SOME QUARTIC DIOPHANTINE EQUATIONS IN THE GAUSSIAN INTEGERS

FARZALI IZADI, RASOOL FOROOSHANI NAGHDALI ${ }^{\boxtimes}$ and PETER GEOFF BROWN

(Received 27 February 2015; accepted 7 March 2015; first published online 16 June 2015)

Abstract

In this paper we examine solutions in the Gaussian integers to the Diophantine equation $a x^{4}+b y^{4}=c z^{2}$ for different choices of a, b and c. Elliptic curve methods are used to show that these equations have a finite number of solutions or have no solution.

2010 Mathematics subject classification: primary 11D25; secondary 11G05.
Keywords and phrases: quartic Diophantine equations, Gaussian integers, elliptic curves, ranks, torsion group.

1. Introduction and historical background

Through consideration of the question as to whether or not a right triangle with rational sides can have area the square of an integer, Fermat was led to the quartic equation $x^{4}-y^{4}=z^{2}$. Lagrange showed that this is equivalent to solving equations of the form $a x^{4}+b y^{4}=c z^{2}$ [2]. Fermat considered the related equation $x^{4}+y^{4}=z^{2}$ and showed, by infinite descent, that this equation has no nontrivial rational solutions. Hilbert extended this result to Gaussian integers.

Pocklington proved by descent the impossibility of

$$
x^{4}-p y^{4}=z^{2}, \quad x^{4}-p^{2} y^{4}=z^{2}, \quad x^{4}-y^{4}=p z^{2}, \quad x^{4}+2 y^{4}=z^{2},
$$

where p is a prime of the form $8 k+3$. The local and global solvability of the Diophantine equations $a x^{4}+b y^{4}+c z^{2}=0$ in the integers was studied in [1, Ch. 6]. Some of these fourth-degree Diophantine equations were studied in Chapter 4 of Mordell's book [3], as equations with only trivial solution in integers. In [7], Szabó studied the Diophantine equation $a x^{4}+b y^{4}=c z^{2}$ for special integer values of a, b and c. Using elliptic curve techniques, Najman [4] proved that $x^{4}+y^{4}=i z^{2}$ has a finite number of solutions in the Gaussian integers and $x^{4}-y^{4}=i z^{2}$ has no solution in $\mathbb{Z}[i]$. Also, he gave a new proof of Hilbert's result. Using elliptic curves, Najman proved that the Diophantine equation $x^{4} \pm y^{4}=z^{2}$ has only trivial solutions in the Gaussian

[^0]integers. Similarly, in this note we examine some Diophantine equations of degree four in $\mathbb{Z}[i]$, by using elliptic curve techniques.

Note 1.1. Note that the obvious mapping $z \mapsto i z$ shows that the nonsolvability of $a z^{4}+b y^{4}=c z^{2}$ over $\mathbb{Z}[i]$ implies the nonsolvability of $a z^{4}+b y^{4}=-c z^{2}$ and so only the former equation will be studied.

2. Elliptic curves

In this section we prove some results about the rank of elliptic curves over $\mathbb{Q}(i)$ for later use.

Let $E(\mathbb{Q})$ be an elliptic curve over \mathbb{Q} defined by the Weierstrass equation of the form

$$
E(\mathbb{Q}): y^{2}=x^{3}+a x+b, \quad a, b \in \mathbb{Q}
$$

By the Mordell-Weil theorem, the set of rational points on $E(\mathbb{Q})$ is a finitely generated abelian group, that is,

$$
E(\mathbb{Q}) \simeq E(\mathbb{Q})_{\text {tors }} \oplus \mathbb{Z}^{r}
$$

where $E(\mathbb{Q})_{\text {tors }}$ is a finite group called the torsion group and r is a nonnegative integer called the Mordell-Weil rank of $E(\mathbb{Q})$.

In order to determine the torsion subgroup of $E(\mathbb{Q}(i))$, we use the extended LutzNagell theorem [6], which is a generalisation of the Lutz-Nagell theorem from $E(\mathbb{Q})$ to $E(\mathbb{Q}(i))$.

