DIRICHLET SERIES WITH POSITIVE REAL PART

N. SAMARIS

We consider the sequence $\Lambda = \{0 < \lambda_2 < \lambda_2 < \ldots\}$, for which $\lambda_n \to +\infty$. We denote by $PD(\Lambda)$ the class of Dirichlet's series having the form $F(s) = \sum_{n=0}^{\infty} a_n \exp\{-\lambda_n s\}(a_0 = 1)$ defined in the half plan Re s > 0 converging absolutely and Re $F \ge 0$. If $N_0 = \{0, 1, 2, \ldots\}$ then the class $PD(N_0)$ coincides with the Caratheodory's class P. In this paper some classical results holding for the class P are generalised in any class $PD(\Lambda)$. In special cases for the sequence Λ extreme problems are examined in the class $PD(\Lambda)$.

INTRODUCTION

We consider the sequence $\Lambda = \{0 = \lambda_0 < \lambda_1 < \lambda_2 < \ldots\}$, for which $\lambda_n \to +\infty$. We denote by

(a) $D(\Lambda)$ the class of Dirichlet's series having the form

$$F(s) = \sum_{n=0}^{\infty} \alpha_n \exp\{-\lambda_n s\} \qquad (\alpha_0 = 1)$$

defined in the half-plane $\operatorname{Re} s > 0$ and converging absolutely;

(b) $PD(\Lambda)$ the class

$${F \in D(\Lambda) : \operatorname{Re} F \ge 0};$$

(c) D the union of all classes $D(\Lambda)$ and by PD the union of all classes $PD(\Lambda)$.

If we set $\exp\{-\operatorname{Re} s\} = r$, $-\operatorname{Im} s = t$ $(0 \le r < 1, -\infty < t < +\infty)$ then every $F(s) \in D$ can be written in the form

$$\widetilde{F}(r, t) = 1 + \sum_{n=1}^{\infty} \alpha_n r^{\lambda_n} \exp\{i\lambda_n t\}.$$

If $N_0 = \{0, 1, 2, ...\}$, then the class $PD(N_0)$ coincides with the Caratheodory's class P.

Received 2 August 1991

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/92 \$A2.00+0.00.

N. Samaris

In [1] the inequality $|\alpha_n| \leq 2$, which is true for the class P, is generalised for the class PD.

In [2] it is shown that if $f \in P$, then f is an extreme point of the class P if and only if $|\alpha_1|$ takes the maximal possible value, that is $\alpha_1 = 2\exp\{i\varphi\}$, or, equivalently,

$$f(z) = (1 + \exp\{i\varphi\}z)(1 - \exp\{i\varphi\}z)^{-1}.$$

In the present paper some results holding for the class P are generalised in the class PD.

The form of extreme points of a class $D(\Lambda)$ is decisively affected by the structure of the sequence Λ , hence the solution of this problem is difficult in the general case. This assertion is also implied by Remark 2 of Theorem 2, Theorem 3 and Theorem 4.

Remark 2 of Theorem 2 shows how to find all the extreme elements of a class $PD(\Lambda)$, if the values of the sequence $\Lambda - \{0\}$ form a linearly independent set with respect to the field of rationals.

Theorems 3 and 4 examine, in some specific cases for the sequence Λ , the form of the series

$$\sum_{n=0}^{\infty} \alpha_n \exp\{-\lambda_n s\} \in PD(\Lambda),$$

when $|\alpha_1|$ takes the maximal possible value.

The following lemma from classical Harmonic analysis will be used in the proofs of the theorems.

LEMMA 1. If f(x) is an integrable function in \mathbb{R} ,

$$\widehat{f}(t) = \int_{\mathbb{R}} f(x) \exp\{-itx\} dx$$

is the Fourier transform of f and $\operatorname{Re} f \ge 0$; then

$$\left|\widehat{f}(t)+\overline{\widehat{f}}(-t)\right|\leqslant 2\operatorname{Re}\widehat{f}(0),\quad\text{for every }t\in\mathbb{R}.$$

The proof is obvious.

