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Abstract. We consider iterates of absolutely continuous measures concentrated in
a neighbourhood of a partially hyperbolic attractor. It is shown that limit points
can be measures which have conditional measures of a special form for any partition
into subsets of unstable manifolds.

1. Introduction: Formulation of main results
1.1. Let M be a smooth Riemannian manifold, U <=M be an open set, f: U -*M
be a C1+"-diffeomorphism of M. A subset A in M is called a partially hyperbolic
attractor if it satisfies the following conditions:

(Al) A is closed and /-invariant;
(A2) the map f\ A is partially hyperbolic;
(A3) there exists a neighbourhood £ / o

c U of the set A such that

f{U0)<=U0 and A = n

Let us denote by r°(rA) the Banach space of continuous vector fields on A with
the uniform norm. The diffeomorphism / induces a linear operator /* in r°(TA),
given by the formula

It is known (cf. [11,12]), that the spectrum of the complexification of /* consists
of whole circles. The condition (A2) means (cf. [3]) that the spectrum is contained
in two rings whose radii are Ai, /ui, A2, M2 respectively and

oo>Ai>/xi>A2>/A2>0,Ati>l- (1-1)

There are continuous sub-bundles of the tangent bundle TA invariant with respect
to df which correspond to the components of the spectrum, lying in these rings.
We denote them by E" and E'° respectively. These distributions have the following
properties, with respect to a special (so-called Lyapunov) Riemannian metric:

(1) Eu(x)®Es0(x) = TXM for any JC e A;
(2) there exist numbers Ai, (*u A2, M2 such that

>/U.1>A2>A2>/i2>/U.2>0,
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and for any x e A, n > 0

We assume that the subspaces Eu{x) have the same dimension for any x e A.
It is known (cf., for example, [12]) that for any xeA there exists a smooth

submanifold Wi"oc(x) having the following characteristic property: for any ye

(here C > 0 is a constant, independent on x, y and n and p is the induced distance
function on M). Moreover TxW?oc(x) = Eu(x). The submanifold W"oc(x) is called
a local unstable manifold at the point x e A. The global unstable manifold at x e A
is denned by the expression

w(X)= u nwroc(/""(*))•
—oo<n<oo

PROPOSITION 1. (1) For any neighbourhood Vo <= Uo of A

(2) The set A is locally maximal (i.e. for any compact f-invariant set A c Uo we-
have A'cA).

(3) W{x) c A for any x e A; moreover the sets W(x), xeA form an f-invariant
C1-foliation on A (see the corresponding definition in [14]).

(4) There exists C > 0 such that for any x e A, y e W(x) and any n > 0

where pu is the distance on Wu(x) induced by the Riemannian metric.

1.2. Let us denote by ^(A) the set of all non-vanishing continuous functions <f> on
A satisfying the Holder condition, i.e.

\4>(x)-<f>(y)\<Cp(x,y)a foranyx,yeA

and some C > 0, a e (0,1) independent on x, y e A. For any xeA, yeWu(x) and
any integer n > 0 we define the function

p*»(*,y)="n [<f>(rK(x)m<f>(rK(y))Tl. a.3>

Let us denote by B"(x, r) the open ball on the submanifold W(x) with centre at
x and radius r. The properties of p^,,,, stated in the following proposition, have
already been obtained before essentially in [1, 2].

PROPOSITION 2. (1) For any x e A, y e W"(x) there exists the limit

P*(x,y)= Km p<t,,n(x,y)>0.
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Moreover, for any e > 0, r > 0, there exists N=N(e,r) such that for every n^N

max max Wn{x, y)-p+{x, y)\^e.
x e A ysB (x,r)

(2) The function p$(x, y) is continuous; more exactly for any x e\,y eWu(x) and
any two sequences {*„}, {yn} such thatxn-*x, yn-*y, xn e A, yn e Wu(xn) and value
p"(xn, yn) is bounded from above uniformly on n we have

lim p4,(xn, yn) = P4,{x, y).

(3) For any xe A, y, zeW(x)

P*(x, y W(y, z) = p+(x, z).

1.3. Let x e A and W be a local manifold passing through x transversally to foliation
W"(dim W = dimEs0{x)). We call a A-rectangle at x the set

n = U(x,W,r)= U Bu(y,r).
yeWnA

Let us assume that r is small and denote by v" the measure on W(y), induced
by the Riemannian metric and by g = £(II) the partition of II(x, W, r) onto the sets
B"(y, r). This partition being continuous it is measurable with respect to any Borel
measure on A. We denote by *(y), y eII(JC, W,r) the point in W n A such that
y eBu(x(y), r). (It is evident that such a point is uniquely defined.)

Let fj, be a Borel measure on A. Let us fix a function <j> € ̂ F(A), a point x e A
and a A-rectangle II(JC, W, r) and denote by fi((y) the conditional measures on the
elements C((y) = Bu(x(y), r) of the partition f(II). We shall say that the measure
H is Gibbs (u, <£)-measure if for any x € A and any A-rectangle II(x, W, r)

dfidy) = r{x(y))pvix(y),y)dPu(y), (1.4)

where the 'normalizing factor' (partition function r(x(y)) is given by the equality

Bu(x(y), r)

1.4. Let *(A) be the set of all normalized /-invariant Gibbs («, <f> )-measures on A,
<l> e^(A). For p. G<t>(A) and x e A we denote by /£(*) the Jacobian of the map
df\Eu(x) with respect to p.

T H E O R E M 1. Let p G < & ( A ) . The entropy / J ^ ( / | A ) of f \ A with respect to p satisfies
the inequality

e

ln^JKx) dp(x)>0.