Theorem 2.1 (Extended Lutz-Nagell theorem). Let $E: y^{2}=x^{3}+A x+B$ with $A, B \in$ $\mathbb{Z}[i]$. If a point $(x, y) \in E(\mathbb{Q}(i))$ has finite order, then:
(1) both x and $y \in \mathbb{Z}[i]$; and
(2) either $y=0$ or $y^{2} \mid 4 A^{3}+27 B^{2}$.

Remark 2.2. It is well known (see, for example, [5]) that if an elliptic curve E is defined over \mathbb{Q}, then the rank of E over $\mathbb{Q}(i)$ is given by

$$
\operatorname{rank}(E(\mathbb{Q}(i)))=\operatorname{rank}(E(\mathbb{Q}))+\operatorname{rank}\left(E_{-1}(\mathbb{Q})\right)
$$

where E_{-1} is the (-1)-twist of E over \mathbb{Q}. We also use this fact in the following proofs.
2-descent method. In this section we describe the method which we use for determining the rank of an elliptic curve. Let $E(\mathbb{Q})$ denote the group of rational points on the elliptic curve $E: y^{2}=x^{3}+a x^{2}+b x$. Let Q^{*} denote the multiplicative group of nonzero rational numbers and $Q^{*^{2}}$ the subgroup of squares of elements of Q^{*}. Define the group 2-descent homomorphism α from $E(\mathbb{Q})$ to $Q^{*} / Q^{*^{2}}$ as follows:

$$
\alpha(P)= \begin{cases}1\left(\bmod Q^{*^{2}}\right) & \text { if } P=O=\infty \\ b\left(\bmod Q^{*^{2}}\right) & \text { if } P=(0,0) \\ x\left(\bmod Q^{*^{2}}\right) & \text { if } P=(x, y) \text { with } x \neq 0\end{cases}
$$

Similarly, take the isogenous curve $\widehat{E}: y^{2}=x^{3}-2 a x^{2}+\left(a^{2}-4 b\right) x$ with group of rational points $\widehat{E}(\mathbb{Q})$. The group 2-descent homomorphism $\widehat{\alpha}$ from $\widehat{E}(\mathbb{Q})$ to $Q^{*} / Q^{*^{2}}$ is given by

$$
\widehat{\alpha}(\widehat{P})= \begin{cases}1\left(\bmod Q^{*^{2}}\right) & \text { if } \widehat{P}=O=\infty, \\ a^{2}-4 b\left(\bmod Q^{*^{2}}\right) & \text { if } \widehat{P}=(0,0), \\ x\left(\bmod Q^{*^{2}}\right) & \text { if } \widehat{P}=(x, y) \text { with } x \neq 0 .\end{cases}
$$

Proposition 2.3. Using the above notation, the rank r of $E(\mathbb{Q})$ is determined by

$$
2^{r-2}=|\operatorname{Im}(\alpha)||\operatorname{Im}(\widehat{\alpha})|
$$

Theorem 2.4 [1, Ch. 8]. The group $\alpha(E(\mathbb{Q}))$ is equal to the classes modulo squares of $1, b$ and the positive and negative divisors b_{1} of b such that the quartic equation

$$
N^{2}=b_{1} M^{4}+a M^{2} e^{2}+\frac{b}{b_{1}} e^{4}
$$

has a solution with M, N and e pairwise coprime integers such that $M e \neq 0$. If (M, N, e) is such a solution, then $P=\left(b_{1} M^{2} / e^{2}, b_{1} M N / e^{3}\right)$ is in $E(\mathbb{Q})$ and $\alpha(P)=b_{1}$.

Remark 2.5. A similar theorem is true for $\widehat{\alpha}$.
Now we are ready to prove some results about the rank of the elliptic curves, which we will use in the main results. In the following, we use the notation E_{q} for the elliptic curve $Y^{2}=X^{3}-q X$ and F_{q} for $Y^{2}=X^{3}+q x$.

