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SUFFICIENT CONDITIONS FOR A WELL-BEHAVED
KUROSH-AMITSUR RADICAL THEORY
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1. Introduction and preliminaries

Kurosh—-Amitsur radical theories have been developed for various algebraic structures.
Whenever the notion of a normal substructure is not transitive, this causes quite some
problems in obtaining satisfactory general results. Some of the more important
questions concerning the general theory of radicals are whether semisimple classes are
hereditary, do radical classes satisfy the ADS-property, can semisimple classes be
characterized by closure conditions (e.g., is semisimple =coradical), is Sands’ Theorem
valid and lastly, does the lower radical construction terminate. For associative and
alternative rings, all these questions have positive answers. The method of proof is the
same in both cases. In [15], Puczylowski used the results of Terlikowska—Oslowska [18,
19] and hinted at a condition which is crucial in obtaining the positive answers to the
above questions.

Our aim here is to make this more precise* and we provide sufficient conditions on a
universal class of Q-groups to ensure positive answers to the above questions. We also
give necessary conditions on a universal class for the semisimple classes to be hereditary
and radical classes to have the ADS-property.

Although our results are presented in a universal class of multi-operator groups, it
seems plausible that most of these can be extended to other types of universal classes or
categories.

A class of Q-groups is a universal class if it is closed under homomorphic images and
ideals. Ideals will be denoted by A and accessible Q-subgroups by A A (D is an
accessible  Q-subgroup of A if there  exists a finite chain D=
D,AD,A-AD,_i AD,=A). For definitions and characterizations of radical and
semisimple classes, Van Leeuwen and Wiegandt [20, 21] can be consulted. We, however,
recall the following: A radical class # has the ADS-property if #(I) AAfor al IAA
and is ideal-hereditary if Z(I)=R(A) 1 for all I A A. A class # is a semisimple class iff
M is regular (0#INANAeA implies 0#1/Ke# for some K AI), coinductive (if
I,2---21,2--- is a descending chain, where I, A A with A/I,e.# for all o, then

*While completing this manuscript, it came to my attention that E. R. Puczylowski (On general radical
theory—manuscript) has obtained the same results, and in fact stronger conclusions, for the present
dy(#)-classes considered here in Section 3.
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A/n1,e M), closed under extensions (I A A with both I and A/I in -4 implies Ae.#
and satisfies

(P) If JAIA A and J and [ are minimal w.r.t. I/Je.# and A/Ie #, then J A A.
For a class .#, two operators on .# namely  and & are defined by

UM :={A|A has no non-zero homomorphic image in .#} and

& M:={A|A has no non-zero ideals which are in .#}

If # is a regular (or equivalently, if # <% UM), then %A is a radical class. 4 is a
semisimple class iff 4 =SUM. # is a coradical class if it is hereditary (ie. I\ Ae.#
implies I € #), coinductive and closed under extensions. For associative rings (cf. Sands
[16]) and alternative rings (cf. Anderson and Wiegandt [4]), the following results is
known as Sands’ Theorem: .# is a semisimple class iff .# is regular, coinductive and
closed under extensions.

We also need the lower radical construction (due to Kurosh [9] and streamlined by
Sulinski, Anderson and Divinsky [17]) in a universal class # . Let # <% and define
classes .#, by transfinite induction by: Let .#, be the homomorphic closure of .. If
M has been defined for all ordinals B,f<a, let M, ={AeW |evcry non-zero homo-
morphic image of A contains a non-zero ideal I with Ie.#, for some y<a}. Then
LM:=\ )M, is a radical class; in fact the smallest radical class which contains .# and
it is called the lower radical class determined by .#. It is well-known that if a <§f, then
M, S Mpg; each M, is homomorphically closed and if # is hereditary, so is each class
A, and consequently also Z.#. Furthermore, if 0# 4 € £ .#, then there is an accessible
Q-subgroup CA A A with 0#Ce.#,. Quite often, we will be considering the lower
radical construction determined by a single Q-group A; the steps in the construction of
& {A} are then denoted by {4}, {4},,..., {4},,-..

Finally, as is usual when dealing with matters radical theoretical, any chosen subclass
of a universal class will be assumed by be abstract, i.e. containing the one element Q-
group and closed under isomorphic copies.

2. General theory

Let #° be a universal class of Q-groups. Let &/ <% be a fixed subclass with
2/\{0} # ¢. Motivated by Terlikowska~Oslowska [18], Puczylowski [15] and Krempa
[8] we define:

Definitions 2.1. Let JAITew . Jis a d(of)-ideal of 1,i€ {0, 1,2,3,4} if there does not
exist a surjective homomorphism é: B—C/J #0 with:
fOl‘ l=0. BAAJ,C=C1 ACzA"'AC"._l AC"=I and C,,_I/JGM.
fori=1: B=J,C=C, AC,A--AC,. AC,=1and C,_,/Je .
fori=2: B=J,CAI and C/Je .
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fori=3: B=J,CAI,C/Jes and ker 6 A I

for i=4: As for i=3 and if K A I with K<J, then n~}(6(K)) A I where n: C—C/J is the
canonical homomorphism.