The following statement plays an important role in the study of ergodic properties
of the automorphism /|A.

THEOREM 2. There exist a set A'cA and a measurable partition £ of A' such that
(1) A' is open in A and f-invariant;
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(2) for any x e A' the element C((x) is an open connected subset of the layer W(x);
if x is forward recurrent then diam C((x) s const (independent on x); vu(BCi(x)) = 0;

(4) y«orBf=e;
(5) if fie 4>(A) is an ergodic measure then

/t(A') = l and Afn{ = HW),
naO

where v{W") is the measurable hull ofthe partition of A into the layers of the foliation
W with respect to /J..

Analogous statements for other cases can be found in [6, 8, 10].

1.5. We denote by / " (* ) , x e A the Jacobian of the map df\Eu(x) with respect to
the Riemannian volume v. As the distribution E" satisfies Holder's condition (cf.
[3]) $u e!F(A). We shall call a Gibbs (M,^")-measure simply a Gibbs M-measure.

Let us fix a neighbourhood Vo <= Uo of A and consider a measure in Vo having
a non-negative density W(x) with respect to Riemannian volume v such that

supp¥(x)<=F0, f V(x)dv(x)=\. (1.5)

Let us denote by C(V0) the Banach space of all continuous function on Vo with
the uniform norm and define the sequence of linear functionals on this space by
the formula

= -nZ \ V(x)h(fK(x))di>(x),
n K=O Jv0

where h e C(V0). It is easy to see that for any hu h2e.C(V0)

l(x)- h2(x)\.

It is easy to see that the family {/„} is relatively compact in the topology of weak
* convergence. Let l(V0, ^ ) be a limit functional. According to Riesz's theorem
there exists Borel measure fi = ix(l(V0, ^)), corresponding to 1{VO, W) such that for
any continuous function h e C(V0)

l{V0,V)(h)=\ h(x)dfi(x). (1.6)
Jv0

It is easy to show that the measure fi(l{V0, ^)) is normalized, concentrated on A
and /-invariant. The main result of this paper is the following theorem.

T H E O R E M 3. There exists a neighbourhood Vo <= Uo of A with the following property.
For any neighbourhood V'o <= Vo of A and any non-negative density ty(x) (satisfying
(1.5)) any limit measure fi =(JL(1(V'O, ^ ) ) constructed in the manner described above
is a normalized f-invariant Gibbs u-measure.

This assertion means that there exist /-invariant Gibbs M-measures on A which
can be obtained by iterations of absolutely continuous measures with respect to
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Lebesque measure and concentrated on a neighbourhood of A. In particular the
set 3>(A) is non-empty. In the case of the set A being a hyperbolic attractor this
assertion was proved earlier by Bowen and Ruelle (cf. [15, 16]). In this case the
limit measure //. is uniquely defined and the map /|A is isomorphic (with respect
to n) to a Bernoulli shift.

1.6. We describe another way of constructing Gibbs M-measures. Let us fix x e A
and choose a small open neighbourhood Uo of x on the layer W{x). Let us put

Un=fn(U0), co=l, \"f !\
-K=0

and define a measure vn on Un by the equality

dfniy) = CnPjfir (*), y)dV
u(y), n >0.

We define a Borel measure v„ on A by putting for any Borel set A a A

PROPOSITION 3. For any n > 0 and any Borel set A <= A we have

Let fj.n = —ZK=O VK- I* follows easily from proposition 3 and the Krylov-Bogol-
n

jubov theorem that the sequence y^n is weakly compact and any of its limits is
/-invariant.

THEOREM 4. Any limiting measure of the sequence nn is an f-invariant Gibbs
u-measure.

Remark. The last assertion admits an important generalization. It is true for
attractors which have more general properties than partial hyperbolicity. Namely,
it is sufficient to assume, instead of conditions (A2) and (A3), the following
conditions:

(A2)' there exists a continuous/-invariant contracting (under/"") exfoliation W
of set A;

(A3)' W(x)cAforanyjteA;
(A4)' distribution TW{x) satisfies the Holder condition.
The proof of this fact is the same as the proof of theorem 4, given in § 2.

1.7. Sometimes the partial hyperbolicity is formulated in another way. Namely one
assumed that the spectrum of the complexification of operator /,. is contained in
three rings whose radii are Ai, ̂ ti, K'2, ix'2, A3, /H3 respectively and (compare with
(l.D)

oo>Aia/xi>Aia/ t2>Aja/4i>0,^i>l>Aj . (1.1')

We denote the df-invariant distributions on A corresponding to these rings by E",
E° and Es respectively.

https://doi.org/10.1017/S014338570000170X Published online by Cambridge University Press

https://doi.org/10.1017/S014338570000170X


422 Ya. B. Pesin and Ya. G. Sinai

THEOREM 5. Let us assume that the distribution E° is integrable (cf. [14]) and the
layers of the corresponding foliation W° are compact subsets of A. Then for any
e>0 there exists a neighbourhood V<^Diffn+a)(U, M) of f such that

(1) any diffeomorphism g e t ) has a partially hyperbolic attractor Ag<=-U;
(2) the spectrum of the complexification of the operator g* in r ° ( rA g ) is contained

in three rings whose radii are equal to A,,g, ju.I>g, i = 1, 2, 3 respectively, where

0, /LH,g>l>Ai>g;

(3) the distribution E°g, corresponding to the middle component of the spectrum, is
integrable and the layers of the corresponding foliation W°g are compact subsets in Ag;

(4) there exists a homeomorphism hg : A -» Ag such that for every x eAg

p{hs(x),x)<e;

(5) hg(W°{x)) = W°g (h,(x)) for any xeA.