THEOREM 2. If

$$F(s) = \sum_{n=0}^{\infty} \alpha_n \exp\{-\lambda_n s\} \in D$$

then the following are equivalent:

(i) $F(s) \in PD$.

Dirichlet series

(ii)
$$|F(s) - A_k(s) \exp\{\lambda_k \operatorname{Re} s\} - \overline{A}_k(s) \exp\{-\lambda_k \operatorname{Re} s\}| \leq 2 \operatorname{Re} A_k(s)$$
 where
$$A_k(s) = [F_k(s) \exp\{\lambda_k \operatorname{Re} s\} - F_k(-\overline{s}) \exp\{-\lambda_k \operatorname{Re} s\}].$$

$$[\exp\{\lambda_k \operatorname{Re} s\} - \exp\{-\lambda_k \operatorname{Re} s\}]^{-2},$$

$$F_k(s) = \sum_{n=0}^k \alpha_n \exp\{-\lambda_n s\}, \qquad k = 1, 2, \dots$$

(iv) Re
$$\left[\sum_{n=0}^{k} \alpha_n (1-\lambda_n/\lambda_k) \exp\{i\lambda_n t\}\right] \ge 0, \quad k=1, 2, \ldots, \quad t \in \mathbb{R}.$$

PROOF: (i) \Rightarrow (ii). Let $\sigma > 0$, c > 0 and

$$P(x) = \sum_{n=0}^{\infty} \alpha_n \exp\{-\lambda_n \sigma\}\left(\frac{\exp\{-i\lambda_n x\}}{c^2 + x^2}\right).$$

Since

$$\left(\frac{1}{c^2+x^2}\right)^{\widehat{}} = \frac{\pi}{c} \exp\{-c|t|\}$$
$$\widehat{P}(t) = \frac{\pi}{c} \sum_{n=0}^{\infty} \alpha_n \exp\{-\lambda_n \sigma - c|t-\lambda_n|\}.$$

it follows that

Applying Lemma 1, the function P, for $t \in [\lambda_k, \lambda_{k-1}]$ becomes

$$\begin{aligned} |F_k(\sigma-c)\exp\{-ct\} + F(\sigma+c)\exp\{ct\} - F_k(\sigma+c)\exp\{ct\} \\ + \overline{F}(\sigma+c)\exp\{-ct\} &| \leq 2 \operatorname{Re} F(\sigma+c). \end{aligned}$$

For $t = \lambda_k$ and $\sigma \to 0$ it becomes

$$(*) \qquad \frac{\left|F_{k}(-c)\exp\{-c\lambda_{k}\}+F(c)\exp\{c\lambda_{k}\}-F_{k}(c)\exp\{c\lambda_{k}\}+\overline{F}(c)\exp\{-c\lambda_{k}\}\right|}{\leqslant 2\operatorname{Re}F(c)}.$$

If we replace the absolute value with the real part we obtain the evaluation

$$\operatorname{Re} A_k(c) \geq 0.$$

Also, taking the square of (*), we obtain

$$\left|F(c) - A_k(c)\exp\{c\lambda_k\} - \overline{A}_k(c)\exp\{-c\lambda_k\}\right|^2 \leq [2\operatorname{Re} A_k(c)]^2$$

which, for s = c, is the required result.

The general case, where $s = c + i\tau$ (Re s > 0), is immediately obtained by substituting $F_{\tau} \in PD(\Lambda)$ for F in the last inequality, where $F_{\tau}(\omega) = F(\omega + i\tau)$.

