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Abstract

In this short paper, we show how fluctuation identities for Lévy processes with no positive
jumps yield the distribution of the present value of dividends paid until ruin in a Lévy
insurance risk model with a dividend barrier.
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1. Introduction

Intuitively, an insurance risk model with a dividend barrier describes the situation in which
the premiums are paid out as dividends to shareholders whenever the surplus process reaches a
certain level. A quantity of interest in this model with a constant barrier is the so-called present
value of all dividends paid until the time of ruin. The distribution of this quantity was derived
by Dickson and Waters [4] and by Gerber and Shiu [8] for the classical compound Poisson risk
process, and then by Li [13] when the underlying process is the classical risk process perturbed
by a Brownian motion. For more on the distribution of the dividend payments, see Dickson
and Waters [4], Gerber and Shiu [8], Li [13], and the references therein.

Many risk processes are in fact special Lévy processes with no positive jumps. The classical
compound Poisson risk process perturbed by a Brownian motion is one of them. More generally,
some models have used the classical compound Poisson risk process perturbed by a Lévy process
as their risk process. See, for instance, Furrer [6], Yang and Zhang [14], Huzak et al. [9], and
Garrido and Morales [7]. Another risk process is considered by Klüppelberg et al. [11]: it is a
Lévy process which drifts to infinity. For a nice interpretation of the Lévy–Itô decomposition
of a Lévy process in the context of risk theory, see Klüppelberg and Kyprianou [10].

In this paper, we obtain explicit expressions for the moments of the present value of all
dividends paid until ruin in an insurance Lévy risk model with a constant barrier. Our approach
uses the solution of the two-sided exit problem for a spectrally negative Lévy process, i.e. a
Lévy process with no positive jumps. For such risk processes, Kyprianou and Palmowski [12]
have simultaneously derived the same results and even more general distributional quantities:
see Theorem 1 and Corollary 1. Their methodology relies on Itô’s excursion theory instead of
fluctuation identities.
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2. A Lévy risk model and the exit problem

Let U = (U(t))t≥0 be a Lévy process with no positive jumps. The law of U such that
U(0) = u will be denoted by Pu and the corresponding expectation by Eu. Any readers not
familiar with Lévy processes are referred to Bertoin [1] for more details.

2.1. Exit from a finite interval and the scale functions

The following material is mostly taken from Bertoin [2]. As the Lévy process U has no
positive jumps, its Laplace transform is given by

E0[eλU(t)] = etψ(λ),

for λ ≥ 0 and t ≥ 0. In this case, the Laplace exponent ψ is convex and

lim
λ→∞ψ(λ) = ∞.

Thus, we can define its right-inverse function � : [0,∞) → [0,∞) by

ψ(�(λ)) = λ, λ ≥ 0.

We now define the so-called scale functions {Wq; q ≥ 0} of the process U . For each q,
Wq : [0,∞) → [0,∞) is the unique, strictly increasing and continuous function with Laplace
transform ∫ ∞

0
e−λxWq(x) dx = 1

ψ(λ)− q
,

where λ > �(q). Sometimes the scale functions are denoted by W(q).
If we were interested in the two-sided exit problem, then the scale functions would arise

naturally. Indeed, let a be a positive real number and define

T(0,a) = inf{t ≥ 0 | U(t) /∈ (0, a)}.
When the process U starts from within the interval, i.e. when U(0) = u for u ∈ (0, a), the
random time T(0,a) is the first exit time of U from this interval. Its Laplace transform on the
event where the process U leaves the interval at the upper boundary is given by

Eu[e−qT(0,a);U(T(0,a)) = a] = Wq(u)

Wq(a)
, q ≥ 0. (1)

Consequently, when q = 0,

Pu{U(T(0,a)) = a} = W0(u)

W0(a)
. (2)

Throughout the paper we will assume that either the sample paths of U have unbounded
variation or the Lévy measure of U is absolutely continuous with respect to the Lebesgue
measure. The first condition is satisfied if U has a Gaussian component. Under one of
these assumptions, the scale functions Wq are differentiable; see Doney [5] or Chan and
Kyprianou [3]. The differentiability of the scale functions will be useful in what follows.
The scale functions are also differentiable if we impose different assumptions on the spectrally
negative Lévy process U ; see Chan and Kyprianou [3] for more details.
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2.2. A Lévy risk model with a dividend barrier

Let b be a positive real number. If the process U starts from u ∈ (0, b), then we define

D(t) = sup
0≤s≤t

(U(s)− b)+,

and

Ub(t) = U(t)−D(t),

for every t ≥ 0. One can think of Ub = (Ub(t))t≥0 as the surplus process of an insurance
company that pays out, as dividends, any capital above the level b. Thus, D(t) is the total
amount of dividends paid up to time t .

We define the ruin time of this risk model with a barrier by

T = inf{t ≥ 0 | Ub(t) ≤ 0}.