2. Proofs

2.1. Proof of proposition 1.(1) Let Vo<^ Uo be a neighbourhood of A, then by the
condition (A3).

A<= nr(Vo)<=n/"(£/<>)=A.
naO ii>0

(2) Let A be a compact /-invariant set and A' <= Uo, then

(3) Assume that the converse is true. Then for any e > 0 there exist JC e A and
ye W"(x) such that yi. A. The condition (A3) implies that /"(y)e Uo for n >0. If
e > 0 is small enough then it follows from the definition of sets W" (x), compactness
of A and the condition (A2) that / " (y) e Uo for n < 0. But this contradicts the local
maximality of A. The fact that the sets W"(x) form a continuous /-invariant
C'-foliation contracting under/"" follows from condition (A2.)

2.2. Proof of proposition 2. As the function <\> is continuous and does not vanish on
A we have

min</Hx)>0 if <£ >0.
xe A

As the function <f> satisfies Holder's condition we get using assertion 3 of proposition
1 that for any K s 0, x e A, yeB"{x,r)

Assertions 1 and 2 follow from this inequality. Assertion 3 is obvious

2.3. Proof of theorem 1 is essentially a simple modification of the proof given in
[4] (cf. also [7,13,6]) and therefore is omitted.

2.4. Proof of theorem 2 is a modification of the proof given in [10]. Let II = U(x, W, r)
be a A-rectangle at x e A. We define an open set U(y) for every y e W n A in the
following way: z e U(y) if there exists a finite sequence of sets

A,- =/-n<(Bu(yi; /•)) (y,e Wn A, «,aO,i = l p)
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such that
(1) A,=fl"(y,r);
(2)A,nAi-1*0 (K/sp);
(3) zeAp.
One can prove, repeating the arguments given in [10] that the set

ft= U U(y)

has the following property; if/"" (C/(y))nn ^ 0 for some y € W n A and an integer
n > 0 then

f-"(U(y))<=U(z) for some zeWn A.

It is clear that the set U{y), y e W, is open in Wu(y) and connected. We shall show
that vu(dU(y)) = 0. Let fl = II(x, W,R) be a A-rectangle at x and /? >r. Let also
£/(y) and U(y) be the sets constructed as pointed out above. Obviously we have

tf(y)=>£/(y) and pu(U(y)\U(y))^c(R -r),

where c > 0 is a constant independent on /? and r, D

As the set ft is open in A the set

A'= U /"(ft)
—oo<n<oo

is also open in A. Let
A" = {we A': f{w) eft for some n>0}.

For iv e A" we denote by N(w), w e A' the set of all integers n >0 such that/"(vv) eft
and put

0(W)= u rn{u{fn{W))).
neJV(w)

Since for every fi e ^(A), /x(A'\A")= 0 the construction may be extended to the rest
of the set A' in a more or less arbitrary manner.

The following properties of the set U(w) follow from what was stated above.
(1) C/(H') = C/(w)whereH'eft;
(2) rn(U(wl))^U(w2), if w2=rn(Wl)(wu w2e A', «>0) ;
(3) the sets U(w) are open and connected;
(4) diam U{w)sconst independently on w;
(5) vu(dO(w)) = 0.
Properties (1) and (2) imply that the sets U(w) form a partition of A' which we

shall denote by £. As $ is continuous it is measurable with respect to any Borel
measure fi on A. Assertions 2 and 3 follow from properties (l)-(5) of the sets
U(w), and assertion 4 is proved with the help of assertion 4 of proposition 1 as in
[6] (cf. also [8]). If ix is a Borel measure then there exists a A-rectangle II which
is open in A such that /x (II) > 0. Therefore n (A') > 0 and thus fi. (A') = 1 because
A' is /-invariant and IL is ergodic. The last part of assertion 5 can be stated as in
[6] (cf. also [8]).
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2.5. Proof of theorem 3 consists of two parts. The first one (cf. lemmas 1-10) is
auxiliary but also has an independent interest. It is unknown whether one can
continue the foliation W" of A up to a '/-invariant expansive continuous and
absolutely continuous' foliation in the whole neighbourhood Uo of A (cf. § 3 for
details). However, one can prove a weaker version, namely one can continue the
family of local manifolds

{ e x p ; 1 ^ (*),*€ A}

up to a continuous family

W = {W(x),xeU0},

where each W(x) is a smooth submanifold in TXM (we have W(x) = exp^a W^dx)
for any x e A). The family W is invariant (cf. lemma 7) and contracting with respect
to f~l (cf. lemma 8). Moreover, the submanifolds

W(xi) = expXiW(xi)

where xh i = 1,2, are two points in a local transversal manifold W do not intersect
each other (cf. lemma 9). This last fact allows 'the expansion' of every A-rectangle
to a 'full' rectangle ft, defined by the formula

ft= U W(y).
yeW

The partition £ of ft into sets W(x) is absolutely continuous (cf. lemma 10).
After these preparatory steps we pass to the second part of the proof (cf. lemmas

11-13). The main idea is to show that the sequence of conditional measures for
the measures /un (corresponding to the functionals /„) with respect to the partition
i converges as n -»oo.

Let Uo be a neighbourhood of A appearing in condition A3 and Un =/"(C/0)-
From U\ <=• Uo we have Un<=-Un-i for any n > 0. Therefore, for any n > 0

Let x G A and q > 0. Suppose that

Bs0(x,q) = expx{yeEs0(x):\\y\\«i},

U(q)=\jBs0(x,q).

The following statement follows directly from proposition 1.

LEMMA 1. (1) There exists qo>0 such that for any qe (0, q0] the set U(qo) is an
open neighbourhood of A which is contained in Uo

(2) For every q 6[0, q0] there exists an integer m = m(q)>0 such that Un c U{q)
for n >m{q).

