CENTRAL *-DIFFERENTIAL IDENTITIES IN PRIME RINGS

P. H. LEE AND T. L. WONG

Abstract

Let R be a prime ring with involution and d, δ be derivations on R. Suppose that $x d(x)-\delta(x) x$ is central for all symmetric x or for all skew x. Then $d=\delta=0$ unless R is a commutative integral domain or an order of a 4-dimensional central simple algebra.

It was shown in [1] that if R is a prime ring and d, δ are two derivations of R such that $x d(x)-\delta(x) x$ lies in the center of R for all $x \in R$, then either $d=\delta=0$ or R is commutative. In this paper we are concerned with a similar problem in the setting of rings with involution. Let R be a prime ring with an involution $*$. Suppose that d and δ are derivations of R such that $x d(x)-\delta(x) x$ is central for all $x=x^{*}$ or for all $x=-x^{*}$. Here we show that $d=\delta=0$ unless R is a commutative integral domain or an order of a 4-dimensional central simple algebra. This extends the results in [7] where the same conclusions were proved under the additional assumption $d=\delta$.

In what follows, R will always denote a prime ring with an involution $*$ and Z the center of R. $S=\left\{x \in R \mid x^{*}=x\right\}$ is the set of symmetric elements in R and $K=\{x \in R \mid$ $\left.x^{*}=-x\right\}$ the set of skew elements. Let d and δ denote two derivations of R. We are going to show that R satisfies the standard identity $s_{4}=\sum_{\sigma \in S_{4}}(-1)^{\sigma} X_{\sigma(1)} X_{\sigma(2)} X_{\sigma(3)} X_{\sigma(4)}$ provided $d \neq 0$ or $\delta \neq 0$. Let C stand for the extended centroid of R and \bar{C} the algebraic closure of C. $R C$ is the central closure of R and R is called centrally closed if $R C=R$. For subsets A and $B,[A, B]$ will denote the additive subgroup generated by elements of the form $[a, b]=a b-b a$ with $a \in A$ and $b \in B$. The involution $*$ on R can be extended to an involution on $R C$ [4, Lemma 2.4.1] which will also be denoted by $*$. The involution * is said to be of the first kind if $\alpha^{*}=\alpha$ for all $\alpha \in C$ and of the second kind otherwise. We begin with a well-known

Lemma. If $d(S) \subseteq Z$ or $d(K) \subseteq Z$, then either $d=0$ or R satisfies s_{4}.
Proof. Assume that $d \neq 0$. If char $R \neq 2$, then R satisfies s_{4} by [6 , Lemma 5 and Corollary] or [8, Lemma 1.6]. Hence, assume that char $R=2$ and then $K=S$ in this case. For $s \in S$, we have $d\left(s^{2}\right)=2 s d(s)=0$. Thus, $0=s^{2} d\left(s^{2} x+x^{*} s^{2}\right)+d\left(s^{2} x+x^{*} s^{2}\right) s^{2}=$ $s^{4} d(x)+s^{2} d\left(x+x^{*}\right) s^{2}+d\left(x^{*}\right) s^{4}=s^{4} d(x)+d\left(x+x^{*}\right) s^{4}+d\left(x^{*}\right) s^{4}=s^{4} d(x)+d(x) s^{4}$ for all $x \in R$. That is, $\left[s^{4}, d(R)\right]=0$ and so $s^{8} \in Z$ by a theorem due to Herstein [5]. Therefore, R satisfies s_{4} by [7, Thm.3].

Now we prove a symmetric version of Brešar's Theorem.

Received by the editors November 2, 1994.
AMS subject classification: Primary 16W25, Secondary 16W10, 16N60, 16R50.
Key words and phrases: involution, derivation, symmetric element, skew element (c) Canadian Mathematical Society 1996.

Theorem 1. If $s d(s)-\delta(s) s \in Z$ for all $s \in S$, then either $d=\delta=0$ or R satisfies S_{4}.