W is a df)-classif IANT A\ Ae W and J a d,(of)-ideal of I implies J A A.

Clearly, for i=1,2,3,4, every d,_,(«/)-ideal is a d,(/)-ideal; hence every d;(s/)-class is
a d;,_,(&f)-class. If B<.of, then every d,(f)-ideal is a d;(#)-ideal; hence every d;(%)-class
is a d(of)-class. If of =W, d,(of)-ideals (d(of)-classes) will just be called d;-ideals
(d;-classes).

In the universal class of all rings, let A be a simple ring without an identity and let
D(A) be the Dorroh extension of A. Then D(A) is a d,-ideal of A@D(A) but not a
dy-ideal. In [10], Leavitt and Armendariz gave an example of a (non-associative) ring K
with order 8 and with a chain 0#J A I A K where I is the only proper ideal of K and
J is the only proper ideal of I. I and K have no identity and J is isomorphic to the two
element field. If D(K) is the Dorroh extension of K, then D(K) is a d,-ideal of K@ D(K)
but not a d;-ideal. In the same paper, Leavitt and Armendariz also gave an example of
a (non-associative) ring R with order 8 and with a chain 0#J AT A R where I is the
only proper ideal of R, J is the only proper ideal of I and R>=R,I*=1I and J?=0.
Then I is a dy-ideal of R, but not a d,-ideal.

Let INAew . If Ied s/ then I is a d,(«)-ideal of 4 and if A/Ie ¥, then I is a
d,(s/)-1deal of A. If &7 is hereditary and I e#.«/, then I is a d,(«/)-ideal of A4 and if, in
addition, also %/ is hereditary, then I is a dq(%/)-ideal of A. Moreover, the next two
results can easily be verified:

Proposition 2.2. Let # =W be hereditary and closed under extensions. If I /\ Ae W
and I is minimal with respect to 0# A/l € #, then 1 is a ds-ideal of A.

Proposition 2.3. Let 2<% be a radical class.

(1) R(A) is a d,(H)-ideal of A for all AeW.

(2) If SR is hereditary, then R(A) is a d, (F)-ideal of A for all Ae W
(3) If Z# is ideal-hereditary, then #(A) is a do(F)-ideal of A for all Ae W

Corollary 24. Let W be a d,(sf)-class. Then every radical class in W satisfies the
ADS-property; consequently the semisimple classes in W are hereditary.

d,- and dj-ideals arise as the radicals for certain radical classes, for we have:

Proposition 2.5. Let IA AeW.

(1) If1is ad,-ideal of A, then there exists a radical class # with Z(A)=1.
(2) Iflis ady-ideal of A, then there exists a hereditary radical class & with Z(A)=1.

Proof. (1) Let #:=%{I}. Then e, hence IS R(A). If 1 #%(A), then Z(A)/le R
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implies the existence of a non-zero accessible Q-subgroup C/I of #(A4)/I which is a
homomorphic image of I. But this contradicts the fact that I is a d,-ideal of A.

(2) In this case, let #=2{K|K is an accessible Q-subgroup of I}. Since the class
which generates £ is hereditary, so is # and we can proceed as in (1).

Let us remark that if % is such that all semisimple classes in %~ are hereditary, then
the conditions in both (1) and (2) of Proposition 2.5 are necessary and sufficient. In a
sense, the next two results motivate our approach in considering the classes presently
under discussion.

Proposition 2.6. Let W be a universal class in which every semisimple class is
hereditary. Then % is a d,-class.

Proof. If # is not a dy-class, there is a chain J AI A AeW with J a dy-ideal in I
but not an ideal in 4. As in the proof of Proposition 2.5(2), if .@:=${K|K is an
accessible Q-subgroup of J}, it follows that £ is a hereditary radical class with Z(I)=J.
By our assumption on #7, # is in fact ideal-hereditary. But then, as is well-known, J e #
where J is the ideal in A generated by J. Hence J= %(I1)=J which contradicts the fact
that J is not an ideal in A.

Proposition 2.7. Let % be a universal class in which every radical class has the
ADS-property. Then W is a d,-class.

Proof. Consider the chain JAIA Ae W where J is a d;-ideal of I. From
Proposition 2.5(1) we know that there is a radical class # with J=2%(I) and JA A
follows from our assumption on #".

It is well-known (trivially) that every radical class which has the ADS-property has a
hereditary semisimple class. Moreover, in all the universal classes where it is known that
the semisimple classes are hereditary, it is precisely because all the radical classes have
the ADS-property. Although the ADS-property for a radical class is not necessary for
the corresponding semisimple class to be hereditary (cf. [22]), no universal class is
known where all the semisimple classes are hereditary but not every radical class has
the ADS-property. The next result, which is also a partial converse to the last
proposition, provides some information.