We denote by d the distance in TXM, induced by the Riemannian metric. Let us
fix two constants r > 0, C> 0 and y e Uo- We call an open smooth submanifold
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V(y) in TyM a local (r, C)-manifold at y if
(LI) 0€V(y);
(L2) \\z\\>r for every zedV(y);
(L3) for any y u y2e Vr(y) = expy V(y)

d(TyiV(y),Ty2V(y))^C;

(L4) ifxeA, ye£s°0c,<7)then

LEMMA 2. 77tere erarflj e (0, q0], r0 > 0, Co > 0 SMCA that for any q e (0, gi], r e (0, r0],
Ce (0, Co] anrf any local (r, C)-manifold V(y) at y € Um (m =m(q), cf. lemma
1) f/ie inclusion

V(y)<zU0

takes place.

The proof follows directly from proposition 1 and lemma 1.

LEMMA 3. There exist q2 e (0, q{], rx e (0, r0], C e (0, Co] such that for any q e (0, q2],
re{0,ri] and any local (r, C)-manifold at y€Um, m=m(q) (cf. lemma 1) the
following inclusion

holds where V(f(y)) is a local (r, C)-manifold at f(y).

Proof. Let us choose x e A in such a way that y € Bs0(x, q). We have

exp7(V/°expx («. v) = (Axu+gix(u,v), Bxv+g2x(u,v)), (2.1)

where u, v lie in small neighbourhoods U, V of the origin in the spaces Eu(x) and
Es0(x) respectively,

A:Eu(x)^Eu(f(x)), B:Es0(x)^Es0(f(x))

are linear operators,

are smooth maps and

g, (0,0) = (0,0), </gx(0,0) = (0,0). (2.2)

It follows from (1.2) that

IKII^Mi, I|5,NA2. (2.3)
It is not difficult to show, using (2.1), (2.2), (2.3), the properties L1-L4 and the
arguments of the 'hyperbolic' character, that the submanifold

has the following properties:
(1) 0eW(y);
(2) ||z||s:(l-e)(l-C)(/Lt,i-e -eC)r where e=e(q,r)-*0 as q,r-*O and

(3) for any yi, y2G W (̂y) = expy W(y)
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where S(e) -* 0 as e -> 0 (and consequently as q, r -* 0);
(4) d(TyW{y),Ea(f(x)))*(l+eMA2 + e)/(jn-
Property (2) implies that for any small enough q, r, C and any z e dW(y)

Ik II * r. (2.4)
As it follows from property (3) for given C >0 and any small enough q, r

C, (2.5)

where yi, y2e W(y). Now let z be a point such that f(y)eBs0(z, q). It is easy to
see that

P(f(y),z)sKiq, (2.6)

where K\ >0 is a constant which is independent on q, r, C. As /(y)e Um+i <= Um

we have

p(f(y),f(x))^K2q, (2.7)

where K2>0 is a constant, which is independent on q, r, C. It follows from (2.6),
(2.7) and the triangle inequality that

p(f(x), z)<(Ki+K2)q. (2.8)

As the distribution E" satisfies Holder's condition on A (cf. [3]) and f(x), z e A we
have, using (2.8)

d(E"(z),Eu(f(x)))rsK3q
a, (2.9)

where K3>0 and a e(0,1] are constants. It follows from (2.9) and property (4)
that for every small enough q, r

d{TyW{y),Eu(z))<C. (2.10)

Now the assertion which we need follows from (2.4), (2.5), (2.10).
Let us fix q e (0, q2], r e (0, r{\, choose m ~ m (q) in accordance with lemma 1 and

consider the set Um. Let

Pm={yeUn

LEMMA 4. There exist q3 e (0, q2], r2 e (0, rx] such that for any q e (0, q3], r € (0, r2]
the following is valid:

(1) there exists a smooth distribution E(y) in Pm(m =m{q)) such that

d(E(y),Eu(x))<C,

where C > 0 is the constant, which appeared in lemma 3, and x e A is any point for
which ye Bs0(x,q);

(2) the submanifold

is a local (r, C)-manifold at y.

Proof. As the distribution Eu is continuous we can extend it up to a continuous
distribution E(y), in a neighbourhood Q of A. Let us take q3 e (0, q2] so small that
Um c Q (m =m{q3)). Now we can choose as £"(y) any smooth distribution close
enough to E{y) in Pm.
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The second assertion follows directly from the first one. Let us fix q e (0, q3],
re(0,r2] and let C be the constant which appeared in lemma 3. It is easy to see
that the following assertion is valid.

LEMMA 5. There exists a family of local (r, C)-manifolds

V = {V(y),yeUm\Um+1}

satisfying the following conditions:

(1) V(y)= W{y)forany yePm (cf. lemma 4);

(2) V(y) = W(y) for any y ef(Pm) where as in lemma 3

W(y) = expnl)°f°expy W{y);

(3) The submanifold V(y) depends smoothly on y e Um\Um+\
(4) (Uy e^mm + i

We consider the sequence of the families of local manifolds

Vn={V"(y),yeUm}

defined in the following way:
(1) V° = V(cf. lemma 5);
(2) V(y)=Vn-\y)for any ye Um\Um+n;
(3) Vn(y)= V(y), where the local manifold V{y) is constructed with the help

of the local manifold V~1(f'1(y)) in accordance with lemma 3.
We shall say that a family of local manifolds V = {V(y), y e Uo} satisfies Holder's

condition with parameters (R, K,a),R>0,K>0,ae (0,1] if for any x e A, y, yit

y2eB'°(x. <?) the following conditions hold:
(1) The submanifold exp^'expy V(y) contains the graph of a smooth function