Proof. Linearize the relation $s d(s)-\delta(s) s \in Z$ to obtain $s d(t)-\delta(t) s+t d(s)-\delta(s) t \in$ Z for all s, t in S. Replacing t with $[s, k]$ for $k \in K$ and using $s d(s)-\delta(s) s \in Z$, we have $s[s, d(k)]-[s, \delta(k)] s \in Z$ for all $s \in S$ and $k \in K$. Thus, for each $k \in K$, the inner derivations D_{k} and Δ_{k}, defined by $D_{k}(x)=[x, d(k)]$ and $\Delta_{k}(x)=[x, \delta(k)]$, satisfy $s D_{k}(s)-\Delta_{k}(s) s \in \mathcal{Z}$ for all $s \in S$. Suppose that the theorem has been proved for inner derivations; then we can conclude that either $D_{k}=\Delta_{k}=0$ for each $k \in K$ or R satisfies s_{4}. In the former case, we have $d(K) \subseteq Z$ and $\delta(K) \subseteq Z$ whence either $d=\delta=0$ or R satisfies s_{4} by the Lemma. So it suffices to consider the situation when $d(x)=[x, a]$ and $\delta(x)=[x, b]$ for some fixed elements a, b in R.

Assume first that $Z \cap S \neq 0$, that is, there exists $\alpha \in Z$ with $\alpha^{*}=\alpha \neq 0$. From $s d(\alpha)-\delta(\alpha) s+\alpha d(s)-\delta(s) \alpha \in Z$, it follows that $d(s)-\delta(s) \in Z$ for all $s \in S$ since $d(\alpha)=\delta(\alpha)=0$. Again, by the Lemma, either $d=\delta$ or R satisfies s_{4}. But if $d=\delta$, we are done by [7, Thm. 1 and Thm.5]. So assume that $Z \cap S=0$ from which $Z=0$ follows. Thus $s[s, a]-[s, b] s=0$ for all $s \in S$. We assume that a and b are not both zero and proceed to show that R satisfies s_{4}. Applying $*$ to $s[s, a]-[s, b] s=0$, we obtain that $s\left[s, b^{*}\right]-\left[s, a^{*}\right] s=0$ and so both $s\left[s, a+b^{*}\right]-\left[s, b+a^{*}\right] s=0$ and $s\left[s, a-b^{*}\right]-$ $\left[s, b-a^{*}\right] s=0$ for all $s \in S$. Since $a \neq 0$ or $b \neq 0, a+b^{*}$ and $a-b^{*}$ cannot be both zero in case char $R \neq 2$, and so we may replace a with $a+b^{*}$ or $a-b^{*}$ and assume that $b=a^{*}$ or $b=-a^{*}$ respectively. In case char $R=2$, we may still replace a with $a+b^{*}$ if $a+b^{*} \neq 0$, while if $a+b^{*}=0$, we have $b=a^{*}$ already. Hence, we assume that $b=a^{*}$ or $b=-a^{*}$. Also, we may assume that $b \neq a$.

Let $f(X, Y)=(X+Y)[X+Y, a]-[X+Y, b](X+Y)$. Then $f(X, Y)$ is a nontrivial generalized polynomial identity (GPI) and R satisfies the $*$-GPI $f\left(X, X^{*}\right)=0$. Since $s d(t)-\delta(t) s+t d(s)-\delta(s) t=0$ for all $s, t \in S$, replacing t with s^{2} yields $2 s^{2} d(s)+$ $s d(s) s-s \delta(s) s-2 \delta(s) s^{2}=0$. But $s^{2} d(s)=s \delta(s) s$ and $\delta(s) s^{2}=s d(s) s$, so we have $s d(s) s=s \delta(s) s$ or, equivalently, $s[s, c] s=0$ for all $s \in S$ where $c=a-b \neq 0$. Set $g(X$, $Y)=(X+Y)[X+Y, c](X+Y)$. Then R satisfies the nontrivial $*$-GPI $g\left(X, X^{*}\right)=0$. In light of [2, Prop.4], $R C$ also satisfies both $*$-GPIs $f\left(X, X^{*}\right)=0$ and $g\left(X, X^{*}\right)=0$. If C is infinite and $*$ is of the second kind, R satisfies $f(X, Y)=0$ by [2, Prop.1]. In particular, $x[x, a]-[x, b] x=0$ for all $x \in R$ and so $a \in Z=0$ by Brešar's Theorem [1, Thm.4.1], a contradiction. If C is infinite and $*$ is of the first kind, $*$ can be extended to $R C \otimes_{C} \bar{C}$ and standard arguments show that both $f\left(X, X^{*}\right)=0$ and $g\left(X, X^{*}\right)=0$ hold in $R C \otimes_{C} \bar{C}$. Since both $R C$ and $R C \otimes_{C} \bar{C}$ are prime and centrally closed [3, Thm.2.5 and Thm.3.5], we may replace R with $R C$ or $R C \otimes_{C} \bar{C}$ and assume that R is centrally closed over C and that C is either finite or algebraically closed.

