote their union. Since Hi is an H-projector of Gi and Gi=E 2 H, we have
Gi � HiE, and so G � LE � LD.

Hence D \ L is normal in G. Now G=D \ L � HiE�D \ L�=D \ L is isomorphic
with HiE=HiE \D \ L � HiE=�Hi \D��E \ L�. Since G 2 H, this shows that
HiE=�Hi \D��E \ L� also belongs to H.

Since Hi is an H-projector of Gi � HiE, it follows that Gi � HiE �
Hi�Hi \D��E \ L� is contained in L. Now this holds for every i 2 N, and therefore
G � L is the union of the subgroups Hi 2 H. Thus we may assume without loss of
generality that the Gi are H-groups.

Since the Gi are CÏ ernikov groups, by induction on the rank of a maximal
radicable abelian normal subgroup, each Gi possesses an ascending chain
fGi;j j j 2 Ng of ®nite H-groups. We de®ne an ascending chain fG�i j i 2 Ng of ®nite
H-groups satisfying G�i � Gi for every positive integer i: ®rstly, let G�1 � G1;1. Now
let n > 1. Since Gn is the union of the subgroups fGn;j j j 2 Ng, there exists an integer
m such that the H-group Gn;m � G�n contains the (®nite) subgroups
G1;nÿ1;G2;nÿ2; . . . ;Gnÿ2;2;Gnÿ1;1 and G�nÿ1 of Gn. By construction, fG�ng is an
ascending chain of H-groups and Gi;j � G�i�j for every i, j 2 N. Therefore G is the
union of the chain fG�n j n 2 Ng of ®nite H-groups, as required.

Recall that by [5] (see also [16]) every U-group G which is the product of two
locally nilpotent subgroups A and B possesses a Sylow generating basis of the form
fApBp j p 2 Pg. Now if G is a U-group with Sylow generating basis fGp j p 2 Pg and
H is a subgroup of G, then by [13, Lemma 2.1] and [11, Theorem 2.10], there exists a
g 2 G such that fGp j p 2 Pg reduces intoHg. Thus, with the notation of the following
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theorem, every H-subgroup possesses a conjugate H into which the Sylow generat-
ing basis fApBp j p 2 Pg reduces.

Theorem 1.6. Let H be an NS�-Schunck class of characteristic � and suppose
that the NS�-group G is the product of two locally nilpotent subgroups A and B.
Further, let H be an H-subgroup of G into which the Sylow generating basis
fApBp j p 2 Pg of G reduces.

(a) If � contains ��A� \ ��B�, then the factoriser of H is an H-group.
(b) If H is a �-group, then the factoriser of H in A�B� is an H-group. Hence H is

contained in a prefactorised H-subgroup of G.

Proof. (a) Let X denote the factoriser of H. Since the Sylow generating basis

f�X \ Ap��X \ Bp� j p 2 Pg � fX \ ApBp j p 2 Pg

of X reduces into H, we may assume without loss of generality that G � X. There-
fore it remains to show that G 2 H. As H is a Schunck class and our hypotheses are
inherited by factor groups, it su�ces to consider the cases when G is a ®nite primi-
tive group or an in®nite semiprimitive CÏ ernikov group.

Suppose ®rst that G is ®nite and primitive. Then by [12, Theorem 1], either
G � A � B is a cyclic p group for some prime p, or A is a Sylow p-subgroup of G
and B is a Hall p0-subgroup of G. In the ®rst case, we have p 2 � and so G 2 H.
Otherwise, the Sylow generating basis fApBp j p 2 Pg of G reduces into H, and so
H��H \ ApBp��H \ Ap0Bp0 ���H \ A��H \ B� is factorised. Hence G�X�H 2 H.

If G is an in®nite semiprimitive CÏ ernikov group, we have G �M ---�D, where D
is a radicable abelian p-group for the prime p and M is ®nite. Since every primitive
image of G=D belongs to H, we have M � G=D 2 H because H is a Schunck
class. Now suppose that G 62 H. Then, by Theorem 1.3 and Proposition 1.4, without
loss of generality, A is a p-group containing D and B �M is ®nite. Thus
MDn �MDn \ AB � �MDn \ A�B is factorised for every n 2 N, where Dn �
fx 2 D j xpn � 1g. Since G � Sn2N MDn, this shows that every ®nite subgroup U of
G is contained in a ®nite factorised subgroup of G. In particular, the factoriser of
every ®nite subgroup of G is ®nite.

By Proposition 1.5, the CÏ ernikov group H is the union of an ascending
chain fHi j i 2 Ng of ®nite H-groups. Since H \D has ®nite index in H, we may
assume without loss of generality that H � H1�H \D�. Since G is a U-group, there is
a g 2 G such that the Sylow generating basis fApBp j p 2 Pg of G reduces into Hg

1.
Replacing Hi by Hg

i for every i 2 N, we may assume that the Sylow generating
basis fApBp j p 2 Pg of G reduces into H1. Now Hi � H1�Hi \D� by the modular
law, and so by [15, Proposition 2.3(d)], the Sylow generating basis fApBpg reduces
into every Hi. Therefore the factorisers Xi of the Hi are H-groups by the ®nite case.
The union U of the factorisers of the Hi is clearly a factorised subgroup of G which
contains H, and so G � U. It follows that fXi j i 2 Ng is an ascending chain of ®nite
H-subgroups of the semiprimitive group G, and so G 2 H by the de®nition of a
Schunck class.

(b) Since H is a �-group and the Sylow generating basis fApBp j p 2 Pg of G
reduces into H, we have H � A�B�. Applying (a) to the group A�B�, we obtain that
the factoriser of H in A�B� is an H-group, as required.
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From this theorem, we derive a necessary and su�cient condition for an H-
maximal subgroup of G to be factorised.