<t>(x, y): Bu(R)^Es0(x) where BU(R)

is the ball in E"(x) with its centre at the origin and radius R;

\d<t>{x,yx){z) d<j>{x, y2)(z)

— J—
LEMMA 6. There exists q4 e (0, q3] such that for any q e (0, q4], r e (0, r3), e e (0, e0]
the families V , « = 0, 1, 2 , . . . have the following properties:

(1) The submanifold V(y) depends smoothly on y e Um;
(2) The family V" satisfies Holder's condition with parameters (R,K,a),

independent on n;

Proof. (1) follows from lemma 5 and the definition of the family V".
(2) Assertion 3 of lemma 5 implies that the family V° = V satisfies Holder's

condition with parameters (R,K,a) for some R>0, K>0. We assume that the
family V " 1 satisfies Holder condition with some parameters (R,K,a). Let x e A,
y <=Bs0{x,q)n Um+n. We take xe A so that/"1(y)efls0(jc,<?)- Then we get

\ (2.11)
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where K* > 0 is a constant, independent on x, y, n. It is easy to see that

(2.12)

where Ks>0 is a constant independent on x, y, n. It follows from (2.11), (2.12)
and the triangle inequality that

where K& > 0 is a constant. We get from this and the inductive assumption that the
submanifold

contains the graph of a function

${f-\x),

where

R>R(l-8(q)) (2.13)

and «5(q)-»0 when q -*0. It follows from (2.1), (2.2) and (2.3) that the submanifold

exP;1(/(exPr.(y)v"-1(r1(y))))
contains the graph of the function

<fi(x,y):Bu(R)-*Es0(x),
where

/?>(/LH-e-Ce)/?. (2.14)

(Number C is taken in accordance with lemma 3.) Inequalities (2.13) and (2.14)
imply that for any small enough q

R>R.

Now let yi, y 2 €B ' (x, q)n Um+n. One can show repeating the above arguments
that

\\d$(x,yi)(z) d<fi(x,y2)(z)
max. .

zeB"(R)|

where Ke>0 is a constant and e =e{q). The last inequality is valid if we take
numbers q > 0, a > 0 so small that in view of (1.2)

and number K so large that

K>K'6/{\-y).

The following assertion is the consequence of lemma 6, the definition of the
families V" and the properties of foliation (cf. [9]).

LEMMA 7. There exist q>0, r>0, C > 0 , R>0, K>0, and a family of local
(r, C)-manifolds

W = {W(y),yeUm}(m=m(q))
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such that:
(1) the submanifold W{y) depends smoothly on y e Um\A;
(2) the family W satisfies Holder's condition with parameters (R, K,a);
(3) exp, W(x) c Wu(x) for each xeA;
(4) /(expx W(x))=>expfMW(f(x)) for each x e A;

We also need three important properties of the family W, stated in lemmas 8,
9,10.

LEMMA 8. There exists K7>0 such that for any y e Um, z eexpy W(y) and any
/ > 0 for which f~s(y) e Um, s = 0 , 1 , . . . , / the following inequality holds

p(r ' (y) , r 'U)) s*7(A*i-«0~p(y,z) . (2-15)

Proof. If y e A then the result which we need follows from assertion 3 of lemma 7
and assertion 3 of proposition 1. If y<=Um\A then inequality (2.15) is the con-
sequence of assertion 4 of lemma 7, the definition of the local manifold (we remark
that parameters r, C, appearing in this definition, are independent on y) and
assertion 3 of proposition 1.

LEMMA 9. Under the conditions of lemma 1 there exists roe (0, r] such that for any
xeA, yu y2eBsO(x,q)

Bw(yuro)nBw(y2,ro)= 0,

where Bw(y, r0) is the ball on the submanifold W(y) = expy W(y) with a centre at y
and radius r0.

Proof. Let us fix small 0 > 0, S > 0 and an integer n > 0 satisfying certain restrictions
which will be specified later. We choose m=m(S) such that Um lies in the
5-neighbourhood of A and consider the set Um+n. Let us put F =f~n. Let xeA,
y eBs0{x, q)n Um+n and y & A. We denote by K(y) the smallest integer for which

FKW(y)eUm+n\Um+2n.

Such a number obviously exists, is uniquely defined and is strictly positive. Let
E{y) be the subspace of TyM, having the same dimension as Es0(x) and

d(E{y),Es0{x))^p. (2.16)

We consider the point w =F(y) and assume that K(y)>0. Then

w eBs0(z, q)n Um+n for some z e A.

One can show using (2.1), (2.2), (2.3), (2.16) and the fact that

Es0(F(x)) = dF(Es0(x))
that

0 ( ^ : A ' ' 3 > (2.17)

where Ks>0 is a constant. As the distribution Eu(x) satisfies Holder's condition
the distribution Es0(x) also satisfies this condition (cf. [3]). Therefore the triangle
inequality implies

d(Es0(F(x)),Es0(z))sK9p(F(x),z)a^K9[p(F{x),w)+p(w,z)T, (2.18)
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where AT9>0 is a constant and a e(0, 1]. Our assumptions concerning the points
y, z and w imply that

p{w,z)<K108, (2.19)

p(F(x),W) = p(F(x),F(y))<Kl0(Ku)
n8, (2.20)

where Klo>0 and Kn >0 are constants and Ku < 1. It follows from (2.17)-(2.20)
that

/3 + tf9[K-10((J:ii)" + 1)5]".

The last expression is less than /3 provided n is large enough and 8 =8(n,f3) is
small enough. Repeating the previous arguments and making the induction in
K -K{y) one can prove the following: if le[0,K(y)] and z e A are such that

F'(y)<=Bs0(z,q)nUm+n

then

d(dFl(E{y)),EsO(z))^f3.