Theorem 2.6.
(1) For a prime integer $p \equiv 3(\bmod 8)$, the rank of the elliptic curve $E_{p^{3}}: Y^{2}=$ $X^{3}-p^{3} X$ is zero over $\mathbb{Q}(i)$ and its torsion group is isomorphic to $\{\infty,(0,0)\}$.
(2) For a prime integer $p \equiv 3(\bmod 16)$ and $F_{p^{3}}: Y^{2}=X^{3}+p^{3} X$, we have $F_{p^{3}}(\mathbb{Q}(i))=\{\infty,(0,0)\}$.

Theorem 2.7.
(1) For a prime integer $p \equiv 7$ or $11(\bmod 16)$, the rank of the elliptic curve F_{p} : $Y^{2}=X^{3}+p X$ is zero in $\mathbb{Q}(i)$ and its torsion points are $\{\infty,(0,0)\}$.
(2) For a prime integer $p \equiv 3(\bmod 8)$ and $E_{p}: Y^{2}=X^{3}-p X$, we have $E_{p}(\mathbb{Q}(i))=$ $\{\infty,(0,0)\}$.

Remark 2.8. Obviously, the (-1)-twist of each of these curves is isomorphic to itself. By Remark 2.2, it is sufficient to show that each of these curves has zero rank in \mathbb{Q}.

Proof of Theorem 2.6(1). The quartic equation of the homogeneous space of $E_{p^{3}}$ is

$$
N^{2}=b_{1} M^{4}-\frac{p^{3}}{b_{1}} e^{4}
$$

where $b_{1} \in\left\{ \pm 1, \pm p, \pm p^{2}, \pm p^{3}\right\}$. By the definition of α, we have $1,-p \in \operatorname{Im}(\alpha)$. Considering $b_{1} \bmod$ squares, it is sufficient to consider $b_{1}=-1$ and p. For $b_{1}=-1$, we have $-M^{4}+p^{3} e^{4}=N^{2}$. Therefore,

$$
-M^{4} \equiv N^{2}(\bmod p) \Longrightarrow-1 \equiv\left(\frac{N}{M^{2}}\right)^{2}(\bmod p) \Longleftrightarrow p \equiv 1(\bmod 4)
$$

which is false. Also, $p \notin \operatorname{Im}(\alpha)$ since $\operatorname{Im}(\alpha)$ is a multiplicative group. $\operatorname{So}, \operatorname{Im}(\alpha)=$ $\{1,-p\}$.

Now consider the isogenous curve $\widehat{E_{p^{3}}}: \widehat{Y}^{2}=\widehat{X}^{3}+4 p^{3} \widehat{X}$. The biquadratic equation of the homogeneous space of this curve is

$$
\widehat{N}^{2}=b_{1} \widehat{M}^{4}+\frac{4 p^{3}}{b_{1}} \widehat{e}^{4}
$$

where $b_{1} \in\left\{ \pm 1, \pm 2, \pm 4, \pm p, \pm p^{2}, \pm p^{3}, \pm 2 p, \pm 4 p, \pm 2 p^{2}, \pm 4 p^{2}, \pm 2 p^{3}, \pm 4 p^{3}\right\}$. We have $1, p \in \operatorname{Im}(\widehat{\alpha})$. For negative b_{1}, the quartic equation has no solution. Considering b_{1} mod squares, we have to examine the equation for $b_{1}=2$ and $2 p$. In the former case, we have

$$
2 \widehat{M}^{4}+2 p^{3} \widehat{e}^{4}=\widehat{N}^{2} \Rightarrow 2 \widehat{M}^{4}=\widehat{N}^{2}(\bmod p)
$$

but then 2 is a square $(\bmod p)$ so $p \equiv \pm 1(\bmod 8)$, which is false. Since $\operatorname{Im}(\widehat{\alpha})$ is a multiplicative group, $2 p \notin \operatorname{Im}(\widehat{\alpha})$. Therefore, $\operatorname{Im}(\widehat{\alpha})=\{1, p\}$.