(iii) \Rightarrow (i) By (iii), it is obvious that

$$\operatorname{Re} F(s) \ge (\exp\{\lambda_k \operatorname{Re} s\} + \exp\{-\lambda_k \operatorname{Re} s\} - 2) \operatorname{Re} A_k(s) \ge 0.$$

(i) \Rightarrow (iv) The inequality Re $A_k(c-it) \ge 0$ is equivalent to

$$\operatorname{Re}\{\sum_{n=0}^{k-1} \alpha_n \exp\{i\lambda_n t\} \frac{\exp\{c(\lambda_k - \lambda_n)\} - \exp\{c(\lambda_n - \lambda_k)\}}{\exp\{c\lambda_k\} - \exp\{-c\lambda_k\}}\} \ge 0$$

which, for $c \to 0$, gives the required result.

(iv) \Rightarrow (i) If

$$f(z) = \sum_{n=0}^{k-1} \alpha_n \left(1 - \frac{\lambda_n}{\lambda_k}\right) \exp\{-\lambda_n (1+z)(1-z)^{-1}\}$$

then the function f is bounded in the disc $U = \{|z| < 1\}$, because

$$\operatorname{Re}[(1+z)(1-z)^{-1}] > 0$$
, for every $z \in U$.

Furthermore, Re $f(z) \ge 0$ almost everywhere in $\partial U = \{|z| = 1\}$ because

 $\operatorname{Re}[(1+z)(1-z)^{-1}] = 0$ almost everywhere in $\partial U = \{|z| = 1\}.$

From the Poisson integral of the function f, it follows that $\operatorname{Re} f(z) > 0$, for every $z \in U$, or

$$\operatorname{Re}\left\{\sum_{n=0}^{k-1}\alpha_n\left(1-\frac{\lambda_n}{\lambda_k}\right)\exp\{-\lambda_ns\}\right\}>0,\quad\text{when }\operatorname{Re}s>0.$$

For $k \to +\infty$, it follows that $F(s) \in PD$.

REMARK 1. From Part (ii) of Theorem 2, the following evaluation for |F(s)| follows:

$$\begin{aligned} \left|A_k(s)\exp\{\lambda_k\operatorname{Re} s\} + \overline{A}_k(s)\exp\{-\lambda_k\operatorname{Re} s\}\right| &- 2\operatorname{Re} A_k(s) \leqslant |F(s)| \\ &\leqslant \left|A_k(s)\exp\{\lambda_k\operatorname{Re} s\} + \overline{A}_k(s)\exp\{-\lambda_k\operatorname{Re} s\}\right| + 2\operatorname{Re} A_k(s), \quad k = 1, 2, \dots. \end{aligned}$$
For $k = 1$ and

$$F(r, t) = \sum_{n=0}^{\infty} \alpha_n r^{\lambda_n} \exp\{i\lambda_n t\} \in PD$$

 $rac{1-r^{\lambda_1}}{1+r^{\lambda_1}} \leqslant |F(r, t)| \leqslant rac{1+r^{\lambda_1}}{1-r^{\lambda_1}}.$

we have

This last inequality generalises the classical evaluation

$$(1-r)(1+r)^{-1} \leq |F(r, t)| \leq (1+r)(1-r)^{-1}$$

when $F \in P$ in case $F \in PD$.

Dirichlet series

REMARK 2. For k = 1, (iv) is equivalent to the inequality $|\alpha_1| \leq \lambda_2 (\lambda_2 - \lambda_1)^{-1}$ which is stronger than $|\alpha_1| \leq 2$, in the case $\lambda_2 > 2\lambda$.

More generally, if for the natural number ρ , the numbers $\lambda_1, \lambda_2, \ldots, \lambda_{\rho}$ are linearly independent with respect to the field of rational numbers, then (ii), for $k = \rho$, yields

$$\inf_{t \in \mathbb{R}} \sum_{n=0}^{\rho} \alpha_n \left(1 - \frac{\lambda_n}{\lambda_{\rho+1}} \right) \exp\{i\lambda_n t\} = 1 - \sum_{n=1}^{\rho} \left(1 - \frac{\lambda_n}{\lambda_{\rho+1}} \right) |\alpha_n| \ge 0$$

(see [3], p.181).