Let δ be a nonnegative real number. Our main goal is to compute the distribution of

D =
∫ T

0
e−δt dD(t).

This quantity is the present value of all dividends paid until the time of ruin T , where δ can be
interpreted as the force of interest. If δ = 0, then D = D(T ). The law of D will be expressed
in terms of the scale functions {Wq; q ≥ 0}.

Finally, for each k ≥ 1, we introduce

Vk(u) = Eu[Dk],

the kth moment of D when the process U starts from u. The mean value of D was previously
computed by Zhou [15].

3. The moments when starting from b

First, we compute the moments of D when U starts from b, the barrier level.

Proposition 1. For k ≥ 1,

Vk(b) = k!
k∏
i=1

Wiδ(b)

W ′
iδ(b)

. (3)

Proof. Firstly, we obtain a lower bound for Vk(b). For each n ≥ 1, we introduce an exit
time Tn defined by

Tn = inf

{
t ≥ 0

∣∣∣∣U(t) /∈
(

1

n
, b + 1

n

)}
.

As U has no positive jumps, we have

Vk(b) = Eb

[
Dk;U(Tn) ≤ 1

n

]
+ Eb

[
Dk;U(Tn) = b + 1

n

]
.
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As Tn is strictly less than T on the event {U(Tn) = b+ 1/n}, using the Binomial Theorem and
the strong Markov property at time Tn, we obtain

Eb

[
Dk;U(Tn) = b + 1

n

]

=
k∑
j=0

Ckj Eb

[
e−(k−j)δTn

(∫ Tn

0
e−δt dD(t)

)j
;U(Tn) = b + 1

n

]
Vk−j (b),

where Ckj = (
k
j

)
. Applying the integration by parts formula to

∫ Tn
0 e−δt dD(t), using the fact

that D(Tn) = 1/n on {U(Tn) = b + 1/n}, and once again using the Binomial Theorem, we
obtain

Vk(b) = Eb

[
Dk;U(Tn) ≤ 1

n

]

+
k∑
j=0

Ckj Vk−j (b)
j∑
i=0

C
j
i δ
j−i

(
1

n

)i
e(i, j, k; n),

where

e(i, j, k; n) = Eb

[
e−(k−j+i)δTn

(∫ Tn

0
e−δtD(t) dt

)j−i
;U(Tn) = b + 1

n

]
.

Keeping only the terms for j = i = 0 and j = i = 1, and using the fluctuation identity of (1),
we obtain

Vk(b) ≥ Vk(b)
Wkδ(b)

Wkδ(b + 1/n)
+ kVk−1(b)

1

n

Wkδ(b)

Wkδ(b + 1/n)
. (4)

Secondly, we obtain an upper bound for Vk(b). For each n ≥ 1, we now define a new exit
time T ′

n by

T ′
n = inf

{
t ≥ 0

∣∣∣∣U(t) /∈
(

0, b + 1

n

)}
.

For each T ′
n, we also define

Sn = inf{t ≥ T ′
n | Ub(t) ≤ 0}.

This is the time of ruin in the model with a barrier when U starts at the random time T ′
n. Then,

using similar arguments as before, for instance the strong Markov property at time T ′
n, we obtain

Vk(b) ≤ Eb

[(∫ T ′
n

0
e−δt dD(t)

)k
;U(T ′

n) ≤ 0

]

+
k∑
j=0

Ckj Vk−j (b)
j∑
i=0

C
j
i δ
j−i

(
1

n

)i
e′(i, j, k; n), (5)

where

e′(i, j, k; n) = Eb

[
e−(k−j+i)δT ′

n

(∫ T ′
n

0
e−δtD(t) dt

)j−i
;U(T ′

n) = b + 1

n

]
.
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Before going any further, we provide estimates on the terms involved in the upper bound
of (5):

• Let l be any positive integer. Using (2), we obtain

Eb

[(∫ T ′
n

0
e−δt dD(t)

)l
;U(T ′

n) ≤ 0

]
≤

(
1

n

)l
Pb{U(T ′

n) ≤ 0}

=
(

1

n

)l(
1 − W0(b)

W0(b + 1/n)

)
.

• Let l and m be any nonnegative integers. Then,

Eb

[
e−mδT ′

n

(∫ T ′
n

0
e−δtD(t) dt

)l
;U(T ′

n) = b + 1

n

]

≤
(

1

n

)l
Eb

[(∫ T ′
n

0
e−δt dt

)l
;U(T ′

n) = b + 1

n

]

≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

W0(b)

W0(b + 1/n)
if l = 0;

(
1

n

)l(
W0(b)

W0(b + 1/n)
− Wδ(b)

δWδ(b + 1/n)

)
if l ≥ 1.