By Proposition 2.3, $\operatorname{rank} E_{p^{3}}(\mathbb{Q})=0$. Using the extended Lutz-Nagell theorem, $\Delta_{E_{p^{3}}}=-4 p^{9}$ and so if (X, Y) is a torsion point,

$$
Y^{2}=0 \quad \text { or } \quad a p^{k},
$$

where $a= \pm 1, \pm 2 i, \pm 4$ and $k=0,2,4,8$. If $Y^{2}=4 p^{6}$, then $4 p^{6}=X^{3}-p^{3} X \Rightarrow 4 p^{6}=$ $p^{3 t} X^{\prime 3}-p^{t+3} X^{\prime}$, where $p \nmid X^{\prime}$ and $t \geq 1$. Suppose $t=1$. Dividing both sides of the equation by p^{3}, we conclude that $p \mid 2$, which is a contradiction. Note that $t \geq 2$ yields $p \mid X^{\prime}$, which is again a contradiction. Similarly, we can show that $Y^{2} \neq$ $\pm p^{2}, \pm p^{4}, \pm p^{6}, \pm 2 i, \pm 2 i p^{2}, \pm 2 i p^{4}, \pm 2 i p^{6}, \pm 4 p^{2}, \pm 4 p^{4}$. For $Y^{2}=4$, suppose that q is a prime divisor of x in $\mathbb{Z}[i]$. Then $q \mid 4$ and hence $q=\omega=1+i$. Comparing the powers of ω on both sides, we deduce that $Y^{2} \neq 4$. In a similar way, we have $Y^{2} \neq \pm 1, \pm 2 i$. Only for $Y=0$ do we have $X=0$, which means that $E_{p^{3}}(\mathbb{Q}(i))_{T o r}=\{\infty,(0,0)\}$.
Proof of Theorem 2.6(2). The quartic equation of the homogeneous space of $F_{p^{3}}$: $Y^{2}=X^{3}+p^{3} X$ is

$$
N^{2}=b_{1} M^{4}+\frac{p^{3}}{b_{1}} e^{4}
$$

where $b_{1} \in\left\{ \pm 1, \pm p, \pm p^{2}, \pm p^{3}\right\}$. By definition of α, we have $1, p \in \operatorname{Im}(\alpha)$. For negative b_{1}, the equation has no solution. Considering b_{1} mod squares, we have $\operatorname{Im}(\alpha)=\{1, p\}$. The isogenous curve of $F_{p^{3}}$ is $\widehat{F_{p^{3}}}: \widehat{Y}^{2}=\widehat{X}^{3}-4 p^{3} \widehat{X}$. The biquadratic equation of the homogeneous space of this curve is

$$
\widehat{N}^{2}=b_{1} \widehat{M}^{4}-\frac{4 p^{3}}{b_{1}} \widehat{e}^{4}
$$

where $b_{1} \in\left\{ \pm 1, \pm 2, \pm 4, \pm p, \pm p^{2}, \pm p^{3}, \pm 2 p, \pm 4 p, \pm 2 p^{2}, \pm 4 p^{2}, \pm 2 p^{3}, \pm 4 p^{3}\right\}$. Since $1,-p \in \operatorname{Im}(\widehat{\alpha})$, it is sufficient to study this equation for $b_{1} \in\{-1, \pm 2, p, \pm 2 p\}$. Similarly to the first part of the theorem, we have $-1,2, p,-2 p \notin \operatorname{Im}(\widehat{\alpha})$. For $b_{1}=2 p$, we have $2 p \widehat{M}^{4}-2 p^{2} \widehat{e}^{4}=\widehat{N}^{2}$. Let ($\widehat{M}, \widehat{e}, \widehat{N}$) be a solution of this equation such that $\widehat{N}=p^{\alpha} \widehat{N}_{0}$, where $p \nmid \widehat{N}_{0}$ and $\alpha \supsetneqq 0$. Dividing both sides of the equation by p, we have $-2 \widehat{M}^{4}+2 p \widehat{e}^{4}=p^{2 \alpha-1} \widehat{N}_{0}^{2}$. So, $p \mid \widehat{M}$, which is impossible, since $(\widehat{M}, p)=1$. Also, $-2 \notin \operatorname{Im}(\widehat{\alpha})$, because $-p \in \operatorname{Im}(\widehat{\alpha})$ and $\operatorname{Im}(\widehat{\alpha})$ is a multiplicative group. Now, Proposition 2.3 implies that $\operatorname{rank} F_{p^{3}}(\mathbb{Q})=0$. Similarly to the first part, $F_{p^{3}}(\mathbb{Q}(i))_{\text {Tor }}=$ $\{\infty,(0,0)\}$.