Suppose that the linear independence for the sequence Λ is true for every natural number ρ and $F \in D(\Lambda)$. The following proposition is obvious:

$$F(s) = \sum_{n=0}^{\infty} \alpha_n \exp\{-\lambda_n s\} \in PD(\Lambda) \text{ if and only if } \sum_{n=1}^{\infty} |\alpha_n| \leqslant 1.$$

If there exist two non-zero coefficients $\alpha_{\rho} = |\alpha_{\rho}| \exp\{i\vartheta\}$, $\alpha_k = |\alpha_k| \exp\{i\varphi\}$ and $0 < \varepsilon < \min\{|\alpha_{\rho}|, |\alpha_k|\}$,

$$|lpha_{
ho}\pm \epsilon \exp\{iartheta\}|+|lpha_{\lambda}\mp \epsilon \exp\{iarphi\}|=|lpha_{
ho}|+|lpha_{\lambda}|$$

Consequently, F(s) is an extreme element of the class $PD(\Lambda)$ if and only if it has the form

$$F(s) = 1 + \alpha \exp\{-\lambda_k s\}$$

where $|\alpha| = 1, \ k = 1, 2, ...$

THEOREM 3. If for $\Lambda = \{0 = \lambda_0 < \lambda_1 < \lambda_2 < ...\}$ it is true that

$$egin{aligned} \lambda_4 + \lambda_1 &\geq 2\lambda_2, \quad \lambda_{k+4} - \lambda_{k-1} &\geq 2\lambda_2, \quad k = 1, \, 2, \, \dots \ F(r, \, t) &= \sum_{n=0}^\infty lpha_n r^{\lambda_n} \exp\{i\lambda_n t\} \in PD(\Lambda) \end{aligned}$$

and

then the following propositions are equivalent:

(i)
$$\alpha_1 = \lambda_2 (\lambda_2 - \lambda_1)^{-1} \exp\{i\varphi\};$$

(ii) $\lambda_k = k\lambda_1, \ \alpha_k = 2 \exp\{ik\varphi\}, \ k = 1, 2, ..., or$
 $F(r, t) = [1 + r^{\lambda_1} \exp\{i(t\lambda_1 + \varphi)\}][1 - r^{\lambda_1} \exp\{i(t\lambda_1 + \varphi)\}]^{-1}.$

THEOREM 4. If for $\Lambda = \{0 = \lambda_0 < \lambda_1 < \lambda_2 < ...\}$ it is true that $\lambda_k - \lambda_{k-1} \ge \lambda_1$, k = 1, 2, ... and

$$F(r, t) = \sum_{n=0}^{\infty} lpha_n r^{\lambda_n} \exp\{i\lambda_n t\} \in PD(\Lambda)$$

0

then the following propositions are equivalent:

(i)
$$\alpha_1 = 2 \exp\{i\varphi\};$$

(ii) $\lambda_k = k\lambda_1, \ \alpha_k = 2 \exp\{ik\varphi\}, \ or$
 $F(r, t) = [1 + r^{\lambda_1} \exp\{i(t\lambda_1 + \varphi)][1 - r^{\lambda_1} \exp\{i(t\lambda_1 + \varphi)]^{-1}.$

PROOF OF THEOREM 3: If we consider the function

$$F\left(r, t+rac{\pi-\varphi}{\lambda_1}
ight)\in PD(\Lambda)$$

then the general case is reduced to $\alpha_1 = -\lambda_2(\lambda_2 - \lambda_1)^{-1}$. If

$$h_r(x) = \frac{\sin^2 \delta x}{x^2} F(r, t), \quad P(t) = \pi \left(\frac{\sin^2 \delta x}{x^2}\right) = \sup\left(0, 2\delta - |t|\right)$$
$$\hat{h}_r(x) = \sum_{k=0}^{\infty} \exp\left(\frac{\pi}{2} B(t, k)\right)$$