By Martindale's Theorem [9], R is then a primitive ring having a nonzero socle H and with C as the associated division ring. In light of Kaplansky's Theorem [4, Thm.1.2.2], there exists a vector space V over C, equipped with a Hermitian or alternate form, such that R acts faithfully and densely on ${ }_{C} V$ and that r^{*} is the adjoint of r for each $r \in R$. Moreover, H consists of the finite-rank linear transformations having adjoints on ${ }_{C} V$.

If V is finite-dimensional over C, the density of R on ${ }_{C} V$ implies that $R \cong M_{n}(C)$ for some $n>1$ with symplectic or transpose type involution [4, p.19]. We want to show that $n=2$. Assume the contrary and we will proceed to arrive at a contradiction that either $c \in Z$ or $a \in Z$.

Suppose that $*$ is symplectic on $M_{n}(C)$, that is, n is even and $*$ is given by $\left(a_{i j}\right)^{*}=$ $\left(a_{j i}^{\sigma}\right)$ where $a_{i j}$ is the 2×2 matrix block at the (i, j)-position and σ is the involution $\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)^{\sigma}=\left(\begin{array}{cc}\delta & -\beta \\ -\gamma & \alpha\end{array}\right)$ on $M_{2}(C)$. Consider first the case when $n=4$ and write $c=\left(\begin{array}{ll}c_{11} & c_{12} \\ c_{21} & c_{22}\end{array}\right)$. Setting $X=\left(\begin{array}{ll}0 & I \\ 0 & 0\end{array}\right)$ in $g\left(X, X^{*}\right)=0$ where I is the 2×2 identity matrix, we have $c_{11}=c_{22}$ and $c_{12}=c_{21}$. Then set $X=\left(\begin{array}{cc}e_{11} & e_{11} \\ 0 & e_{11}\end{array}\right),\left(\begin{array}{cc}e_{11} & e_{12} \\ 0 & e_{11}\end{array}\right)$ and $\left(\begin{array}{cc}e_{11} & e_{21} \\ 0 & e_{11}\end{array}\right)$ successively in $g\left(X, X^{*}\right)=0$ where $\left\{e_{i j}\right\}$ are the usual 2×2 matrix units, and we obtain that $c_{12}=0$ and c_{11} is a scalar matrix in $M_{2}(C)$ and hence $c \in Z$. Now assume that $n>4$. For $h \neq k$, let $e=\left(a_{i j}\right)$ with $a_{h h}=a_{k k}=I$ and $a_{i j}=0$ otherwise. Then $e^{2}=e=e^{*}$ and $e R e \cong M_{4}(C)$. Proceeding as above, we will get $c \in Z$.

Suppose next that $*$ is of the transpose type, namely, $\left(\gamma_{i j}\right)^{*}=\left(\pi_{i} \pi_{j}^{-1} \gamma_{j i}^{*}\right)$ where π_{1}, \ldots, π_{n} are n fixed nonzero symmetric elements in C. Write $a=\sum \alpha_{i j} e_{i j}$ where $\alpha_{i j} \in C$ and $\left\{e_{i j}\right\}$ are the usual matrix units. By setting $X=\pi_{i} e_{i j}$ with $i \neq j$ in $f\left(X, X^{*}\right)=0$, we have, for $k \neq i, j, \alpha_{i k}=\alpha_{j k}=0$ and $\alpha_{i i}^{*}+\alpha_{i i}=\alpha_{j j}^{*}+\alpha_{j j}$ or $\alpha_{i i}^{*}-\alpha_{i i}=\alpha_{j j}^{*}-\alpha_{j j}$ according as $b=a^{*}$ or $b=-a^{*}$ respectively. In other words, a is a diagonal matrix and $a^{*}+a$ or $a^{*}-a$ lies in Z if $n \geq 3$. In any case $b+a \in Z$ and so $\delta=-d$. Thus we have $s d(s)+d(s) s \in Z$ for all $s \in S$. Hence, $a \in Z$ follows from [7, Thm.6].