Proof of Theorem 2.7. It is sufficient to show that $\operatorname{rank}\left(F_{p}(\mathbb{Q})\right)=\operatorname{rank}\left(E_{p}(\mathbb{Q})\right)=0$. The former is given in [6, Corollary 6.2.1, page 351]. The biquadratic equation of the homogeneous space of E_{p} is $N^{2}=b_{1} M^{4}-p e^{4} / b_{1}$, where $b_{1} \in\{ \pm 1, \pm p\}$ and $\{1,-p\} \subset \operatorname{Im}(\alpha)$. If $b_{1}=-1$,

$$
-M^{4}+p e^{4}=N^{2} \Longrightarrow-M \equiv N^{2}(\bmod p) \Longrightarrow-1 \equiv\left(\frac{N}{M^{2}}\right)^{2}(\bmod p)
$$

This implies that $p \equiv 1(\bmod 4)$, which is not true. Also, $b_{1}=p \notin \operatorname{Im}(\alpha)$ and thus $\operatorname{Im}(\alpha)=\{1,-p\}$. Consider the isogenous curve to $E_{-p}, \widehat{E_{p}}: \widehat{Y}^{2}=\widehat{X}^{3}+4 p \widehat{X}$, with the quartic equation $\widehat{N}^{2}=b_{1} \widehat{M}^{4}+\left(4 p / b_{1}\right) \widehat{e}^{4}$ for its homogeneous space, where $b_{1} \in\{ \pm 1, \pm 2, \pm 4, \pm p, \pm 2 p, \pm 4 p\}$. Clearly, it has no solution for negative b_{1} and $\{1, p\} \subset \operatorname{Im}(\widehat{\alpha})$. Let $b_{1}=2$; then

$$
2 \widehat{M}^{4}+2 p \widehat{e}^{4}=\widehat{N}^{2}
$$

This means that 2 is a square $(\bmod p)$ or, equivalently, $p \equiv \pm 1(\bmod 8)$, which is not true. So, 2 and consequently $2 p$ are not in $\operatorname{Im}(\widehat{\alpha})$. Therefore, $\operatorname{Im}(\widehat{\alpha})=\{1, p\}$ and $\operatorname{rank}\left(E_{p}(\mathbb{Q})\right)=0$. Similarly to the proof of Theorem 2.6(1), the extended Lutz-Nagell theorem yields $\Delta_{E_{p}}=4 p^{3}$ and

$$
Y^{2} \in\left\{0, \pm 1, \pm 4, \pm p^{2}, \pm 2 i, \pm 2 i p^{2}, \pm 4 p^{2}\right\} .
$$

If $Y=0$, we have $X=0$. Comparing the powers of p and ω, we see that the other cases produce no solution in the Gaussian integers. This means that $E_{p}(\mathbb{Q}(i))_{\text {Tor }}=\{\infty,(0,0)\}$ and similarly for E_{p}.

3. On the Diophantine equation $y^{4}+d x^{4}=c z^{2}$

In this section we study the equation $y^{4}+d x^{4}=c z^{2}$, where d is a power of an odd prime integer and c is a power of $2, \omega$ and i. Not only do we prove insolubility of the equations in Gaussian integers, but we also prove it in $\mathbb{Q}(i)$.