Corollary 1.7. Let H be an NS�-Schunck class of characteristic � and suppose
that the NS�-group G is the product of two locally nilpotent subgroups A and B. Let H
be an H-maximal subgroup of G

(a) If � contains ��A� \ ��B�, then H is prefactorised if and only if the Sylow
generating basis fApBp j p 2 Pg of G reduces into H. Thus an H-maximal
subgroup of G is prefactorised if and only if it is factorised.

(b) If H is a �-group, then H is prefactorised if and only if the Sylow generating
basis fApBp j p 2 Pg of G reduces into H.

Proof. If H is any prefactorised subgroup of G, then by [16, Theorem 4.7], the
Sylow generating basis fApBp j p 2 Pg of G reduces into H. This shows the necessity
of our conditions.

Conversely, if � contains ��A� \ ��B� and the Sylow generating basis
fApBp j p 2 Pg of G reduces into H, then the factoriser X of H is an H-group, by
Theorem 1.6. Hence H � X by the H-maximality of H, and so H is factorised.

As in the proof of Theorem 1.6, statement (b) now follows by considering the
Sylow �-subgroup A�B� instead of G.

Since every subgroup of an NS�-group possesses a conjugate into which a given
Sylow generating basis of G reduces, we also have the following result.

Corollary 1.8. Let H be an NS�-Schunck class of characteristic � and suppose
that the NS�-group G is the product of two locally nilpotent subgroups A and B.

(a) If � contains ��A� \ ��B�, then every H-maximal subgroup of G has a fac-
torised conjugate.

(b) Every H-maximal subgroup of G which is a �-group has a prefactorised
conjugate.

Proof. Let H be an H-maximal subgroup of G; then, by [13, Lemma 2.1], a Sylow
generating basis of H can be extended to a Sylow generating basis fGp j p 2 Pg of G.
Therefore, by [11, Theorem 2.10], there exists an element g 2 G such that
fGg

p j p 2 Pg � fApBp j p 2 Pg. Thus fApBp j p 2 Pg reduces into Hgÿ1 . The result
now follows from Corollary 1.7.

Since H-projectors are in particular H-maximal subgroups, we also obtain

Corollary 1.9.Let H be anNS�-Schunck class of characteristic � and suppose that
the NS�-group G is the product of two locally nilpotent subgroups A and B. If � contains
��A� \ ��B� or an H-projector of G is a �-group, then G possesses a unique H-projector
H which is prefactorised. If � contains ��A� \ ��B�, then H is even factorised.

Proof. By [15 Corollary 5.2], the Sylow generating basis fApBp j p 2 Pg of G
reduces into a unique H-projector H of G. Therefore the statements follow from
Corollary 1.7.
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The above results can also be applied to trifactorised groups.

Corollary 1.10. Let H be an NS�-Schunck class and suppose that the group G 2
NS� has subgroupsA, B andC such that G � AB � AC � BC, where A and B are locally
nilpotent and C 2 H. If ��A� \ ��B� is contained in the characteristic of H, then G 2 H.

Proof. In view of [15, Lemma 3.1], we may assume without loss of generality
that C is an H-maximal subgroup of G. Hence C has a factorised conjugate by
Corollary 1.8, and G � C by [2, Lemma 1].

2. Factorisers of F-subgroups of NS*-groups. The results of the preceding
section can also be applied to F-subgroups, where F is locally de®ned D-formation
for some QS-closed subclass D of NS�. In order to accomplish this, we will prove
that every locally de®ned D-formation F can be obtained by intersecting an NS�-
Schunck class H with D.

We brie¯y recall the de®nition of a locally de®ned D-formation given in [7]. Let
D be a class of periodic locally soluble groups which is Q-closed and S-closed, that is,
closed under taking factor groups and subgroups. Let X be a class of groups con-
tained in D, and for every group G 2D, let CG�X; p� denote the intersection of the
centralisers of all p-principal factors U=V such that G=CG�U=V� belongs to X. The
subclass X of D is a �D; p�-preformation if it is Q-closed and for every G 2D, the
factor group G=CG�X; p� belongs to X.

A class F is a D-formation if there exists a set of primes � and a function f
assigning to every p 2 � a �D; p�-preformation f�p�, such that G 2D belongs to F if
and only if G is a �-group and for every prime p, the group G belongs to the class
Sp0Spf�p�. For equivalent de®nitions, see for example [7, Corollary 6.2.5]. Here,
Sp0Spf�p� is the class of all periodic locally soluble groups G having normal sub-
groups M and N such that G=M 2 f�p�, M=N is a p-group and N is a p0-group.

Lemma 2.1. Let D be a Q-closed class of ®nite soluble groups and suppose that X
is a subclass of D such that every D-group has an X-projector.

(a) There exists an S�-Schunck class H such that X � H \D.
(b) Let X be an X-projector of the D-group G. Then X is an H-projector of G if

L 2D for every subgroup L of G with X � L which contains a G-invariant
subgroup N such that L=N 2 H.

Proof. (a) Let H be the class of all ®nite soluble groups whose primitive factor
groups belong to X. Since every X-group has X-projectors, X is Q-closed, and so
X � H \D. Now let G 2 H \D and suppose that X is an X-projector of G. If
G 62 X, then X is contained in a maximal subgroup M of G. But then
X CoreG�M�=CoreG�M� �M=CoreG�M� is a proper subgroup of the X-group
G=CoreG�M�. This contradiction shows that X � H \D.

(b) Assume that X is not an H-projector of G, then there exists a normal sub-
group N of G such that XN=N is properly contained in an H-group L=N. Let M be a
maximal subgroup of L containing XN, then X CoreL�M�=CoreL�M��M=CoreL�M�
is a proper subgroup of L=CoreL�M� 2 H. But since L=CoreL�M� is primitive, it
belongs to X. This contradicts the fact that X is an X-projector of L.
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Note that condition (b) above holds in particular if the class D is subgroup-
closed, or if the X-projectors of every D-group G are X-covering subgroups of G,
that is, if an X-projector X of G is an X-projector of L for every subgroup L of G
which contains X. Observe also that condition (b) is necessary in the following sense:
if X is an H-projector of G, then by [9, III, Theorem 3.21], X is an H-covering sub-
group of G, and since X 2 X � H, it follows that X is also an X-projector of L for
every subgroup L of G which contains X.