Proposition 2.8. Let %" be a universal class. Then every radical class in W has the
ADS-property if and only if every semisimple class in W is hereditary and W is a d-class.

The proof is obvious in view of Propositions 2.7 and 2.3(2). We conclude this section
with two properties that are quite useful in the study of general radical theory; the
proofs are straightforward.
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Proposition 2.9. Let JAIAAeW . If W is a d,(f)-class and I1/Je S o, then J A A.
If W is a d,()-class and of is hereditary or if W is a d,(f)-class, then JeUsf implies
JAA :

3. Characterizations of semisimple classes

Theorem 3.1. Let #  be a ds-class. Then M =W is a semisimple class if and only if it
is a coradical class.

Proof. Let .# be a coradical class. In order to show that .# is a semisimple class, it
is sufficient to show that .# satisfies condition (P). Consider the chain JAI A Ae W
where J and I are minimal with respect to I/Je.# and A/l € # respectively. From
Proposition 2.2 it follows that J is a ds-ideal of I, hence J A A by the assumption on
W . The converse implication is clear from Corollary 2.4 and the well-known properties
of semisimple classes.

Concerning the validity of Sands™ Theorem, we firstly have:

Theorem 3.2. Let W be a d;(F)-class. Then M =W is a semisimple class if and only
if M is regular, coinductive, closed under extensions and satisfies:

INAeM and I e of implies Ie M. (*)

Proof. Suppose .# satisfies the mentioned conditions. Since # is regular, A4 <
FUM. We show that A =SUM from which the result follows. Let 0#Ac FUM.
Then there is an ideal ] A A such that 0#£A/Ie.#. Since .# is coinductive, we can
choose I minimal with respect to this property. If =0, we are done. Suppose thus
0#INAcSUAM. Once again, we can find an ideal J AT with 0£1/Je.# where J is
minimal w.r.t. this property. We now show that J is a d;(«)-ideal of I. If not, there
exists a surjective homomorphism §:J—C/J where CA I, C/JeL/\{0} and kerd Al
Then J/kerd=C/J A1/Je # and from (x) we infer that C/J and consequently J/Ker é
is in . Since J/ker § A I/keré and

I/ker 6 ~£e
J/kers J T

the extension closedness of .# yields I/ker 6 e .# which contradicts the choice of J. Thus
J is a dy(s/)-ideal of I and then also an ideal in A. Once again, since .# is closed under
extensions and from

Al _A
=18
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we conclude that A4/J e .# which contradicts the choice of I. The converse implication is
clear.

For the validity of Sands’ Theorem, one would like to know when (*) is a
consequence of the other conditions imposed on .#. The remainder of this section is
devoted to this problem. We start with two special cases.

Proposition 3.3. Suppose of is homomorphically closed and for all JAI A Ae W with
I/JeS A, JNA holds. Then M =W is the semisimple class of a radical class & for
which o/ € if and only if # is regular, coinductive, closed under extensions, M N o/ =0
and B =39 H. Furthermore, the radical class & has the ADS-property.

Proof. Assume .# satisfies the mentioned conditions and let Z:=%.#. Since A is
regular, # is a radical class and if Aes/, then A/R(A)eS AN since o is
homomorphically closed. If A/%(A)#0, then A/%#(A) has a non-zero homomorphic
image in .#; consequently in .# N &/ which contradicts # n .o/ =0. Hence A=%(A) e A.
To show that Y% =.#, it is sufficient to show that .# satisfies condition (P). Consider
thus the chain J AIA Ae# where J and | are minimal with respect of I/Je.# and
Alle #. As o4 =R, we have I/Je M SSUM=F RS </; hence by our assumption
J A A follows. The converse is clear; so is the fact that # has the ADS-property since
/R (e SRS .

Corollary 34. Let of be homomorphically closed and suppose W is a d,(<f)-class.
Then M W is the semisimple class of a radical class R for which Z = if and only if
A is regular, coinductive, closed under extensions, # "/ =0 and R=UM.

In view of Proposition 2.9, the hypothesis of Proposition 3.3 is satisfied from which
the proof of the above corollary follows. The proof of the next result is immediate from
Theorem 3.2.

Proposition 3.5. Let o/ be hereditary and suppose W is a ds(sf)-class. Then MW
is the semisimple class of a radical class X for which RS U iff A is regular, coinductive,
closed under extensions, L .M and BR=UM.

Let =¥ be a class with the property J Al A Ae % implies J A A. In this case
(as in all our other choices for &), we tacitly assume that 4 #0 in # when considering
d;(9#)-classes.