Remark 3.1. For what follows, note that $\omega=1+i$ is a prime in the Gaussian integers.
3.1. On the Diophantine equation $\boldsymbol{y}^{4} \pm \boldsymbol{p}^{3} \boldsymbol{x}^{4}=z^{2}$. In this section p is a prime integer with $p \equiv 3(\bmod 16)$ or $p \equiv 3(\bmod 8)$. We note that p is also prime in $\mathbb{Z}[i]$. A nontrivial solution of the Diophantine equations

$$
y^{4}+4 p^{3} x^{4}=z^{2}, \quad-4 y^{4}+4 p^{3} x^{4}=z^{2}, \quad y^{4}-4 p^{3} x^{4}=z^{2}
$$

leads to a nontrivial solution of the Diophantine equations

$$
y^{4}-p^{3} x^{4}=z^{2}, \quad y^{4}+p^{3} x^{4}=z^{2}
$$

respectively, since the first two equations are $y^{4}-p^{3}(\omega x)^{4}=z^{2},(\omega y)^{4}-p^{3}(\omega x)^{4}=z^{2}$ and the third is $y^{4}+p^{3}(\omega x)^{4}=z^{2}$. Thus, it is enough to show that the last two equations have only trivial solutions in $\mathbb{Z}[i]$.

Theorem 3.2.

(1) Let $p \equiv 3(\bmod 8)$. The Diophantine equations $y^{4}-p^{3} x^{4}= \pm z^{2}$ and $y^{4}+p^{3} x^{4}=$ $\pm i z^{2}$ have only trivial solutions in $\mathbb{Z}[i]$.
(2) For $p \equiv 3(\bmod 16)$, the Diophantine equations $y^{4}+p^{3} x^{4}= \pm z^{2}$ and $y^{4}-p^{3} x^{4}=$ $\pm i z^{2}$ have only trivial solutions in $\mathbb{Z}[i]$.

Proof. First suppose $p \equiv 3(\bmod 8)$. Suppose that (x, y, z) is a nontrivial solution of the equation $y^{4} \pm p^{3} x^{4}= \pm z^{2}$. Dividing the equation by x^{4} and considering the change of variables $s=y / x$ and $t=z / x^{2}$, we have $s^{4} \pm p^{3}=t^{2}$ for $s, t \in \mathbb{Q}(i)$. Let

$$
\begin{gathered}
X=s^{2} \\
X^{2} \pm p^{3}=t^{2}
\end{gathered}
$$

Multiplying these equations and letting $Y=s t$, we have the elliptic curves $Y^{2}=$ $X^{3} \pm p^{3} X$. By Theorem 2.6, the rank of these curves is zero over $\mathbb{Q}(i)$ and the only torsion point $(0,0)$ on both of them leads to trivial solutions for the original equations.

Now suppose $p \equiv 3(\bmod 16)$. As in the first part of the proof, suppose that (x, y, z) is a nontrivial solution of the equations $y^{4} \pm p^{3} x^{4}= \pm i z^{2}$, so that

$$
x^{4} \pm p^{3} y^{4}=i z^{2} \Rightarrow\left(\frac{x}{y}\right)^{4} \pm p^{3}=i\left(\frac{z}{y^{2}}\right)^{2} \Rightarrow s^{4} \pm p^{3}=i t^{2}
$$

where $s=x / y$ and $t=z / y^{2}$. Let $r=s^{2}$; then $r^{2} \pm p^{3}=i t^{2}$. Multiplying these equations together, we have $r^{3} \pm p^{3} r=i(t s)^{2}$. Now, $X^{3} \mp p^{3} X=Y^{2}$, using $X=i r$ and $Y=s t$. On both of these curves, the only torsion point is $(0,0)$ and this leads to trivial solutions for $y^{4} \pm p^{3} x^{4}=i z^{2}$.