It remains to consider the case when V is infinite-dimensional over C. For any $e=$ $e^{2}=e^{*} \in H$, we have $e R e \cong M_{n}(C)$ for some $n=\operatorname{dim}_{C} V e$. Since R satisfies $e f\left(e X e, e X^{*} e\right) e=0$ and $g\left(e X e, e X^{*} e\right)=0$, the subring $e R e$ satisfies $f_{e}\left(X, X^{*}\right)=$ $\left(X+X^{*}\right)\left[X+X^{*}, e a e\right]-\left[X+X^{*}, e b e\right]\left(X+X^{*}\right)=0$ and $g_{e}\left(X, X^{*}\right)=\left(X+X^{*}\right)\left[X+X^{*}\right.$, $e c e]\left(X+X^{*}\right)=0$. As we have shown above, eae (or ece) is central in eRe if $n \geq 3$. Given any $h \in H$, there is a symmetric idempotent $e \in H$ such that $h, h a$ and $a h$ (or $h c$ and $c h$) are all in e Re by the $*$-version of Litoff's Theorem. Since V is infinite-dimensional over C, we may choose e so that $n=\operatorname{dim}_{C} V e \geq 3$. Then eae (or ece) is central in eRe. Hence $a h=e a h=e a e h=h e a e=h a e=h a$ (similarly $c h=h c$). Thus, $a($ or $c)$ centralizes the nonzero ideal H of the prime ring R and hence lies in Z. This completes the proof of the theorem.

One might wonder why we use the identity $f\left(X, X^{*}\right)=0$ instead of $g\left(X, X^{*}\right)=$ 0 in the transpose case. Indeed $g\left(X, X^{*}\right)=0$ implies $c \in Z$ as in the symplectic case provided the characteristic is not 2 . However, one can verify, for instance, that $\left(x+x^{*}\right)\left[x+x^{*}, y+y^{*}\right]\left(x+x^{*}\right)=0$ for all x, y in $M_{3}(C)$ if char $C=2$ and $*$ is of the first kind and of the transpose type.

Finally, we give a skew version of Brešar's Theorem.
Theorem 2. If $k d(k)-\delta(k) k \in Z$ for all $k \in K$, then either $d=\delta=0$ or R satisfies s_{4}.

Proof. In light of Theorem 1, it suffices to prove the theorem in the situation when char $R \neq 2$.

Linearize the relation $k d(k)-\delta(k) k \in \mathcal{Z}$ to obtain $k d(h)-\delta(h) k+h d(k)-\delta(k) h \in \mathbb{Z}$ for all h, k in K. Replacing h with $[k, h]$ we obtain $k[k, d(h)]-[k, \delta(h)] k \in Z$. Thus for each h, we have $k D_{h}(k)-\Delta_{h}(k) k \in Z$ for all $k \in K$ where D_{h} and Δ_{h} are the inner derivations defined by $d(h)$ and $\delta(h)$ respectively. As before, we need only consider the inner case because of the Lemma. So assume that $d(x)=[x, a]$ and $\delta(x)=[x, b]$ for some fixed elements a and b in R. Applying $*$ to $k[k, a]-[k, b] k \in Z$, we get $k\left[k, b^{*}\right]-\left[k, a^{*}\right] k \in Z$ and hence $k\left[k, a+b^{*}\right]-\left[k, b+a^{*}\right] k \in Z$ and $k\left[k, a-b^{*}\right]-\left[k, b-a^{*}\right] k \in Z$ for all $k \in K$. So we may assume further that $b=a^{*}$ or $b=-a^{*}$ and proceed to show that either $a \in \mathcal{Z}$ or R satisfies s_{4}.