However Lemma 2.1 (b) does not hold for NS�-Schunck classes: let p be a
prime, X the class of all quasicyclic p-groups and D be the class of all cyclic and
quasicyclic p-groups. Then every D-group has an X-projector. But every NS�-
Schunck class which contains X also contains D. This example even shows that
there does not exist an NS�-Schunck class H such that the X-projectors of a D-
group coincide with its H-projectors. However, locally de®ned D-formations are still
induced from NS�-Schunck classes.

Proposition 2.2. Let D be a QS-closed subclass of NS� and F a locally
de®ned D-formation. Then there exists a NS�-Schunck class H such that
F �D \H.

Proof. Let H0 be the class of all ®nite soluble groups whose primitive images
belong to F and let H denote the class of all NS�-groups G such that every ®nite
primitive and every in®nite semiprimitive factor group is the union of an ascending
chain of H0-groups. By [15, Proposition 3.3], H is a NS�-Schunck class satisfying
H� � H0.

Assume that f is a preformation function for F and let G 2 F. In order to show
that G 2 H, it clearly su�ces to show that every in®nite semiprimitive image of G is
the union of ®nite F-groups. Thus we may assume that G is an in®nite semiprimitive
group. In particular, G �M ---�D, where M is ®nite, CoreG�M� � 1 and D is an
abelian p-group. Therefore Op0 �G� � 1 and hence G 2 Spf�p�. It follows that
M 2 Spf�p�, and so alsoMDn 2 Spf�p� for every n 2 N, whereDn � fx 2 D j xpn � 1g.
Similarly, if q is a prime 6� p, then G 2 Sq0Sqf�q�, and so also M and the subgroups
MDn (n 2 N) belong to Sq0Sqf�q�. Thus MDn 2 F� � H0 for every n 2 N, and so
G � Sn2N MDn 2 H. Thus F � H.

Now let G 2 H \D and let F be an F-projector of G. If G 62 F, then F is con-
tained in a major subgroup M of G. By [23], G=CoreG�M� is either ®nite and primi-
tive or in®nite and semiprimitive, and M=CoreG�M� is ®nite. Thus in both cases
F CoreG�M�=CoreG�M� is a proper ®nite subgroup of G=CoreG�M�. Since the latter
is the union of an ascending chain of ®nite H-groups and F� � H� \D, the sub-
group F CoreG�M�=CoreG�M� cannot be F-maximal in G=CoreG�M�. This contra-
diction shows that G 2 F.

If F is a locally de®ned formation of characteristic �, then every F-group is a
�-group. This shows that the hypothesis of Theorem 1.6.(b) is always satis®ed if
H � F is a locally de®ned formation. Thus we obtain:

Theorem 2.3. Let D be a QS-closed class of NS�-groups and F a locally de®ned
D-formation of characteristic �. Further, suppose that the D-group G is the product of
two locally nilpotent groups A and B. If H is an F-subgroup of G into which the Sylow
generating basis fApBp j p 2 Pg of G reduces, then H is contained in a prefactorised
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F-subgroup of G. If ��A� \ ��B� � �, then H is even contained in a factorised F-sub-
group of G.

Proof. By the de®nition of F, the F-group H is a �-group. Hence H is contained
in the Sylow �-subgroup A�B� of G. Moreover, by Proposition 2.2, there exists an
NS�-Schunck class H such that F �D \H. Now it follows from Theorem 1.6 that
the factoriser X of H in A�B� is an H-group, hence an F-group. Since A�B� is a
prefactorised subgroup of G, the subgroup X is the required prefactorised subgroup
of G. If ��A� \ ��B� � �, then A \ B is a �-group and so A \ B � A� \ B� is con-
tained in X. Hence X is a factorised subgroup of G.

Note that Corollary 1.7, Corollary 1.8, Corollary 1.9 and Corollary 1.10 can
also be formulated in terms of locally de®ned D-formations, where D is a QS-closed
subclass of NS�.

3. Factorisers of F-subgroups of FC- and CC-groups. Since the concept of
Schunck classes has not yet been extended to the class of all periodic locally soluble
CC-groups, we formulate our theorems for locally de®ned D-formations of periodic
locally soluble CC-groups only. Recall that a group G is an FC-group (a CC-group),
if G=CG�xG� is ®nite (is a CÏ ernikov group). Note also that FC-groups are CC-
groups, so that our results hold in particular for locally de®ned formations of peri-
odic locally soluble FC-groups.

First, we show that, as in the case of NS�-groups, every F-subgroup of a CC-
group G is contained in an F-maximal subgroup of G.

Lemma 3.1. Let D be a QS-closed class of periodic locally soluble CC-groups and
F a locally de®ned D-formation of characteristic �. Moreover, let G be a D-group.

(a) The group G is an F-group if and only if G is a �-group and G=CG�xG� 2 F
for every x 2 G.

(b) The class F is closed with respect to unions of chains of subgroups.

Proof. (a) If G is an F-group, then clearly every factor group of G belongs to F.
Conversely, suppose that G=CG�xG� 2 F for every x 2 G. Since Z�G� �T

x2G CG�xG�, we have G=Z�G� 2 F by [7, Lemma 6.2.8], and so it follows from the
de®nition of a locally de®ned formation that also G 2 F.

(b) Let fGig be a chain of F-subgroups of the D-group G and assume without
loss of generality that G �SGi. If x 2 G, then G=CG�xG� is a CÏ ernikov group. Since
F \NS� is obviously a locally de®ned �D \NS��-formation, by Proposition 2.2,
there exists an NS�-Schunck class H such that F \NS� � H \D. Hence it follows
from [15, Lemma 3.1] that the factor groups G=CG�xG� are H-groups for every x 2 G.
Since every factor group of G is a D-group, it follows that G 2 F by (a).