Theorem 3.6. Let W be a d;(#B)-class. Then M =W is a semisimple class iff M is
regular, coinductive and closed under extensions.

Proof. We only have to show that condition (%) is a consequence of the other

conditions imposed on # (cf. Theorem 3.2). Let 0#I A Ae.# with IeZ%. By the
regularity and coinductiveness of .#, choose J A I minimal w.r.t. 0#1I/J € #. Suppose
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J#0. We distinguish two cases. If J A A4, then the regularity of .# yields a non-zero
homomorphic image of J which is in .#. If J is not an ideal in A, it is not a d(%)-ideal
of 1. Then there are ideals K and C of I with KcJ< C and J/K=C/J e %#\{0}. Since
0#C/J Al/Je# and A is regular, C/J and thus also J, has a non-zero homomorphic
image which is in .#. Thus, in both cases we can find an ideal BA J with 0#J/Be .#.
Since BAJAITe%, BAI holds. From

B I

J/IB~J

and the fact that .# is closed under extensions, I/Be.#. But this contradicts the choice
of J; hence J =0 and I € .# follows which proves the theorem.

For our next choices of &, we have to fix some notation and recall some Q-group
notions, mainly from Higgins [7]. Let Ae % . By AQ we denote the subset of 4 defined
by

AQ:={aw|weQ and aw=a,a,...a,w where a,€ A}.

A is a trivial Q-group if AQ=0. Let & be the class of all trivial Q-groups in #". It is
easy to verify that & is homomorphically closed and hereditary. A radical class Zc %"
is hypersolvable if & < and hypoidempotent of Z<=UZ (or equivantly, if S SR).
Propositions 3.4 and 3.5 give characterizations of the semisimple classes of hypersolv-
able and hypoidempotent radical classes in d,(Z)-classes. For certain d;(Z)-classes,
these results can be extended to arbitrary semisimple classes.

Convention. For the duration of this section, we assume that Q#¢ and any weQ
has weight at least 2.

We say that ¥ is abelian if A* is abelian for all Ae #" where A* is*the underlying
group of A4.

Theorem 3.7. Let W be an abelian d5(Z)-class. Then M =W is a semisimple class iff
M is regular, coinductive and closed under extensions.

Since % is abelian, 2 €% and the result follows from Theorem 3.6.

For subsets C and D of Ae¥#’, the commutor group [C,D] of C and D is the
Q-subgroup of A consisting of all f(c,d) with ceC and deD where f(x,y) is a
commutator word in x and y. From Theorem 4.B in [7], it follows that if C,DA A,
then [C,D] is the ideal of C+D generated by —c—d+c+d and —cowo—do+(c+d)w
for all ¢,ceC, d,de D and weQ. The lower central series

A'DA22A4% > ...
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and the derived series

AP 4V 4o
are defined inductively by
A'=A,A'=[A""', A] for i=2,3,4,...
and
AP =4, AV =44 D 4D fori=1,2,3,...

For each i=1,23,..., AA/A Aand A9 A AV,

A is nilpotent (soluble; sometimes called solvable) if A"=0(A=0 respectively) for
some n=1. Every nilpotent Q-group is soluble. For groups, associative rings, Lie rings,

etc., these notions coincide with the usual. 4% is abelian if A>=0. This means 4" is
abelian; the converse need not be true. If weQ, then w is distributive on A if

ay...a;—(a;+b)a;;,...a,0=aw+a,...a;_ba;,,...a,0

for all b,ae A and i=1,2,...,n
w is associative on A if for all a,,a,,...,a,,_,€A,

aydy...a{Gisy - Qe g O) gy - Aoy @
=ay. G+ (Git2 - Qipn+10)iy 42 A2y O

for all i=0,1,2,...,n—2.

A is a distributive (associative) Q-group if w is distributive (respectively associative) on
A for all weQ and W is distributive (associative) if A is distributive (respectively
associative) for all Ae # . If 4 is a distributive Q-group, then aw=0 if a,=0 for some i
and also,

—aw=a,...a;-(—a)a;+y...4,0
for all i.
Lastly, #" is a class of 0-symmetric Q-groups if each Ae ¥ is 0-symmetric, i.e. for all

weQ and ae A, we have aw=0 if a;=0 for some i. Of course, if #~ is distributive, then
W consists of 0-symmetric Q-groups.

Proposition 3.8. Let A be a O-symmetric Q-group and let k=2. If we(, acA and
a;e A*~! for some i, then aw € A.

Proof. Let x=(0,0,...,0,4,0,...,0) and let y=(a,,...,q;_1,0,a;+,,...,a,). Then
xeA*~! and ye A. Hence
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aw=—xw—yo+(x+y)we[4* !, A]= 4"
The following can easily be verified:

Proposition 3.9. Let A be a 0-symmetric Q-group. Then A*=0 if and only if A* is
abelian and AQ=0.