then

then
$$\widehat{h}_r(t) = \sum_{n=0} \alpha_n r^n P(t - \lambda_n)$$

and $\lim_{r \to 0} \widehat{h}_r(0) = 0$

whenever $2\delta = \lambda_2$. Applying Lemma 1 in the function h_r we have that

$$\lim_{r\to 1}\left|\widehat{h}_r(t)+\widehat{h}_r(-t)\right|=0$$

or

(**)
$$\sum_{n=0}^{\infty} \alpha_n P(t+\lambda_n) + \sum_{n=0}^{\infty} \overline{\alpha}_n P(t-\lambda_n) = 0.$$

The set $\{\varepsilon: 0 < \varepsilon < \lambda_1, \lambda_3 - \varepsilon > \lambda_2\}$ is an interval. Setting $t = \varepsilon$ in (**), we have

$$2P(\varepsilon) + \alpha_1 P(\varepsilon + \lambda_1) + \overline{\alpha}_1 P(\lambda_1 - \varepsilon) + \overline{\alpha}_2 P(\lambda_2 - \varepsilon) = 0, \quad \text{or } \alpha_2 = 2.$$

From the inequalities $\lambda_2 \ge 2\lambda_1$ (since $|\alpha_1| \le 2$), $\lambda_4 + \lambda_1 \ge 2\lambda_2$, it follows that the set

$$\{\varepsilon:\lambda_1>\varepsilon>0,\,0\leqslant\lambda_2-2\lambda_1+\varepsilon<\lambda_2,\,\lambda_4+\lambda_1-\lambda_2-\varepsilon>\lambda_2\}$$

is an interval.

Setting $t = \lambda_2 - \lambda_1 + \varepsilon$ in (**) we have

$$2P(\lambda_2 - \lambda_1 + \varepsilon) + \overline{\alpha}_1 P(\lambda_2 - 2\lambda_1 + \varepsilon) + \overline{\alpha}_2 P(\lambda_1 - \varepsilon) + \overline{\alpha}_3 P(\lambda_3 - \lambda_2 + \lambda_1 - \varepsilon) = 0$$

or
$$-\alpha_1 \varepsilon + 2\lambda_1 \alpha_1 + 2\lambda_2 + \alpha_3 P(\lambda_3 - \lambda_2 + \lambda_1 - \varepsilon) = 0.$$

From the last equality it follows that

$$P(\lambda_3 - \lambda_2 + \lambda_1 - \varepsilon) \neq 0$$

or $P(\lambda_3 - \lambda_2 + \lambda_1 - \varepsilon) = 2\lambda_2 - \lambda_3 - \lambda_1 + \varepsilon$, $\alpha_3 = \alpha_1$ and $\lambda_3 = 3\lambda_1$.

In the same manner, if we set $t = \lambda_2 + \varepsilon$ in (**), we obtain the relations $\alpha_4 = 2$ and $\lambda_4 = 2\lambda_2$.

Suppose that for $n \leq k+3$ the equalities $\alpha_n = \alpha_{n-2}$, $\lambda_n = n\lambda_1$ when n is odd and $n = (n/2)\lambda_2$ when n is even, hold. We will examine the case n = k+4, when k is even.

First, the following inequalities are true:

$$egin{aligned} 0 < \lambda_{k+2} - \lambda_{k+1} < \lambda_2 & ext{because } \lambda_{k+2} = \lambda_k + \lambda_2 \ 0 < \lambda_{k+3} - \lambda_{k+2} < \lambda_2 & ext{because } \lambda_{k+2} = rac{1}{2}(k+2)\lambda_2, \, \lambda_{k+3} = (k+3)\lambda_1, \, \lambda_2 \geqslant 2\lambda_1 \ \lambda_2 < \lambda_{k+5} - \lambda_{k+2} & ext{because } \lambda_{k+5} - \lambda_k > 2\lambda_2. \end{aligned}$$

The above inequalities assure us that the set

$$\{\varepsilon > 0, \, 0 < \lambda_{k+2} - \lambda_{k+1} - \varepsilon < \lambda_2, \, 0 < \lambda_{k+3} - \lambda_{k+2} - \varepsilon < \lambda_2 < \lambda_{k+5} - \lambda_{k+2} - \varepsilon\}$$

is an interval.