As the scale functions are continuous, if l ≥ 1, then we have

Eb

[(∫ T ′
n

0
e−δt dD(t)

)l
;U(T ′

n) ≤ 0

]
= o

(
1

n

)
,

and

Eb

[
e−mδT ′

n

(∫ T ′
n

0
e−δtD(t) dt

)l
;U(T ′

n) = b + 1

n

]
= o

(
1

n

)
,

when n goes to infinity. Consequently, if j > i,

e′(i, j, k; n) = o

(
1

n

)
.

This means that we have to deal with the terms for j = i = 0 and j = i = 1 in (5) carefully.
We now complete the proof. For k ≥ 1, using the lower bound of (4), the upper bound of (5),

the fluctuation identity of (1), and the previous estimates, we have

Vk(b) = Vk(b)
Wkδ(b)

Wkδ(b + 1/n)
+ kVk−1(b)

1

n

Wkδ(b)

Wkδ(b + 1/n)
+ o

(
1

n

)
. (6)

Solving (6) for Vk(b) and taking the limit, we obtain

Vk(b) = lim
n→∞

Wkδ(b + 1/n)

n(Wkδ(b + 1/n)−Wkδ(b))
kVk−1(b)

Wkδ(b)

Wkδ(b + 1/n)

= Wkδ(b)

W ′
kδ(b)

kVk−1(b).

In the last line, we used the fact that, under our assumptions, the scale functions are differen-
tiable. As V0(b) = 1, (3) follows.
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4. The moments when starting from u

Here is the main result of the paper, i.e. the moments of D when U starts from u ∈ (0, b).
Proposition 2. For k ≥ 1,

Vk(u) = k!Wkδ(u)

Wkδ(b)

k∏
i=1

Wiδ(b)

W ′
iδ(b)

.

Proof. Recall that T(0,b) = inf{t ≥ 0 | U(t) /∈ (0, b)}. As T(0,b) is strictly less than T on
the event {U(T(0,b)) = b}, by the strong Markov property at time T(0,b), we obtain

Vk(u) = Eu

[(∫ T

T(0,b)

e−δt dD(t)

)k
;U(T(0,b)) = b

]

= Eu[e−kδT(0,b);U(T(0,b)) = b]Vk(b)
= Wkδ(u)

Wkδ(b)
Vk(b).

The result then follows from Proposition 1.

5. The Laplace transform

As we have all the moments ofD = ∫ T
0 e−δt dD(t), we can make explicit the expression of

its Laplace transform. We know, from Proposition 2 (or Proposition 1), that

V1(b) = Eb

[∫ T

0
e−δt dD(t)

]
= Wδ(b)

W ′
δ(b)

.

Hence, when δ goes to infinity, Wδ(b)/W
′
δ(b) decreases to zero.

Corollary 1. If δ > 0, then for every real number λ, the Laplace transform of D exists and is
given by

Eu[eλD] = 1 +
∑
k≥1

λk
Wkδ(u)

Wkδ(b)

k∏
i=1

Wiδ(b)

W ′
iδ(b)

.

Proof. We first prove that ∑
k≥0

|λ|k
k! Vk(u) (7)

is finite. As δ > 0, from the remark preceding Corollary 1, we can choose large enough j such
that

0 ≤ |λ|Wjδ(b)

W ′
jδ(b)

< 1.

From (1) we also know that, for every q ≥ 0,

Wq(u)

Wq(b)
≤ 1.
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Then, for any k ≥ j , we have

|λ|k
k! Vk(u) ≤

k∏
i=1

(
|λ|Wiδ(b)

W ′
iδ(b)

)

≤
(

|λ|j−1
j−1∏
i=1

Wiδ(b)

W ′
iδ(b)

)(
|λ|Wjδ(b)

W ′
jδ(b)

)k−j+1

.

Therefore, the series in (7) is finite. The statement of the corollary follows from the monotone
convergence theorem when λ > 0, and from Lebesgue’s dominated convergence theorem when
λ ≤ 0.

As already mentioned, if we assume that there is no force of interest, then the present value
of all dividends paid until the time of ruin is equal to the total amount of dividends paid up to
the time of ruin, i.e. if δ = 0, then D = D(T ).

Corollary 2. For k ≥ 1,

Eu[D(T )k] = k! W0(u)

W0(b)

(
W0(b)

W ′
0(b)

)k
,

and then

Eu[e−λD(T )] = 1 − λW0(u)

W ′
0(b)+ λW0(b)

,

for every λ > −W ′
0(b)/W0(b).

Observe that under Pb, the moments and the Laplace transform of D(T ) are those of a
random variable following an exponential distribution with meanW0(b)/W

′
0(b). Indeed, when

U starts from b, the Laplace transform of D(T ) is given by

Eb[e−λD(T )] = W ′
0(b)

W ′
0(b)+ λW0(b)

,

for every λ > −W ′
0(b)/W0(b).
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