Now let xeA, y eBs0{x,q)nUm+n and ygA. If 5 is small enough then the
subspace Z?(y) = TyB

s0(x, q) satisfies (2.16). Therefore we get from the above
mentioned arguments that for any e > 0 there exists p > 0 with the following
property: the open ball B(w) on the submanifold

with its centre at w =/"<JC(v) 1)n(y) and radius p is e-near in C'-topology to an
open set U <^Bs0(z,q), where zeA is a point such that w e5'°(z, <j)n Um+2n-
Without loss of generality one can assume that

0 <p <min {am+n, am+2n}.

It follows from what was told above and assertion 1 of lemma 7 that there exists
r*o} >0 such that for any x e A, yeBs0(x, q)nB(w)

Bw(y,r(
o

l))nBw(w,r(
o

l))=0. (2.21)

Moreover, it follows from assertion 1 of lemma 7 that there exists r™ > 0 such that
for any xe A, yu y2eBsO(x,q)\Um+2n+i

Therefore it is sufficient to prove the existence of rf)3) > 0 such that for any xeA,
y1; y2eBsO(x,q)nUm+n

Bw(yl,r
(<?))nBw(y2,r

i
o

3))=0. (2.22)

If yu y2e A then (2.22) follows from proposition 1. Therefore we assume that for
any ro3) and some xeA, y1( y 2 e f i \ q)n Um+n, yif£A the intersection

contains the point z. If n is large enough and ri>3) is small enough then from
lemma 8
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and

Moreover

As/~K(Vl)"(yi)e Um+n\Um+2n the last inequality is impossible in view of (2.21).
Let us put for * e A

n(x)= U W(y),

where W(y) = Bw(y, r0) and we denote by g(x) = £(Tl,x) the partition of II(JC) into
the sets W(y). Let n >0 and

nn(x)= u w(y), pn{x)=rn(nn(x)).
yeB (x, q)r>Um+n

We denote by £„(*) the partition of IIB(x) into the sets W(y), y eBs0(x, q)nUm+n

and t}n(x) =f~"€n(x). It is easy to see that r]n(x) is measurable with respect to any
Borel measure p. on Pn(x). One can prove also the following assertion, repeating
the arguments, given in [2, (cf. p. 151] and using lemmas 7, 8, 9.

LEMMA 10. The partition Tjn(x) is absolutely continuous (with respect to Riemannian
volume); more exactly, for any Borel set AczPn(x) for which v(A)>0 the equality

dvn,x(y)\
r,nM J C T , n 0

is valid. Here vn,x is the measure in factor-space Pn(x)/-qn(x), vn,x,y is the measure on
f~"(W(y)), induced by the Riemannian metric, XA(Z) is the characteristic function
of A, p"(z) is 'the density function'. It is a continuous function, defined on the set

and satisfying the condition

K | ( ^ ^ ) " (2.23)

for any y eBs (x, q) n Um+n, z e Cr,nix)(y). (Ki2 > 0 is a constant).

We fix x e A and denote

r,n=-on(x), X=Bs0(x,q)nUm, Xn=BsO(x,q)nUm+n.

Also let n(y), y eX be the integer such that f~K(y)e Um for AT =0, 1 , . . . , n(y)
and/"<n(y)+1)(y)£ Um. Let us remark that n(y) = oo if y e A. It is easy to see that

y e^n(y)\Arn(y)+i ifn(y)<oo.

If 2 6 W then we define pf,n(y, z) by means of formula (1.3) assuming that n €
[0.n(y)]. Let Yn be a yn-neighbourhood of Xn. As Xn<^Xn~\ we get for small
enough yn that Yn cXn~i. The following assertion is a consequence of proposition
2 and lemma 8.
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LEMMA 11. There exist continuous functions i<(y, z), Zn(y, z) (n =0, 1, 2,. . .) defined
for y eX, z e W(y) such that

(1) K{y,z)=P2»{y,z)fory eXnA;
(2) l<n (y, 2) = p^ u>n (y, z ) for y e ATn;
(3) Kn(y,2) = K(y,z)/oryeA:\rn;
(4) tfie sequence {/?„} converges uniformly to function K.

Assertion 4 of lemma 5 implies that for any integer s > 0

U tV(y)nC7m+s = 0 . (2.24)

Let Vo = Um+S, V'o c Vobea neighbourhood of A, W(x) be a non-negative density
function (satisfying (1.5)), and h be a continuous function with the support in
V'o nil.

LEMMA 12. For any x e V'0\Pn

Proof. Let xe V'0\Pn. We assume that V(x)h(fn(x))*O. Then f"(x)ell. On the
other hand from i s V j w e get

Therefore f"(x)e Um+n+sriU. It follows from (2.24) that the intersection Um+n+s n
n is contained in Iln. Therefore x e f"(Un ) = Pn. This contradiction proves our
assertion.

We get, using lemmas 10 and 12, that

| nx)Hfn{x))dv{x)

= f V(x)h{fn{x))dV{x)

= [ dvn{y')\ nz')pny(z')h(fn(z'))dpny(z')
•*Pn/rin JC (y')

¥(-y')</"„ ( y ' ) J py(z')h(fn(z'))dl>ny(z')

+ f dvn(y') \ (¥(*')

/ (n) i r («)
1 +i2 •

It follows from lemma 8 that

where Ki3>0 is a constant independent on n. Therefore the uniform continuity
of the function "^(x) implies that

as n -xx> uniformly in y'ePn/i]n and z'eCT)n(y'). Thus

< ) 0 asn-»oo. (2.25)
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Assume that y =/"(y ' ) , z =f"(z'). Then

yeUn/i=Xn, zer(CVn(y'))=W(y).