Now we can prove an analogue of Theorem 2.3 for periodic CC-groups which
are the product of two locally nilpotent subgroups.

Theorem 3.2. Let D be a QS-closed class of periodic locally soluble CC-groups
and F a locally de®ned D-formation of characteristic �. Further, suppose that the
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D-group G is the product of two locally nilpotent groups A and B. If H is an F-sub-
group of G into which the Sylow generating basis fApBp j p 2 Pg of G reduces, then H
is contained in a prefactorised F-subgroup of G. If ��A� \ ��B� � �, then the factoriser
of H is an F-subgroup of G.

Proof. Suppose ®rst that ��A� \ ��B� � � and let X denote the factoriser of H in
G. By [16, Theorem 4.7], the Sylow generating basis fApBp j p 2 Pg of G reduces into
X. Therefore we may assume without loss of generality that G � X. Hence it remains
to show that G 2 F.

Let x 2 G, then G=CG�xG� is a CÏ ernikov group. Moreover, the Sylow generating
basis

fApBpCG�xG�=CG�xG� j p 2 Pg

of G=CG�xG� reduces into the group HCG�xG�=CG�xG�. Since F \NS� is a locally
de®ned NS�-formation, by Theorem 2.3 the factoriser Y=CG�xG� of the F-group
HCG�xG�=CG�xG� is also an F-group. Now Y is a factorised subgroup of G contain-
ing H, and so G � Y and G=CG�xG� 2 F. Therefore G 2 F by Lemma 3.1 (a).

As in the case of Theorem 1.6, we deduce a number of useful consequences,
whose proofs are similar to the corresponding results about nilpotent-by-®nite
groups. First, we derive a necessary and su�cient condition for an F-maximal sub-
group of G to be factorised.

Corollary 3.3. Let D be a QS-closed class of periodic locally soluble CC-groups
and F a locally de®ned D-formation of characteristic �. Further, suppose that the D-
group G is the product of two locally nilpotent subgroups A and B and let H be an F-
maximal subgroup of G.

(a) The subgroup H is prefactorised if and only if the Sylow generating basis
fApBp j p 2 Pg of G reduces into H.

(b) If � contains ��A� \ ��B�, then the subgroup H is factorised if and only if the
Sylow generating basis fApBp j p 2 Pg of G reduces into H.

Since the Sylow bases of a periodic locally soluble CC-groups are locally con-
jugate by [19, Theorem 4.3], the following lemma shows that in Theorem 3.2, every
F-subgroup H has a local conjugate into which the Sylow generating basis
fApBp j p 2 Pg of G reduces. Recall that an automorphism � of a group G is called
locally inner if, for every ®nite subset X of G, there exists an element g 2 G such that
x� � xg for every x 2 X. Two Sylow bases fGp j p 2 Pg and fHp j p 2 Pg of G are
locally conjugate if there exists a locally inner automorphism � such that G�p � Hp

for every p 2 P.

Lemma 3.4. Let G be a periodic locally soluble CC-group and H a subgroup of G.
Then every Sylow generating basis of H can be extended to a Sylow generating basis of G.

Proof. Let fHp j p 2 Pg be a Sylow generating basis of H. For every prime p, put

Hp0 � hHq j q 2 P; q 6� pi:
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Moreover, let Gp0 be a Sylow p0-subgroup of G which contains Hp0 . De®ne

Gp �
\

q2P;q 6�p
Gq0 ;

then fGp j p 2 Pg is a Sylow generating basis of G by [19, Lemma 4.2]. Since Hp is
contained in Gp for every prime p, the Sylow generating basis fGp j p 2 Pg reduces
into H.

For F-maximal subgroups, this has the following consequence.

Theorem 3.5. Let D be a QS-closed class of periodic locally soluble CC-groups
and F a locally de®ned D-formation of characteristic �. Suppose that the CC-group G
is the product of two locally nilpotent subgroups A and B. Then:

(a) Every F-maximal subgroup of G is locally conjugate to a prefactorised F-
maximal subgroup of G.

(b) If � contains ��A� \ ��B�, then every F-maximal subgroup of G is locally
conjugate to a factorised F-maximal subgroup of G.

To prove that a periodic locally soluble CC-group which is the product of two
locally nilpotent subgroups has at most one prefactorised F-projector, we need the
following result.

Proposition 3.6. Let D be a QS-closed class of periodic locally soluble CC-groups
and F a locally de®ned D-formation of characteristic �. If the D-group G possesses an
F-projector, then every Sylow generating basis of G reduces into a unique F-projector
of G. Thus the F-projectors of G are locally conjugate.

Proof. Let H be an F-projector of G, then by Lemma 3.4, there exists a Sylow
generating basis fGp j p 2 Pg of G which reduces into H. Now assume that L is
another F-projector into which fGp j p 2 Pg reduces. Let x 2 G, then the Sylow
generating basis

fGpCG�xG�=CG�xG� j p 2 Pg

of G=CG�xG� reduces into both HCG�xG�=CG�xG� and LCG�xG�=CG�xG�. Therefore

HCG�xG�=CG�xG� � LCG�xG�=CG�xG�

by [15, Corollary 5.2]. Put H� � Tx2G HCG�xG�, then

H�CG�xG�=CG�xG� � HCG�xG�=CG�xG� 2 F:

Thus by [7, Lemma 6.2.8], H�=Z�G� 2 F, and it follows from the de®nition of a
locally de®ned formation that H� 2 F. Since H� contains both H and L, it follows
from the F-maximality of H and L that H � H� � L.

Now let H and H� be arbitrary F-projectors of G and suppose that fGp j p 2 Pg
and fG�p j p 2 Pg are Sylow bases of G reducing into H and H�, respectively. Since
the Sylow bases of G are locally conjugate by [19, Theorem 4.3], there exists a locally

334 BURKHARD HOÈ FLING

https://doi.org/10.1017/S0017089599000294 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089599000294


inner automorphism � of G such that G�p � G�p for every p 2 P. The Sylow generat-
ing basis fG�p j p 2 Pg reduces into H� and H�, and so we have H� � H� by the ®rst
part.