Lemma 3.10. Let A <W be coinductive and closed under extensions. Then
INAc S UM and A*>=0 implies Ie H. '

Proof. If =0, we are done. Suppose I #0. Then, from the definition of S%.#, there
is an ideal J A such that 0#I/Je.#. Since .# is coinductive, we can choose J
minimal w.r.t. this property. Since 42=0, J A 4 holds. If J##0, choose K A J minimal
w.r.t. 0#J/Ke #. From 1> =0, we have K AT and because .# is closed under extension
and (I/K)/(J/K)=1/Je #, I/Ke #. This contradicts the choice of J; hence J=0 and
Ie . .

Lemma 3.11. Let W be a dy-class. If M =W is regular, coinductive and closed under
extensions, then I \ Ae UM and I*> =0 implies I e A.

Proof. Suppose I#0 and choose J A I minimal w.r.t. 0#1/J e #. Then J A A; if not
there are ideals K,C A I with KcJ<C and 0#£J/K=C/J. Since I1*=0, so is I/J and
from Lemma 3.10, C/J and thus also J/K is in .#. From (I/K)/(J/K)=1/J e # we have
I/K € # which contradicts the choice of J. Thus, J A A. If J#0, choose B A J minimal
w.r.t. 0#J/Be.#. Since J*=0, the same reasoning as above yields BA I. Then I/Be #
which contradicts the choice of J. Hence J=0 and I € # holds.

Let 7:={Ae# |A*=0}. If # is abelian, then Z <7 and, if in addition, #  is also
0-symmetric, & =7 . However, in general the equality need not hold.
Combining Lemma 3.11 and Theorem 3.2, we immediately have:

Theorem 3.12. Let W be a dy(J )-class. Then M =W is a semisimple class if and
only if A is regular, coinductive and closed under extensions.

Let us mention that this result also follows from Theorem 3.6 since 7 = 4.

Let #:={4eW | A"=0 for some n=1}. In order to extend Theorem 3.12 to the more
general di(A")-classes, it appears that we have to impose some restrictions on the
operators in Q. Firstly we need a certain subset A* of Ae# which generalizes the
concept of an annthilator:

A*:={ae Alfor all weQ and bed, —bw+b,...b;_;(@a+b)b;,,...
b,w=0 for all i=1,2,...,n}.

Proposition 3.13. Let A be a distributive Q-group. Then A* A A; in fact for any
Q-subgroup B of A for which B* is normal in A* and BS A*, B A\ A holds.

C
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Proof. Since A is distributive, A* simplifies to
A*:={aeA|for all weQ be A,b;b,...b;,_,ab;,,...bw=0for all i=1,2,...,n}.
Let a,be A*,weQ,x,xe A. For any ie{1,2,...,n} we have
Xy X (@=b)x;pq...x,0=0
Xy X (X4+a—X)X;44...x,0=0
and
XgoeoXio18Xi4 ... X0=0.
Hence A* A A.
Proposition 3.14. Let A be a distributive Q-group. Then A*=0 implies A*~' < A*.
Proof (by induction on k). If k=2, then AQ=0 (Proposition 3.9). Thus A'=A4<A4*.
Suppose A¥*!'=0,k=2. In view of Proposition 3.13, it is sufficient to verify that the
generators of 4*=[A*"! A], namely
—a—b+a+b,acA* L, be A
and
—aw—bo+(a+bw,weQ,ac A", be 4;

are in A*.
Let o eQ,xeA. Then

Xy Xi—y(—a—b+a+b)x;y,...x,0' €A1 =0
by Proposition 3.8 since aeA*"! and beAd implies —a—b+a+be[4*™ !, A]=A4"

Hence —a—b+a+beA* for all aec A* " be A.
Secondly, consider

’

zi=X;...X- {(—aw—bw+(@a+bw)x; s, ... x,0"

k+1

Since ae A**! and be A, we have

—aw—bw+(@a+bwe[A* !, 4]= A~

Thus ze A**! =0 from Proposition 3.8 and
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—aw—bw+(a+b)we A* follows.

Our next four results are the Q-group variants of the corresponding ring-theoretic
versions from Anh, Loi and Wiegandt [5] and Anh and Wiegandt [6] and are proved
by using the same arguments.

Proposition 3.15. Let # =W be closed under extensions and consider the chain
LAL A .ANLIAIg=Awithl,\NAeW .
If /1, €M for all k=0,1,2,... ,.n—1, then A/l e 4.

Corollary 3.16 Let # =W be closed under extensions. If 7 < .#, then M contains all
soluble (and hence all nilpotent) Q-groups from W".

Proposition 3.17 Let A <W be regular and closed wunder extensions. If
L.AL_ A AL Alg=AeW and LjI,,,ef for all k=0,1,2,...,n—1; then
R(AYSR(1,) where R:=UM .