Corollary 3.3.
(1) For $p \equiv 3(\bmod 8)$, the Diophantine equations $y^{4}-p^{3} x^{4}= \pm 2^{m} z^{2}$ and $y^{4}+$ $p^{3} x^{4}= \pm 2^{m} i z^{2}$ have only trivial solutions in $\mathbb{Q}(i)$ for any natural number m.
(2) For $p \equiv 3(\bmod 16)$, the Diophantine equations $y^{4}+p^{3} x^{4}= \pm 2^{m} z^{2}$ and $y^{4}-$ $p^{3} x^{4}= \pm 2^{m} i z^{2}$ have only trivial solutions in $\mathbb{Q}(i)$ for any natural number m.
(3) For $n \in \mathbb{N} \cup\{0\}$ and $p \equiv 3(\bmod 8)$, the Diophantine equations $y^{4}-p^{3} x^{4}=2^{n} z^{4}$ and $y^{4}+p^{3} x^{4}=2^{n} i z^{4}$ have only trivial solutions in $\mathbb{Q}(i)$.
(4) For $n \in \mathbb{N} \cup\{0\}$ and $p \equiv 3(\bmod 16)$, the Diophantine equations $y^{4}+p^{3} x^{4}=2^{n} z^{4}$ and $y^{4}-p^{3} x^{4}=2^{n} i z^{4}$ have only trivial solutions in $\mathbb{Q}(i)$.

Proof. In the equations $y^{4} \pm p^{3} x^{4}= \pm 2^{m} z^{2}$, let $m=2 k$ or $2 k+1$. The equations become $y^{4} \pm p^{3} x^{4}=\left(2^{k} z\right)^{2}$ and $y^{4} \pm p^{3} x^{4}=i\left(i \omega 2^{k} z\right)^{2}$, respectively, with only trivial solutions.

Similarly, $y^{4} \pm p^{3} x^{4}= \pm 2^{m} i z^{2}$ becomes $y^{4} \pm p^{3} x^{4}=\left(\omega 2^{k} z\right)^{2}$ if $m=2 k+1$ and $y^{4} \pm p^{3} x^{4}=i\left(2^{k} z\right)^{2}$ if $m=2 k$. Both have no nontrivial solutions by the theorem.
3.2. On the Diophantine equation $y^{4} \pm p x^{4}=z^{2}$. In this section p is a prime integer with $p \equiv 7$ or $11(\bmod 16)$. Note that p remains prime in $\mathbb{Z}[i]$. A nontrivial solution of the Diophantine equations

$$
y^{4} \pm 4 p x^{4}=z^{2}, \quad-4 y^{4}+4 p x^{4}=z^{2}, \quad y^{4}-4 p x^{4}=z^{2}
$$

leads to a nontrivial solution of the Diophantine equations

$$
y^{4}-p x^{4}=z^{2}, \quad y^{4}+p x^{4}=z^{2}
$$

respectively, since the first two equations are $y^{4}-p(\omega x)^{4}=z^{2},(\omega y)^{4}-p(\omega x)^{4}=z^{2}$ and the third one is $y^{4}-p(\omega x)^{4}=z^{2}$. Thus, it is enough to show that the last two equations have only trivial solutions in $\mathbb{Z}(i)$.

Theorem 3.4.
(1) For $p \equiv 7$ or $11(\bmod 16)$, the Diophantine equations $y^{4}+p x^{4}= \pm z^{2}$ and $y^{4}-$ $p x^{4}= \pm i z^{2}$ have only trivial solutions in $\mathbb{Z}[i]$.
(2) For $p \equiv 3(\bmod 8)$, the Diophantine equations $y^{4}-p x^{4}= \pm z^{2}$ and $y^{4}+p x^{4}=$ $\pm i z^{2}$ have only trivial solutions in $\mathbb{Z}[i]$.

Proof. First suppose $p \equiv 7$ or $11(\bmod 16)$. Suppose that (x, y, z) is a nontrivial solution of these equations. Dividing the equations by x^{4} and considering the change of variables $s=y / x$ and $t=z / x^{2}$, we have $s^{4} \pm p=t^{2}$ for $s, t \in \mathbb{Q}(i)$. Let

$$
\begin{gathered}
X=s^{2} \\
X^{2} \pm p=t^{2}
\end{gathered}
$$

Multiplying these equations together and letting $Y=s t$, we obtain the elliptic curves $Y^{2}=X^{3} \pm p X$. By Theorem 2.7, the rank of these curves is zero over $\mathbb{Q}(i)$ and the only torsion point $(0,0)$ leads to trivial solutions for the original equations.