The next theorem shows that a result similar to Corollary 1.9 holds for QS-
closed classes of periodic locally soluble CC-groups if they admit projectors. Note
that F-projectors exist (and are locally conjugate) if D is the class of all periodic
locally soluble CC-groups [20], or if D is a QS-closed class of periodic locally soluble
FC-groups [21]; see also [22].

Theorem 3.7. Let D be a QS-closed class of periodic locally soluble CC-groups.
Suppose that F is a locally de®ned D-formation of characteristic �, where D is either
the class of all periodic locally soluble CC-groups, or a QS-closed class of FC-groups. If
G is a D-group which is the product of two locally nilpotent subgroups A and B, then G
has at most one prefactorised F-projector. If G has F-projectors, then G possesses a
unique F-projector which is prefactorised. If � contains ��A� \ ��B�, then this F-pro-
jector is factorised.

Despite the fact the Sylow bases of a periodic locally soluble CC-group need not
be conjugate, also a result similar to Corollary 1.10 can be obtained.

Theorem 3.8. Let D be a QS-closed class of periodic locally soluble CC-groups
and F a locally de®ned D-formation of characteristic �. Moreover, suppose that the
D-group G has subgroups A, B and C such that G � AB � AC � BC. If A and B are
locally nilpotent, C 2 F and ��A� \ ��B� is contained in �, then G 2 F.

Proof. Let x 2 G, then G=CG�xG� is a CÏ ernikov group. By Proposition 2.2, there
exists an NS�-Schunck class H such that H \D � F \NS�. Therefore
G=CG�xG� 2 H \D � F by Corollary 1.10 and G 2 F by Lemma 3.1 (a).

4. Factorisers of F-subgroups of groups with min-p for all primes p. Since periodic
locally soluble groups satisfying the minimal condition on p-subgroups for every
prime p are residually CÏ ernikov groups by [18, Theorem 3.17], the methods
applied to periodic CC-groups which are the product of two locally nilpotent
subgroups yield essentially the same results for periodic locally soluble groups
satisfying min-p for every prime p. The main di�culties are due to the fact that
Sylow bases of the latter class of groups are not so well-behaved as in the case of
CC-groups.

Theorem 4.1. Let D be a QS-closed class of periodic locally soluble groups satis-
fying min-p for every prime p and F a locally de®ned D-formation of characteristic �.
Further, suppose that the D-group G is the product of two locally nilpotent groups A
and B. If H is an F-subgroup of G into which the Sylow generating basis
fApBp j p 2 Pg of G reduces, then H is contained in a prefactorised F-subgroup of G. If
��A� \ ��B� � �, then H is even contained in a factorised F-subgroup of G.

Proof. Let X denote the factoriser of H in A�B�, then we may assume without
loss of generality that G � X. Since by [18, Theorem 3.17], the factor group

PRODUCTS OF LOCALLY NILPOTENT GROUPS 335

https://doi.org/10.1017/S0017089599000294 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089599000294


G=O�0 �G� is a CÏ ernikov group for every ®nite set � of primes, an argument similar to
that in the proof of Theorem 3.2 shows that G=O�0 �G� 2 F. Now the intersection of
all subgroups O�0 �G�, where � is a ®nite set of primes, is trivial, and we have G 2 F
by [7, Lemma 6.2.8].

For F-maximal subgroups, this has the following consequence.

Corollary 4.2. Let D be a QS-closed class of periodic locally soluble groups
satisfying min-p for every prime p and F a locally de®ned D-formation of character-
istic �. Further, suppose that the D-group G is the product of two locally nilpotent
subgroups A and B and let H be an F-maximal subgroup of G.

(a) The subgroup H is prefactorised if and only if the Sylow generating basis
fApBp j p 2 Pg of G reduces into H.

(b) If � contains ��A� \ ��B�, then the subgroup H is factorised if and only if the
Sylow generating basis fApBp j p 2 Pg of G reduces into H.

The proof of the next theorem does not use the above results about periodic
locally soluble products satisfying min-p. Instead, it relies on the nilpotent-by-®nite
case.

Theorem 4.3. Let D be a QS-closed class of periodic locally soluble groups satis-
fying min-p for all primes p and F a locally de®ned D-formation of characteristic �.
Further, suppose that the D-group G has a triple factorisation G � AB � AC � BC by
three subgroups A, B and C, where A and B are locally nilpotent and C 2 F. If
��A� \ ��B� � �, then G 2 F.

Proof. Let � be a ®nite set of primes. By [18, Theorem 3.17], the factor group
G=O�0 �G� is a CÏ ernikov group and so by Corollary 1.10, we have G=O�0 �G� 2 F for
every ®nite set � of primes. Since the intersection of the subgroups O�0 �G�, where � is
a ®nite set of primes, is trivial, we have G 2 F by [7, Lemma 6.2.8].

The following result is probably well known.

Lemma 4.4. Let D be a QS-closed class of periodic locally soluble groups and
assume that F is a locally de®ned D-formation. Further, let H be an F-maximal sub-
group of the D-group G and assume that N is a set of normal subgroups of G such that
the intersection of all N 2 N is trivial. Then

H �
\
N2N

HN:

Proof. Let L �TN2N HN, then LN � HN for every N 2 N . This shows that
L=L \N � LN=N � HN=N 2 F. Therefore by [7, Lemma 6.2.8], we have L 2 F.
Since H is contained in L and H is F-maximal, we have H � L, as required.

The next proposition will be used to show that a periodic locally soluble group
satisfying min-p for every prime p which is the product of two locally nilpotent
subgroups has at most one prefactorised F-projector.
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Proposition 4.5. Let D be a QS-closed class of periodic locally soluble groups
satisfying min-p for every prime p and F a locally de®ned D-formation. If the D-group
G has an F-projector, then every Sylow generating basis of G reduces into at most one
F-projector of G.