If we set $t = \lambda_2 + \lambda_k + \varepsilon = \lambda_{k+2} + \varepsilon$ in the relation (**), then

$$\alpha_{k+1}P(\lambda_{k+2} - \lambda_{k+1} + \varepsilon) + \alpha_{k+2}P(\varepsilon) + \alpha_{k+3}P(\lambda_{k+3} - \lambda_{k+2} - \varepsilon)$$
$$+\alpha_{k+4}P(\lambda_{k+4} - \lambda_{k+2} - \varepsilon) = 0$$
$$-2\varepsilon + \alpha_{k+4}P(\lambda_{k+4} - \lambda_{k+2} - \varepsilon) = 0.$$

The last equality says that

or

or

$$P(\lambda_{k+4} - \lambda_{k+2} - \varepsilon) \neq 0$$

$$P(\lambda_{k+4} - \lambda_{k+2} - \varepsilon) = \lambda_2 - \lambda_{k+4} + \lambda_{k+2} + \varepsilon,$$

$$\alpha_{k+4} = 2, \qquad \lambda_{k+4} = \lambda_{k+2} + \lambda_2 = \frac{1}{2}(k+4)\lambda_2.$$

In case k is odd we can prove in the same manner that $\lambda_{k+4} = (k+4)\lambda_1$ and $\alpha_{k+4} = \alpha_1$.

By the inequality

$$k\lambda_2 < (2k+1)\lambda_1 < (k+1)\lambda_2, \qquad k = 1, 2, \ldots,$$

it follows that $\lambda_2 = 2\lambda_1$.

PROOF OF THEOREM 4: If we consider the function

$$F\left(r, \frac{t-\varphi-\pi}{\lambda_1}
ight) \in PD(\Lambda)$$

then Theorem 4 is reduced to the case where $\alpha_1 = -2$, $\lambda_1 = 1$.

From the relation

$$|lpha_1|\leqslant \lambda_2(\lambda_2-\lambda_1)^{-1}$$

it follows that $\lambda_2 = 2\lambda_1 = 2$.

-

If we set $t = \lambda_1$ in (**) of Theorem 3, then we have that $\alpha_2 = 2$.

Suppose that for $k = k_0$ it is true that $\lambda_k = k$ and $\alpha_k = 2(-1)^k$. If we set $t = \lambda_k$ in (**) we have

or or

$$\alpha_{k}P(0) + \alpha_{k-1}P(\lambda_{k} - \lambda_{k-1}) + \alpha_{k+1}P(\lambda_{k+1} - \lambda_{k}) = 0$$

$$2(-1)^{k} + \alpha_{k+1}P(\lambda_{k+1} - \lambda_{k}) = 0$$

$$\alpha_{k+1}[2 - (\lambda_{k+1} - \lambda_{k})] = 2(-1)^{k}.$$

Combining the last equality with the inequalities

 $|lpha_{k+2}|\leqslant 2, \qquad \lambda_{k+1}-\lambda_k\geqslant 1$ $\lambda_{k+1} = \lambda_k + 1 = k$ and $\alpha_{k+1} = 2(-1)^{k+1}$. we have

References

- [1] N. Artemiadis, 'Quelques resultat sur les transformees de Fourier avec applications', Bull. Sc. Math. 97 (1973), 177-191.
- [2] F. Holland, 'The extreme points of a class of functions with positive real part', Math. Ann. 202 (1973), 85-87.
- [3] Y. Katznelson, An introduction to harmonic analysis (John Wiley and Sons. Inc., New York, 1968).

Department of Mathematics University of Patras 261-10 Patras Greece

[8]

0