Now suppose $p \equiv 3(\bmod 8)$. As in the first part of the theorem, suppose that (x, y, z) is a nontrivial solution of these equations, so that

$$
y^{4} \pm p x^{4}=i z^{2} \Rightarrow\left(\frac{y}{x}\right)^{4} \pm p=i\left(\frac{z}{x^{2}}\right)^{2} \Rightarrow s^{4} \pm p=i t^{2}
$$

where $s=y / x$ and $t=z / x^{2}$. Let $r=s^{2}$; then $r^{2} \pm p=i t^{2}$. Multiplying these equations together, we have $r^{3} \pm p r=i(t s)^{2}$. Now, $X^{3} \mp p X=Y^{2}$ with $X=i r$ and $Y=s t$. On both of these curves, the only torsion point is $(0,0)$, which leads to trivial solutions for $y^{4} \pm p x^{4}=i z^{2}$.

As a result of this theorem, as in Corollary 3.3, we have the following result.
(1) For $p \equiv 7$ or $11(\bmod 16)$, the Diophantine equations $y^{4}+p x^{4}= \pm 2^{m} z^{2}, y^{4}+$ $p x^{4}= \pm 2^{n} z^{4}, y^{4}-p x^{4}= \pm 2^{m} i z^{2}$ and $y^{4}-p x^{4}=2^{n} i z^{4}$ have only trivial solutions in $\mathbb{Z}[i]$ for $n \in \mathbb{N} \cup\{0\}$ and $m \in \mathbb{N}$.
(2) For $p \equiv 3(\bmod 8)$, the Diophantine equations $y^{4}-p x^{4}= \pm 2^{m} z^{2}, y^{4}-p x^{4}=$ $\pm 2^{n} z^{4}, y^{4}+p x^{4}= \pm 2^{m} i z^{2}$ and $y^{4}+p x^{4}= \pm 2^{n} i z^{4}$ have only trivial solutions in $\mathbb{Z}[i]$ for $n \in \mathbb{N} \cup\{0\}$ and $m \in \mathbb{N}$.

References

[1] H. Cohen, Number Theory: Vol. I: Tools and Diophantine Equations, Graduate Texts in Mathematics, 239 (Springer, New York, 2007).
[2] L. E. Dickson, History of the Theory of Numbers, Vol. II: Diophantine Analysis (Chelsea, New York, 1971).
[3] L. J. Mordell, Diophantine Equations (Academic Press, London, 1969).
[4] F. Najman, 'The Diophantine equation $x^{4} \pm y^{4}=i z^{2}$ in the Gaussian integers', Amer. Math. Monthly 117 (2010), 637-641.
[5] U. Schneiders and H. G. Zimmer, 'The rank of elliptic curves upon quadratic extensions', in: Computational Number Theory (eds. A. Petho, H. C. Williams and H. G. Zimmer) (de Gruyter, Berlin, 1991), 239-260.
[6] J. H. Silverman, The Arithmetic of Elliptic Curves (Springer, New York, 1986).
[7] S. Szabó, 'Some fourth degree Diophantine equations in the Gaussian integers', Integers 4 (2004), A16.

FARZALI IZADI, Department of Mathematics, Azarbaijan Shahid Madani University,
Azar shahr, Tabriz, 53751-71379, Iran
e-mail: farzali.izadi@azaruniv.ac.ir
RASOOL FOROOSHANI NAGHDALI, Department of Mathematics, Azarbaijan Shahid Madani University, Azar shahr, Tabriz, 53751-71379, Iran
e-mail: rn_math@yahoo.com
PETER GEOFF BROWN, School of Mathematics and Statistics, University of New South Wales, Sydney, NSW 2052, Australia e-mail: peter@unsw.edu.au

[^0]: (C) 2015 Australian Mathematical Publishing Association Inc. 0004-9727/2015 \$16.00