Proof. Let H and L be F-projectors of G into which the Sylow generating basis
fGp j p 2 Pg of G reduces. Let p 2 P, then the Sylow generating basis

fGqOp0 �G�=Op0 �G� j q 2 Pg

of G=Op0 �G� reduces into HOp0 �G�=Op0 �G� and LOp0 �G�=Op0 �G�. Thus by [15, Cor-
ollary 5.2], we have HOp0 �G� � LOp0 �G�. Since

T
p2P Op0 �G� � 1, it follows from

Lemma 4.4 that H � L.

Although the Sylow bases of a periodic locally soluble group G satisfying min-p
for every prime p are locally conjugate by [8], G may have LN-projectors into which
no Sylow generating basis reduces [6, Section 5], even if G is countable. Therefore
our next result might also be of independent interest. Recall that a group G is co-
Hop®an if it does not contain a proper subgroup isomorphic with G. In particular,
every periodic radical group satisfying min-p is co-hop®an, see [4].

Proposition 4.6. Let D be a QS-closed class of countable locally ®nite-soluble
group satisfying min-p for all primes p. If G 2D and the locally de®ned D-formation
F is a class of co-Hop®an groups, then every Sylow generating basis of G reduces into
a unique F-projector of G.

Proof. Let fGp j p 2 Pg be a Sylow generating basis of G and let fp1; p2; . . .g
denote the set of all primes in their natural order. Set Ni � Ofpi�1;pi�2;...g for every
i 2 N, then G=Ni is a CÏ ernikov group by [18, Theorem 3.17]. Hence it has an F-
projector Hi=Ni into which the Sylow generating basis fGpNi=Ni j p 2 Pg of G=Ni

reduces. Let H �Tn2N Hi, then by [15, Proposition 2.3 (a)], the Sylow generating
basis fGp j p 2 Pg also reduces into H. Continuing as in the proof of [6, Theorem
3.4], H is an F-projector of G. The uniqueness statement now follows from Propo-
sition 4.5.

Thus we obtain the following result about projectors of groups which are the
product of two locally nilpotent subgroups and satisfy min-p for every prime p.

Theorem 4.7. Let D be a QS-closed class of periodic locally soluble groups satis-
fying min-p for every prime p and F a locally de®ned D-formation of characteristic �.
Then every D-group G which is the product of two locally nilpotent subgroups A and B
has at most one prefactorised F-projector. If F is a class of co-Hop®an groups, then G
possesses a unique F-projector which is prefactorised. If, in addition, � contains
��A� \ ��B�, then this F-projector is factorised.

Proof. Suppose that H is a prefactorised F-projector of G. By [16, Theorem 5.7],
the group G is countable with Sylow generating basis fApBp j p 2 Pg which reduces
into H. Thus by Proposition 4.5, G possesses at most one prefactorised F-projector.
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Now assume that F is a class of co-hop®an groups. Since G is countable, we
may clearly suppose that D and F consist of countable groups. Thus by Proposition
4.6, G possesses an F-projector L into which fApBp j p 2 Pg reduces. Thus the sec-
ond statement of the theorem follows from Corollary 4.2.

5. Projectors in soluble and hypoabelian U-groups. Let F be a locally de®ned U-
formation. Although we have not been able to prove the existence of prefactorised
F-maximal subgroups of a U-group G which is the product of two locally nilpotent
subgroups, we have nevertheless obtained positive results for the most important
class of F-maximal subgroups of G, namely for F-projectors of G. As a ®rst step, we
consider periodic locally soluble groups which are the extension of a p-group by an
F-group.

Let G be a group and suppose that F is any class of groups. Then GF denotes
the intersection of all normal subgroups N of G such that G=N 2 F. Observe that if
F is a D-formation for some Q-closed class D of groups, then G=GF 2 F.

Proposition 5.1. Suppose that F is a locally de®ned D-formation of character-
istic � for some QS-closed class D of locally ®nite groups. Let G be a D-group such
that GF is a p-group for some p 2 � and suppose that H is an F-maximal subgroup of
G which satis®es G � HGF. Then:

(a) H � NG�Op0 �H��.
(b) If the Sylow p0-subgroups of every subgroup S of G are conjugate in S, then

every Sylow p0-subgroup of G reduces into at most one conjugate of H.
(c) If GF is abelian, then H complements GF.
(d) If GF is abelian, then every Sylow p0-subgroup of G reduces into at most one

complement of GF.

Proof. (a) Let Q � Op0 �H� and set L � NG�Q�, then clearly, H � L. We will
show that L 2 F. Then the desired result will follow from the F-maximality of H. If
q 6� p is a prime, then G=N 2 Sq0Sqf�q� by hypothesis, where N � GF, and so also
L=L \N belongs to that class. Since N is a q0-group, this shows that L 2 Sq0Sqf�q�
for every prime q 6� p.

Now L � L \HN � H�L \N� and �H \N� \Q�L \N� � Q�H \N� by the
modular law, and so

L=Q�L \N� � H�L \N�=Q�L \N� � H=Q�H \N� 2 Spf�p�

because H=Q 2 Spf�p�. Therefore also L=Q 2 Spf�p� and consequently
L 2 Sp0Spf�p�. Since G is a �-group contained in D, the same is true for L, and we
have L 2 F by the de®nition of a locally de®ned D-formation. Therefore
H � L � NG�Op0 �H��.