Proposition 3.18. Let W be abelian and distributive. Let M =W be regular, coinduc-
tive, closed under extensions and assume UM is hereditary. Then o € SUM and A
nilpotent implies A€ M.

Proof (by induction on k, the degree of nilpotency of A). If 42=0, the result follows
from Lemma 3.10. Assume the result holds for k—1=2 and let Ae $%.# with A*=0.
Choose I A A minimal w.r.t. 07 A/l e # and suppose I #0. Choose J A I minimal w.r.t.
0#I/Je . Since A* is abelian, A* ~J A A (by Proposition 3.13). Let

A I J
A= I'= dJ= .
A*n) arag " A T A A

Then JAI'ANA, I'/)'=l/Jed# and A/I'=A/le# From Proposition 3.17,
R(A)=R(J') where B:=UM. Since SR=SFUM is hereditary, #(J)=R(A'). Using
Proposition 3.14, we have J*"'c A*"!c 4* hence (J)*~!=0. Thus (J/R(J))* '=0.
Moreover, from J'/R(J)e P%.# and the induction assumption, J'/%(J') e #. Consider
the chain

%(J’)A J A r A

OA%(A’) R(4) %(A’)A@(A’)'

Using Proposition 3.15, we get A'/R(A’)e . Since R(A) A A =AJ(A* nJ), #(A") is of
the form %(A)=L/(A*n~J) where LA A. This means A/L=A'[/#(A)e.#. But
LIA* " ))=R(A)=RA)J =J/(A* nJ) implies LcJ <.
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Our choice of I implies L=J=1I which contradicts 0#1/J. Thus I=0 and Ae.#
which completes the proof.

Combining Proposition 3.18, Theorem 3.2 and Corollary 2.4, we immediately have:

Theorem 3.19. Let # be an abelian and distributive d,(A')-class. Then A=W is a
semisimple class if and only if M is regular, coinductive and closed under extensions.

4. On the termination of the lower radical construction

For all the (infinite) universal classes for which it is known that the lower radical
construction terminates, it is either trivial and terminates at the second step (if the
relation of being an ideal is transitive) or it has the first limit ordinal w as upper bound
(e.g. associative or alternative rings). The usual argument in showing that the lower
radical construction terminates at w, is being able to prove the following for the
generating class £/ <%

If0#CAA A and Ce#,, then Ce ., for some finite g

where C is the ideal in A generated by C.

We generalize this result and show that it in fact gives more than just the termination of
the lower radical construction. Firstly, recall that an ordinal o is a y-number (cf. Monk
[12]) if it is O or of the form w? for some ordinal . y-numbers a has the (characterizing)
property: ¢,6 <a implies e+ 0 <a.

Theorem 4.1. Let W be a universal class of Q-groups such that for a fixed y-number o
(#0) and every chain 0£J A1\ A€ H, there is an ideal BA A with 0£Be{J}, for
some B<ao (B depends on J). Then every semisimple class in W is hereditary and the lower
radical construction terminates at a.

Proof. Let # <% be a semisimple class, let Z:=%.# and consider the chain
RANNINAe M =FR. If A(I)#0, our assumption on ¥~ yields an ideal B A 4 with
0#Be{%(I)}; for some f<a. Since Z(I)eR, we have Be {%(I)},< L {R(I)} =# which
contradicts A€ ¥ 4A.

To prove the second assertion, let #/<S# and let Be Z.#. Let A be any non-zero
homomorphic image of B. Then Ae¥4# and consequently it contains a non-zero
accessible Q-subgroup C with Ce.#,. We complete the proof by showing that A has a
non-zero ideal D which is in M, for some ¢ <a. Firstly, note that if X € #, for some 1,
then {X},=.#,,, for all ordinals v. Let us suppose that

C=CiAC;AANC, i ANC,=A4

and we proceed by induction on n.
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For n=3, the assumption on ¥ yields an ideal D with 0#De{C}, for some f<a.
Then De #, where 0=1+f<a.

Suppose the assertion holds for n— 1. Then there is an ideal EAC,_, with 0#Ee 4,
for some v<a. Consider the chain 0#EA C,_, A C,=A. By our assumption on ¥,
there is a non-zero ideal D A A with De{E}, for some 1<a. Then De.#, where
a=v+1<a which completes the proof. '

Some of the properties considered in the first section can be expressed in terms of the
lower radical determined by subideals. The proofs of the next two results are
straightforward and are omitted. Also, whenever we have a chain JAI A Ae ¥, J will
denote the ideal in A generated by J.

Proposition 4.2. The following are equivalent for any universal class W:

(1) For every chain 0#J A1 A A€W, there is an ideal B A\ A with 0#Be ¥ {J}.
(2) L L{A} is hereditary for all Ae W

(3) Every semisimple class in W is hereditary.