We have

dvn{y')=$(2\y)di>x{y),

where /x* is the Jacobian of the m&pf"\X at y, vx{y) is the measure on X, induced
by Riemannian metric,

and fy(z) is the measure on W(y), induced by Riemannian metric. We denote

In view of lemma 11

!W(y)'
I" = [ *n(y)/x)(y)^x(y) f py

n)(z)h(z)
JX. JW(v) '

x f p(
y
n)(z)h(z)Kn(y,z)dpy(z)

JW(y)

= f an(y)dvx(y) f py
n)(z)Zn(y, z)(3n(y)h(z)

JX •'W'(y)'W(y)

where

is the normalizing factor and

- 1

K = 0

Now the result follows from (2.25), (2.23), lemma 11, the continuity of the functions
Kn(y,z), p(

y
n)(z), /3n(y), the definition of the limit measure n(l(V'0,V)) (cf. [5])

and the following lemma.

LEMMA 13. Let vn be a sequence of measures in II, with the following properties:
(1) if (Sn, vn(y, z)) is the system of conditional measures for vn with respect to the

partition f so that Sn (y) is the measure on X, and vn (y, z) is the measure on W(y), then

dvn(y, z) = Pn(y, z)dvy(z),

where Pn(y, z) is a continuous function on fl;
(2) the sequence of functions Pn (y, z) converges uniformly in fl to a continuous

function P(y, z) as n-> <x>;
(3) the sequence of measures p,n, = (l/«i)Zk'=o vk converges weakly in fl to a

measure /n, where n( is a subsequence of integers.
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Then the system of conditional measures for the measure fi in fi with respect to
the partition £ has the form (8(y),v(y,z)), where S(y) is a measure on X, and
v (y, z) is the measure in W(y) for which

dv{y,z)=P{y,z)dvy{z).

Proof. We have for any continuous function h in ft in view of condition 1 of the
lemma that

f 1 "£ f f
h(w)dfjbn,(w) = — 1 dS/ciy) \ h{y,z)PK{y,z)dvy(z)

Jn 1 | K=0 JX JvV(y)

= f rfVBI f h(y, z)P(y, z)dvy(z) + en,,
JX •'H'(y)

where tyni = (!/«/) SK=O ^K
 a"d

e» ,=- I f rffiic(y) f Aty.zKPicCy.zJ-Pty.zWrf^U).
niK = OJX JvV(y)

Supposing

c= max \h(y, z)\ and cK = max_ ^ ( y , z)-/J(y,
(y,z)en {y,z)sn

and taking into account condition 2 of the lemma we have

We consider in FI the sequence of measures /lni, where

/In,(A)= di//m\ XA(y,z)P{y,z)dvy(z),
JX J*(y)

where A c II is a Borel set. It follows from what was said above that the measures
lln, converge weakly to the measure ix. Thus the family {&„,} is weakly compact.
Therefore we get using the compactness of X that measures the tyn; {n\ is a
subsequence of ni) converge weakly to a measure S on X. It means in view of the
continuity of the function P(y, z) that for any continuous function h in FI

f h(w)dilni(w)=\ dVni(y)\ h{y,z)P(y,z)di>y{z)

^ f d8(y) f h(y,z)P{y,z)dvy(z)
JX JW(y)

as n 'i -* oo. On the other hand

h(w)dp.ni(w)->\ h(w)dfi{w)
Jn Jn

as n! -* oo. Now the result which we need follows from two last co-relations.
Moreover the measures ^n, converge weakly in X to the measure S.
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2.6. Proof of proposition 3. We have for any n > 0 and A c A

= f cnP^(fn(x),fn(y)) "n /"(/K(y))^u(y)
•»/"••< A )r>l/0

 K = o

= f cBp,.(r(*),/"(y)) "n /"(/K(y))[p/(*, y)Tldvo{y)

= f c-. nV(/*(*

2.7. Proof of theorem 4. Let * be a density point for a limit measure ft, U(x, W, r)
be a A-rectangle at x, £ be a partition of n(x, W, r) into the sets B " (y, /•), y e W n A.
We identify n(x, Vy, r)/f with W n A and denote

A n = { y 6 ^ : S u ( y , r ) n ( 7 n # 0 } ,

Sn ={y 6 ̂ : Bu(y, r)ndUn * 0}

Cn=An\5n, Dn={jBu(y,r),

Qn={ye Wu(fn(x)): pfc(y",dUn)<2r},

where p" is the distance in Wu(x), induced by Riemannian metric. It is easy to see

t h a t Bn^An, Dn^Qn (2.26)

and Cn consists of a finite number of elements. It follows from the definitions of
measures vn and numbers cn, assertion 3 of proposition 1 and assertion 2 of
proposition 2 that

\

= cn f Pjr{fn(x),fn{y')) "n / " (
Jf~"(Qn) * = 0

= f p,-(*,y')rfi'u(y')

sAr,5ai i -«r"2r , (2.27)

where A"i4>0, A"i5 >0 are constants. We denote by Sn the measure on W, concen-
trated on Cn, whose value on the set Z c Cn is equal to the average number of
points in Z. Let h be a continuous function on A whose support belongs to
U(x0, W, r). Denoting by c = maxyeA \h{y)\ we have

{y)=[ h{y)dvn{y)

= I f h(z)dvn(z)
yeAn Jsu(y,r)nC/n

= I f . h(z)dpn{z)+ X f Hz)dvn{z)
yeCn JB"(y,r)nUn yeBn Jfl"(y,r)nU,
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It follows from (2.26) and (2.27) that

r(fil-e)-". (2.28)

Then we have in view of the definition of the measure vn and assertion 3 of
proposition 2 that

I[n)=cn I p,-(r(x),y)\ h(z)Pjr{y,z)di>u(z)
yeC JBu(y,r)

= f Cnp,-(r(x),y)P{y)dSH(y) f h{z)p'"{*\z)dv
u{z),

where 0(y) = jB"(yr)PjP"(y, z) dv"(z). Now the result follows from (2.28) and
lemma 13.