If $a \notin Z$, then R satisfies the nontrivial $*$-GPI $h\left(X, X^{*}, Y\right)=\left[\left(X-X^{*}\right)\left[X-X^{*}\right.\right.$, $\left.a]-\left[X-X^{*}, b\right]\left(X-X^{*}\right), Y\right]=0$. A reduction as in the proof of Theorem 1 enables us to consider only the case when $R=M_{n}(C)$ for some $n>2$ with symplectic or transpose type involution. We are going to show that $a \in Z$ which contradicts our hypothesis.

Assume that $*$ is symplectic on $M_{n}(C)$. As before, it suffices to prove in the case when $n=4$. Write $a=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$. Suppose first that $b=a^{*}$. Set $X=e_{11}$ in $h(X$, $\left.X^{*}, Y\right)=0$; then $a_{12}=0$. Similarly, $a_{21}=0$ follows from setting $X=e_{33}$ in $h\left(X, X^{*}\right.$, $Y)=0$. Next, by setting $X=e_{13}+e_{31}$ in $h\left(X, X^{*}, Y\right)=0$, we get $a_{11}+a_{11}^{\sigma}=a_{22}+a_{22}^{\sigma}$. Thus $a+a^{*} \in Z$ and hence $\delta(x)=\left[x, a^{*}\right]=-[x, a]=-d(x)$ for all $x \in R$. Then we have $k d(k)+d(k) k \in \mathcal{Z}$ for all $k \in K$ and so $a \in Z$ by [7, Thm.7]. Suppose next that $b=-a^{*}$. Set $X=e_{11}$ in $h\left(X, X^{*}, Y\right)=0$; then $a_{12}=0$ and a_{11} is a diagonal matrix. Similarly, $a_{21}=0$ and a_{22} being diagonal follow from setting $X=e_{33}$ in $h\left(X, X^{*}, Y\right)=0$. Next, by setting $X=e_{11}+e_{12}$ in $h\left(X, X^{*}, Y\right)=0$ we obtain that a_{11} is a scalar matrix. Similarly, a_{22} is also scalar by setting $X=e_{33}+e_{34}$ in $h\left(X, X^{*}, Y\right)=0$. Thus $a^{*}=a$ and so $\delta=-d$. Then $a \in Z$ follows again from [7, Thm.7].

Finally assume that $*$ is of the transpose type, say $\left(\gamma_{i j}\right)^{*}=\left(\pi_{i} \pi_{j}^{-1} \gamma_{j i}^{*}\right)$. Write $a=$ $\sum \alpha_{i j} e_{i j}$ where $\alpha_{i j} \in C$. By setting $X=\pi_{i} e_{i j}$ with $i \neq j$ in $h\left(X, X^{*}, Y\right)=0$, we obtain that a is a diagonal and $a^{*}+a \in Z$ or $a^{*}-a \in Z$ according as $b=a^{*}$ or $b=-a^{*}$ respectively. Hence, we get $b+a \in Z$ in any case and so $\delta=-d$. Thus, we have $k d(k)+d(k) k \in Z$ for all $k \in K$ and the proof of the theorem is completed by [7, Thm.7].

References

1. M. Brešar, Centralizing mappings and derivations in prime rings, J. Algebra 156(1993), 385-394.
2. C. L. Chuang, *-differential identities of prime rings with involution, Trans. Amer. Math. Soc. 316(1989), 251-279.
3. T. S. Erickson, W. S. Martindale and J. M. Osborn, Prime nonassociative algebras, Pacific J. Math. 60 (1975), 49-63.
4. I. N. Herstein, Rings with Involution, Univ. Chicago Press, Chicago, 1976.
5. \qquad , A note on derivations II, Canad. Math. Bull. 22(1979), 509-511.
6. \qquad , A theorem on derivations of prime rings with involution, Canad. J. Math. 34(1982), 356-369.
7. P. H. Lee and T. K. Lee, Derivations centralizing symmetric or skew elements, Bull. Inst. Math. Acad. Sinica 14(1986), 249-256.
8. J. S. Lin, On derivations of prime rings with involution, Chinese J. Math. 14(1986), 37-51.
9. W. S. Martindale, Prime rings satisfying a generalized polynomial identity, J. Algebra 12(1969), 576-584.

Department of Mathematics
National Taiwan University
Taipei, Taiwan