Proposition 4.3. The following are equivalent for any universal class W':

(1) For every chain 0£J NI NAeW,Je L{J}.
(2) L{A} has the ADS-property for all AcW".
(3) Every radical class in W has the ADS-property.

A special case of Theorem 4.1 is

Proposition 44. Let # be a universal class such that fc_)r every chain
0#J AT A€W there is a finite number q (depending on J) such that Je{J},. Then the
lower radical construction in W terminates at .

Theorem 4.5.* Let W be a d,-class. Then, for every chain 0£J AIANAeW,Je{l},
holds (or equivalently, every non-zero homomorphic image of J contains a non-zero ideal
which is a homomorphic image of J). Hence the lower. radical construction terminates at o.

For alternative rings, this result has been proved by Krempa [8]. Since his proof only
uses the isomorphism theorems (his Lemma 3 is provided by our assumption on ¥7),
the proof carries over verbatim.

Quite often, for certain classes .#, the lower radical construction terminates at the
second or third step. We give a few examples.

*E. R. Puczylowski (On general theory of radicals) has proved that the lower radical construction
terminates at w in a d,(%#)-class.
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Proposition 4.6. Let # be a d,()-class or a d,(f)-class with o hereditary. If
M U (or equivalently, if M, N =0), then LM =M,.

Proof. Let Ae.#, and let B be any non-zero homomorphic image of A. Since
Be #, there is a chain 0#J A I A B with Je #, =% /. From Proposition 2.9, JA A
holds and we are done.

Apart from the properties of the d-classes in the general radical theory of associative
rings, another important property is the validity of the Andrunakievi¢ Lemma. In order
to give more examples of classes for which the lower radical construction terminates at
the second or third step, we introduce a condition which generalizes the Andrunakievi¢
Lemma: %" satisfies condition a(&f) if for any chain 0#£J A I A Ae# there are ideals
B,, B, in A, not both zero, with B, < J, B,< I and if B, =0, then B, e <.

Proposition 4.7. Let W  satisfy condition a(f). If M =W is hereditary and homomor-
phically closed with of < M, then L M =M ,.

Proof. Let Be.#; and let A be any non-zero homomorphic image of B. Since
Be # 4, there is a chain 0#J AIA A with Je# ,=.#. By our assumption on %,
there are ideals B,,B, A A with B,<J and B,<!l. If B;#0, then B,e.#, by the
hereditariness of #; if B, =0, then 0#B,e &/ <.# =.#,. Hence Be 4/ ,.

Proposition 4.8. Let # be a d (#)-class which satisfies condition a(%#) (# is as defined
in Section 3). Then L M =.M#y for any hereditary and homomorphically closed subclass
MW

Proof. Let Be.#, and let A be any non-zero homomorphic image of B. Since
Ae M, there is a chain 0£I, A I, AI; A 1,=A with I,e #, for i=1,2,3,4. Consider-
ing I, AI;AI,=A and applying condition a(#), we have two ideals B, and B, of 4,
not both zero with B, =1, and B,<I,. Since .# =.#, is hereditary, so is .#, for all k
and we have B,e.#, and B,e . #;. If B,#0, we are done. Suppose thus B, =0. Then
0#B,e%. Since B,e.#,, there are ideals 0# X A YA B, with Xe.#,. But B,e%;
hence X A B,. Then 0#X e {X},=#, (where X is the ideal in A generated by X) from
Theorem 4.5. Thus A € .#,, which proves the assertion.

5. Examples

5.1. Any universal class #  of groups is a d,-class. Indeed, if JAIA A and J 4& A,
then there is an ae A such that a+J—a<¢J. Let C:=(a+J—a)+J. Then CAI and
6:J—C/J defined by é(x)=(a+x—a)+J is the desired homomorphism. It is not known
whether Sands’ Theorem is valid for groups.

5.2. It is well-known that any universal class of associative or alternative rings is a
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d,(Z)-class (=d (T )-class), and thus a d,(#)-class—cf. Anderson, Divinsky and
Sulinski [1], Terlikowska-Oslowska [18, 19] and Krempa [8].

5.3. Let W be any universal class of I'-rings. Then % is a d,(%)-class. This can
easily be verified as for the associative ring case.

54. In this example we consider a variant on the cubic rings introduced by
Nobusawa [13]. An abelian group M is a left commutative and associative cubic ring if
it is endowed with a ternary operation such that for all a,b,c,d,ee M the following
holds: .

(1) (a+b)ed=acd +bcd

(2) a(b+c)d=abd+acd

(3) ab(c+d)=abc+abd

(4) ab(cde)=(abc)de=a(bcd)e (associativity)
(5) abc=bac (left commutativity).

Then A AM if and only if A is a subgroup of M, MMA=A and MAMCcA. Any
universal class of left commutative associative cubic rings is a d,(%)-class (as can easily
be verified as for the associative ring case).