2.8. Proof of theorem 5. It follows from results in [14] that for any e > 0 there exists
a neighbourhood U c Diffu+a)(£A M) of the diffeomorphism / such that assertions
1-5 of the theorem hold but we know only that the set A is partially hyperbolic.
In order to prove that it is a partially hyperbolic attractor we need to check the
condition A3. To do this it is sufficient to prove that

W"g{x)^Ag. (2.29)

We suppose for x e Ag

Z||(x) = {yeC/o:p(Ay),r(Wi(*)))-»Oasn-»-oo}.
One can show easily that

Zu
g(x)= U Wu

g(x). (2.30)
yeW°(x)

From (2,30), assertion 3 of proposition 1 and the conditions of the theorem we
get Z " (JC ) <= A. Therefore using assertion 4 of the theorem and the definition of
the sets Zg (x) we get

ZZ(jc) = MZ"(Jt))<=Ag.

The last inclusion and (2.30) imply (2.29).

3. Examples and applications
3.1. The following assertion is a direct consequence of theorems 1 and 3.

THEOREM 6. Let f: M^*M be a partially hyperbolic C1+o-diffeomorphism of a
smooth compact Riemannian manifold M (cf. [3]), v be a measure in M which is
absolutely continuous with respect to the Riemannian volume. Then any weak limit
measure fi of the sequence fj.n — (1/rc) ZK=O/* I / 'S

 an f-invariant u-measure.
Moreover, /iM(/) > 0.

3.2. THEOREM 7. Let Abe a partially hyperbolic attractor of a Cx+a-diffeomorphism
f: U ->M. Then there exists a neighbourhood VdJof A and a continuous distribution
Ein TU such that

(1) E(x) = Eu(x)foranyxeA;
(2) E(x) satisfies in UHolder's condition;
(3) E(x) is smooth on set U\A;
(4) dfE(x) = E(/(x)) for any xeU.
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The proof follows from lemma 7. We can take as fj(jc) the distribution TxW(x)
where x e Um.

There exist, in general, infinitely many distributions with similar properties. They
can be obtained by 'forward' iterations of smooth initial distributions given in the
set Um\Um+l and selected in a special way.

The submanifolds exp* W(x) are the natural candidates for local integrable
manifolds for these distributions. However, it is unknown whether we can 'paste
together' from them a global/"-invariant (n = 1, 2 , . . . ) foliation in a neighbourhood
of attractor A. It can be easily done only in the special case of co-dimension one
attractors with the help of theorem 7 and the theorem of existence and uniqueness
in the theory of ordinary differential equations.

THEOREM 8. Let A be a partially hyperbolic attractor of a C1+a-diffeomorphism
f:U-*M. Assume that A has co-dimension one (i.e. dimE"(x) = l). Then there
exists a neighbourhood U of the set A and a continuous C1-foliation W such that:

(1) W{x)= W(x)foranyxeA;
(2) the foliation W satisfies Holder's condition in U;
(3) the foliation W is smooth on set U\A;
(4) W(x) c A for any x e A and W(x) c U\A for any x e U\A;
(5) f(W(x)) = W(f(x)),xeU;
(6) the foliation W is absolutely continuous with respect to the Riemannian volume.

3.3. In this and the next section we shall describe two constructions, leading to
partially hyperbolic attractors. Let A be a hyperbolic attractor of a C1+a-
diffeomorphism f.U-*M (it means that in addition to (1.1) A2<1), and N be a
smooth compact manifold. Suppose

U = UxN, A = AxN, M = MxN

and consider the diffeomorphism f:U->M, given by the formula

f(x,y) = (f(x),y),xeU,yeN.

It is easy to see that A is a partially hyperbolic attractor for/, satisfying the conditions
of theorem 5. Therefore this theorem and theorems 1 and 3 imply the following
assertion.

THEOREM 9. For any e > 0 there exists a neighbourhood

of the diffeomorphism f such that
(1) any diffeomorphism geU has a partially hyperbolic attractor Ag;
(2) there exists a homeomorphism h&: A.̂ » A.g such that

p(hg(x),x)<e

for any x e Ag;
(3) the map g|Ag has an invariant normalized Gibbs u-measure ng, which can be

constructed in the way described above and n |
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3.4. Let / ' and g' be two flows on manifolds M and N, having hyperbolic attractors
Ai and A2 respectively (for the definition of a hyperbolic attractor for a flow, see
[16]). Let us fix t and s and consider the diffeomorphism <f>,,s :MxN-*MxN given
by the formula

It is easy to see that set A = Ai x A2 is a partially hyperbolic attractor for <f»Un where

Es=Es
f@E\, Eu=E?®Eu

g, E° = Xf®Xg.
Here E), E\ and E", Eg are stable and unstable subspaces for the flows /'|Ai and
/'|A2 respectively, and Xf, Xg are one-dimensioned subspaces corresponding to
vector fields of flows / ' and g'.

THEOREM 10. Theorems 1-5 hold for diffeomorphisms (f>,sfor any t, s.

The authors express their sincere gratitude to D. V. Anosov and M. I. Rabinovich
for valuable discussions.
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