(b) Suppose that the Sylow p0-subgroup Gp0 reduces into H and Hg. Then Ggÿ1
p0

reduces into H. Let Hp be a Sylow p-subgroup of H, then H � �H \ Gp0 �Hp by [11,
Lemma 2.1]. Therefore Gp0 � Gp0 \HN � Gp0 \ �H \ Gp0 �HpN � �H \ Gp0 ��Gp0\
HpN� � �H \ Gp0 � is a Sylow p0-subgroup of H, and by the same argument, also
Ggÿ1

p0 is a Sylow p0-subgroups of H. Since H is a U-group, it follows that Ggÿ1
p0 � Gh

p0

for some h 2 H. Therefore gh 2 NG�Gp0 �. Since Gp0 is contained in H, we clearly have
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NG�Gp0 � � NG�Op0 �H�� and so gh 2 H by (a). This shows that g 2 H, proving that
H � Hg.

(c) Put N � GF and Q � Op0 �H� and observe that NQ is a normal subgroup of
G. Therefore also K � �N;Q� � �N;NQ� is normal in G.

First, we show that G=K 2 F. Since N=K is a p-group, we have G=K 2 Sq0Sqf�q�
for every prime q 6� p. Now G=NQ 2 Spf�p� as in the proof of (a). Since
QN � Q�Q;N� � QK and Q/H, the subgroup QK is normalised by NH � G and so
QK is a normal subgroup of G. Moreover, QN=QK is a p-group, and so also
G=QK 2 Spf�p�. But then G=K 2 Sp0Spf�p�, and so G=K 2 F. Therefore we have
N � GF � K and so N � �N;Q�.

Next, we show that CN�Q� � 1. Let x 2 CN�Q�. Since x 2 N, we have
x �Qn

i�1�yi; qi�, where yi 2 N and qi 2 Q. Let Q0 � hq1; . . . ; qni � Q which is a
®nitely generated subgroup of Q, hence is ®nite, and so also Y � hx; y1; . . . yniQ0 � N
is ®nite. Applying [17, III.13.4] to the ®nite group Q0Y, we obtain that
Y � �Y;Q0� � CY�Q0�. In particular, we have x 2 �Y;Q0� \ CY�Q0� � 1 and so
CN�Q� � 1.

Now the normal p-subgroup H \N of H centralises Q � Op0 �H� and so
H \N � 1, as required.

(d) Suppose that the Sylow p0-subgroup Gp0 of G reduces into H and H�. Since
both H and H� complement N � GF by (c), we have Op0 �H�N=N � Op0 �G=N� �
Op0 �H��N=N. So Op0 �H�� � Gp0 \NOp0 �H� � Op0 �H� and thus H � H� by (a).

Our next lemma is the key to ®nding prefactorised F-projectors.

Lemma 5.2. Let � be a set of primes and suppose that the group G is the product of
two subgroups A and B. Further, assume that A and B have Sylow subgroups A�, A�0 ,
B� and B�0 respectively such that A � A� � A�0 and B � B� � B�0 . If A�B� is a Sylow
�-subgroup of G and N is a normal �0-subgroup of G such that L=N � O��G=N� is a
prefactorised subgroup of G=N, then L \ A�B� is a prefactorised Sylow �-subgroup of L.

Proof. By hypothesis, we have L=N � �L=N \ AN=N��L=N \ BN=N� and so

L � �L \ AN��L \ BN� � �L \ A�N�L \ B�

by the modular law. Since L=N is a �-group, it follows that A�0 \ L � N and
B�0 \ L � N. Since A � A� � A�0 , we have L \ A � �L \ A�� � �L \ A�0 �, and hence
we obtain L � �L \ A���L \ B��N. Now the set �L \ A���L \ B�� is clearly contained
in L \ A�B� which is a �-group. Put A� � �L \ A��N and B� � �L \ B��N, then [5,
Lemma 2], applied to L � A�B�, shows that �L \ A���L \ B�� is a Sylow �-subgroup
of L, and so L \ A�B� � �L \ A���L \ B��, as required.

Recall that a group is hypoabelian if it has a descending series with abelian
factors. Hence every soluble group is hypoabelian. Note also that the following
theorem does not claim that F-projectors or Sylow generating bases do exist in the
group G or, in case they exist, that any Sylow generating basis of G reduces into an
F-projector of G.

Theorem 5.3. Let D be a QS-closed class of periodic locally soluble groups and
suppose that F is a locally de®ned D-formation. Assume that G 2D and that H is an
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F-projector of G. If G is hypoabelian or a U-group, then every Sylow generating basis
of G reduces into at most one F-projector of G.

Proof. Suppose that fGp j p 2 Pg is a Sylow generating basis of G and that H
and L are F-projectors of G into which fGp j p 2 Pg reduces.

Since G is hypoabelian or a U-group, there exists an ordinal � such that G pos-
sesses a descending series

G � N0 .N1 . � � � .N� � 1

whose factors N�=N��1 are p-groups for some prime p depending on � < �. In case
G is hypoabelian, we may also assume that every factor N�=N��1 is abelian. Let
� < �, then by [15, Proposition 2.3 (b)] the Sylow generating basis
fGpN�=N� j p 2 Pg reduces into the F-projectors HN�=N� and LN�=N� of G=N�,
and so by trans®nite induction, we have HN� � LN� for all � < �. Thus if � is a
limit ordinal, then we have

H �
\
�<�

HN� �
\
�<�

LN� � L;

by Lemma 4.4.
Otherwise, � has a predecessor �ÿ 1. Then N�ÿ1 is a p-group for a prime p, and

HN�ÿ1 � LN�ÿ1. Now H and L are F-maximal subgroups of HN�ÿ1 and
fGp j p 2 Pg reduces into HN�ÿ1 by [15, Proposition 2.3 (d)]. In particular, if
Gp0 � hGq j q 2 P; q 6� pi, then Gp0 reduces into HN�ÿ1, H and L. The result now
follows from Proposition 5.1 (b) if G 2 U and from Proposition 5.1 (d) if G is
hypoabelian.

Since every U-group G possesses F-projectors by [11] and by [13, Lemma 2.1],
there exists a Sylow generating basis of G reducing into a given subgroup of G, we
have:

Corollary 5.4. Let D be a QS-closed class of U-groups and suppose that F is a
locally de®ned D-formation. If G 2D, then every Sylow generating basis of G reduces
into exactly one F-projector of G.