5.5. A non-associative ring A is an autodistributive ring if a(bc)=(ab)(ac) and
(ab)c=(ac)(bc) for all a,b,ce A. Let # be a universal class of autodistributive rings.
Then # is a d (#)-class. Indeed, f JAIA Ae W and J /\ A, then here is an ae A such
that JagﬁJ or aJ ¢J. Suppose Ja<tJ (the other case is treated similarly). Let C=Ja+J.
Then C A and 8:J-C/J defined by é(x)=xa+J is the required homomorphism with
C/J e B\{0}. W satisfies condition a(%)—this follows from Corollary 2.7 and Proposi-
tion 2.8 in Anderson and Gardner [2].

5.6. Let ¥ be the variety of all distributive near-rings (or equivalently, all
non-abelian rings). Any such near-ring N has the property that N2 is abelian, ie.
ab+cd=cd+ab for all a,b,c,de N (cf. Pilz [14]). Although this variety satisfies J*><J
for all JAIAAe¥ where J*={abc|a,b,ceJ} (note that the powers defined for
subsets of near-rings is not in harmony with the Q-group theoretic notion—cf. Section
3), it is not known what results (if any) from Section 2 and Section 3 are valid in 7.
Motivated by the next result, we can improve matters if we have some substitute for the
lack of abelianness.

Proposition 5.6.1. Let Z< ¥ be a radical class. Then ¥R is hereditary if and only if
both a#(l) and Z(1)a are normal subgroups of A for allac A and I AN Ae ¥ A&.

Proof. Suppose ¥ is hereditary and let I A Ae % and ae A. Then #(I)=0 and

both a#(A) and £(I)a normal subgroups of A follows trivially. Conversely, let
INAeSFR. If Z(1) A, then 2(I) is not normal in A or %(I) is normal in A but there
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is an ae A such that aZ(I)E%(I) or A1 )a#.%(]) (without loss of generality, we may
only assume a®(I)¢ #(I)). Let J=2(I) and suppose it is not normal in A. Then there
is an ae A such that a+J—ad J. Then C, defined by C=(a+J—a)+J, is normal in
and since A2 is abelian, it is an ideal in I. Define a mapping ¢:J—-C/J by
¢(x)=(a+x—a)+J. Clearly ¢ is surjective, preserves addition and ¢(x)¢(y)=0. Mor-
eover, since x%#(I) is normal in A, also ¢(xy)=(a+xy—a)+J=0. Hence C/J is a non-
zero homomorphic image of J=4%(I) e %. But this contradicts C/J A I/J e ¥A. Suppose
thus that J is normal in 4 but aJ ¢J for some ae A. Let D be defined by D=aJ+J.
Then DAl and the mapping ¢:J-D/J defined by ¢(x)=ax+J is a surjective
homomorphism. As above, D/Je%# and 0# D/J A 1/J e ¥R, which is impossible. Hence
RDN=JN\AcSR and | € ¥ follows.

Corollary 5.6.2. Let 2=V be a radical class. Then SR is hereditary if and only if
aR(l)=0=R(I)a for all IN Ae ¥R and a€ A.

Let us now fix some notation. If K is a normal subgroup of Ae¥", it will be donated
by K A A and the normal subgroup of 4 generated by ac A will be denoted by [a].
Proposition 5.6.3. Let A be a distributive near-ring. Then the following are equivalent:

() aK A A forall K A A,aeA.

(B) For all x,y,z€ A, there exists an integer n (depending on x, y and z) such that
z+xy—z=n(xy).

(y) KaA Ajforall K A AacA.

Proof. If () is assumed, let x,y,ze 4. Then x[y] A A and z+xy—z=xc for some
ce[y]. Since c is of the form

c= Z (di+ny—dy),
i=1

with d;e A and each n; some integer, we have
z+xy—z=Y, n(xy) since 4> abelian
i=1

=n(xy) where n=13y n,.

i=1
Hence (f) holds. The other equivalences can also easily be verified.

Classes of near-rings which satisfy condition («) have recently been considered by
Anderson, Kaarli and Wiegandt [3] in connection with left strong radicals of near-rings.
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In the sequel, let # be a universal class of distributive near-rings which satisfies
condition (). Easy examples show that #" & ¥ and there are distributive near-rings that
satisfy condition («), but need not be a ring (as the zero multiplication on any non-
abelian group can testify). Using the same type of arguments as in the proof of
Proposition 5.6.1, it can be verified that % is a d,(Z)-class where 2:={4 e"/VIab=0
for all a,be A}.

Since the underlying groups in #” need not be abelian, the nearest we can get to a
version of Sands’ Theorem in # is: A/ <¥ is a semisimple class iff .# is regular,
coinductive, closed under extensions and if I A Ae.# and I?=0, then Ie.#. We do not
know if the last condition imposed on .# is really necessary.
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