Now we are ready to prove the main theorem of this section.

Theorem 5.5. Let D be a QS-closed class of U-groups and suppose that F is a
locally de®ned D-formation of characteristic �. Moreover, let the D-group G be the
product of two locally nilpotent subgroups A and B. If G has a normal subgroup N such
that G=N 2 F and N has a hypoabelian Sylow �-subgroup, then G has a unique pre-
factorised F-projector H, and this F-projector contains A� \ B�. Thus if the char-
acteristic � of F contains ��A� \ ��B�, then H is factorised.

Proof. By Corollary 5.4, there exists a unique F-projector H of G into which the
Sylow generating basis fApBp j p 2 Pg of G reduces, and by [16, Theorem 4.7], this is
the only F-projector of G which may be prefactorised.

Since every F-group is a �-group, H is contained in the Sylow �-subgroup A�B�
of G. Since H is also an F-projector of A�B� by [11, Theorem 5.4], it will su�ce to
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show that H is a factorised subgroup of A�B�. Since N \ A�B� is hypoabelian, we
may assume without loss of generality that G � A�B� and that N is hypoabelian.

Now let

N � N1 .N2 . . . . .N� � 1

be a descending normal series of N with abelian factors which are p-groups for sui-
table primes p. Clearly, we may assume that � > 1. Let � < �, then the Sylow gen-
erating basis

fApBpN�=N� j p 2 Pg

of G=N� reduces into the F-projector HN�=N� of G=N� and hence by induction on
�, the subgroup HN� is factorised for all � < �. If � is a limit ordinal, then by
Lemma 4.4,

H �
\
�<�

HN�

and so H is factorised. Therefore assume that � has a predecessor. Now the Sylow
generating basis fApBp j p 2 Pg of G reduces into the factorised subgroup HN�ÿ1,
and consequently it su�ces to consider the case when G � HN�ÿ1 and N � N�ÿ1.
Since G=N 2 F and N is an abelian p-group, also the F-residual GF of G is an abe-
lian p-group. Thus we may assume without loss of generality that N � GF. Then H
complements N by Proposition 5.1 (c), and so Op0 �G=N� � Op0 �H�N=N. Since
Op0 �G=N� is a prefactorised subgroup of G=N by [16, Theorem 5.3], it follows from
Lemma 5.2 that Op0 �H� � Ap0Bp0 \Op0 �H�N is prefactorised. Moreover,
Ap0 \Op0 �H�N � Ap0 \Op0 �H� is a normal subgroup of Ap0 , hence of A, and similarly,
Bp0 \Op0 �H� is a normal subgroup of B. Therefore by [26, Hilfssatz 7] (see also [1,
Lemma 1.2.2]), the normaliser NG�Op0 �H�� of Op0 �H� � �Ap0 \Op0 �H���Bp0 \Op0 �H��
is factorised. Since we have H � NG�Op0 �H�� by Proposition 5.1 (a), it follows that H
is factorised.

Since by [25, Theorem A1], every periodic locally soluble linear group is a
soluble U-group, we also have:

Corollary 5.6. Let D be a QS-closed class of periodic locally soluble linear
groups and suppose that F is a locally de®ned D-formation of characteristic �. More-
over, let the D-group G be the product of two locally nilpotent subgroups A and B.
Then G has a unique prefactorised F-projector, and this F-projector contains A� \ B�.
Thus if the characteristic � of F contains ��A� \ ��B�, then this F-projector is factorised.

6. System normalisers and Carter subgroups of U-groups. Let G be a U-group
which is the product of two locally nilpotent subgroups. If G is not hypoabelian, the
techniques used in the last section to prove the existence of a prefactorised F-pro-
jector of G cannot be applied any more. This is mainly due to the fact that then
Proposition 5.1 (c) does not hold if GF is a nonabelian p-group. However, we have a
positive result about Carter subgroups of U-groups. Recall that a Carter subgroup is
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simply an LN-projector, where LN denotes the class of all locally nilpotent groups.
Also, if G is a group with Sylow generating basis fGp j p 2 Pg, then the subgroup
H �Tp2P NG�Gp� is the system normaliser of G associated with the Sylow generating
basis fGp j p 2 Pg.

Proposition 6.1. Suppose that the U-group G is the product of two locally nil-
potent subgroups. Then G has a factorised system normaliser.

Proof. Let fApBp j p 2 Pg be the Sylow generating basis of G consisting of pre-
factorised Sylow subgroups of G. Then for each p 2 P, Ap and Bp are normal
subgroups of A and B, respectively, and so by [26, Hilfssatz 7], NG�ApBp� is fac-
torised. Therefore also the system normaliser D �Tp2P NG�ApBp� is factorised.

The preceding result about system normalisers can now be used to prove the
existence of a unique factorised Carter subgroup.

Theorem 6.2. Suppose that the U-group G is the product of two locally nilpotent
subgroups. Then G has a unique prefactorised Carter subgroup, and this Carter sub-
group is factorised.

Proof. By Corollary 5.4, there exists a unique Carter subgroup C of G into
which the Sylow generating basis fApBp j p 2 Pg of G reduces. Therefore by [16,
Theorem 4.7], this is the only Carter subgroup of G which may be prefactorised.

Let n denote the length of the Hirsch-Plotkin series of G. If n � 2, the Carter
subgroups of G coincide with its system normalisers [11, Theorem 5.1]. So in this
case, the result follows from Proposition 6.1. Therefore assume that n � 3 and let R
denote the Hirsch-Plotkin radical of G. Then CR=R is a Carter subgroup of G=R
into which the Sylow generating basis fApBpR=R j p 2 Pg of G=R reduces. Thus by
induction on n, the subgroup CR of G is factorised. Since C is also a Carter sub-
group of CR and n�CR� � 2 < n, the subgroup C is factorised in CR, hence in G.
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