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1. Introduction and preliminaries

Kurosh-Amitsur radical theories have been developed for various algebraic structures.
Whenever the notion of a normal substructure is not transitive, this causes quite some
problems in obtaining satisfactory general results. Some of the more important
questions concerning the general theory of radicals are whether semisimple classes are
hereditary, do radical classes satisfy the ADS-property, can semisimple classes be
characterized by closure conditions (e.g., is semisimple=coradical), is Sands' Theorem
valid and lastly, does the lower radical construction terminate. For associative and
alternative rings, all these questions have positive answers. The method of proof is the
same in both cases. In [15], Puczylowski used the results of Terlikowska-Oslowska [18,
19] and hinted at a condition which is crucial in obtaining the positive answers to the
above questions.

Our aim here is to make this more precise* and we provide sufficient conditions on a
universal class of fl-groups to ensure positive answers to the above questions. We also
give necessary conditions on a universal class for the semisimple classes to be hereditary
and radical classes to have the ADS-property.

Although our results are presented in a universal class of multi-operator groups, it
seems plausible that most of these can be extended to other types of universal classes or
categories.

A class of Q-groups is a universal class if it is closed under homomorphic images and
ideals. Ideals will be denoted by A and accessible fl-subgroups by A A (D is an
accessible Q-subgroup of A if there exists a finite chain D =
^\AD2A'ADn-1ADn = A). For definitions and characterizations of radical and
semisimple classes, Van Leeuwen and Wiegandt [20, 21] can be consulted. We, however,
recall the following: A radical class Si has the ADS-property if @(I) A A. for all I A A
and is ideal-hereditary if ^( / ) ~3i(A) n / for all / A A. A class Jl is a semisimple class iff
Jt is regular (0^=1 AAeJi implies O^I/KeJ? for some K A ' ) , coinductive (if
/ | 2 ' - 2 / , 2 ' - is a descending chain, where laAA with Ajl^Ji for all a, then

•While completing this manuscript, it came to my attention that E. R. Puczylowski (On general radical
theory—manuscript) has obtained the same results, and in fact stronger conclusions, for the present
<f3(#)-classes considered here in Section 3.
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378 S. VELDSMAN

A/r\IxeJ/), closed under extensions (I A A with both / and A/1 in Ji implies AeJi
and satisfies

(P) If J A / A A and J and / are minimal w.r.t. I/J e Ji and A/1 e Ji, then

For a class Ji, two operators on Ji namely W and Sf are defined by

<%Jt: = {A\A has no non-zero homomorphic image in Ji} and

: = {A\A has no non-zero ideals which are in Ji}

If Jt is a regular (or equivalently, if ^ £ yfyJt), then ^^# is a radical class. JI is a
semisimple class iff ^ = yfyJi. JI is a coradical class if it is hereditary (i.e. I AAeJi
implies / e ̂ ) , coinductive and closed under extensions. For associative rings (cf. Sands
[16]) and alternative rings (cf. Anderson and Wiegandt [4]), the following results is
known as Sands' Theorem: Ji is a semisimple class iff Ji is regular, coinductive and
closed under extensions.

We also need the lower radical construction (due to Kurosh [9] and streamlined by
Sulinski, Anderson and Divinsky [17]) in a universal class "W. Let JtZiV and define
classes Jix by transfmite induction by: Let Jt\ be the homomorphic closure of Ji. If
Jtp has been defined for all ordinals /?,/?<<*, let Jtx: = {AeH/'\every non-zero homo-
morphic image of A contains a non-zero ideal / with JeJiy for some y<<x}. Then
££Jl: = {JxJix is a radical class; in fact the smallest radical class which contains Jt and
it is called the lower radical class determined by Ji. It is well-known that if a < /?, then
Jtx£Jtp; each Jix is homomorphically closed and if Ji is hereditary, so is each class
Jia and consequently also =£? Ji. Furthermore, if 0 / A e S£Jt, then there is an accessible
Q-subgroup CAA>1 with 0^=CeJi1. Quite often, we will be considering the lower
radical construction determined by a single fi-group A; the steps in the construction of
J§?{/1} are then denoted by {A}u {A}2,..., {A},,...

Finally, as is usual when dealing with matters radical theoretical, any chosen subclass
of a universal class will be assumed by be abstract, i.e. containing the one element Ci-
group and closed under isomorphic copies.

2. General theory

Let IV be a universal class of Q-groups. Let srf'Z'W be a fixed subclass with
s/\{0}^</). Motivated by Terlikowska-Oslowska [18], Puczylowski [15] and Krempa
[8] we define:

Definitions 2.1. Let J A / e iT. J is a d^yideal of /, i" e {0,1,2,3,4} if there does not
exist a surjective homomorphism 5:B-*C/J^0 with:

for i = 0: BAA^C = CiAC2A-AC,-,AC, = / and
for j=l: B = /,C = C1AC2A-ACI1.,AC,=/ and C^
for i = 2: B = J,C/M and C/Jetf.
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KUROSH-AMITSUR RADICAL THEORY 379

for i = 3: B = J,CAl,C/Je-& and ker <5A/.

for i = 4: As for i = 3 and if K A / with K c J , then n'^SiK)) A / where n:C-+C/J is the
canonical homomorphism.

T^ is a dj(sf)-class if J AI AAeW and J a d,(j/)-ideal of / implies J A A.

Clearly, for /= 1,2,3,4, every dt;_!(.s/)-ideal is a dj(j2/)-ideal; hence every d,(.s/)-class is
a d,_! (,s/)-class. If &&£&/, then every d,(<G/)-ideal is a d,(^)-ideal; hence every d,
is a d,(.e/)-class. If si — "W, d,(^)-ideals (d,(j2/)-classes) will just be called
(d.-classes).

In the universal class of all rings, let A be a simple ring without an identity and let
D(A) be the Dorroh extension of A. Then D(A) is a ^-ideal of A@D(A) but not a
do-ideal. In [10], Leavitt and Armendariz gave an example of a (non-associative) ring K
with order 8 and with a chain O ^ J A ' A ^ where / is the only proper ideal of K and
J is the only proper ideal of /. / and K have no identity and J is isomorphic to the two
element field. If D(K) is the Dorroh extension of K, then D(K) is a d2-ideal of K@D(K)
but not a drideal. In the same paper, Leavitt and Armendariz also gave an example of
a (non-associative) ring R with order 8 and with a chain 0 # J A / A ^ where / is the
only proper ideal of R, J is the only proper ideal of / and R2 = R,I2 = I and J2 = 0.
Then / is a d3-ideal of R, but not a d2-idea\.

Let I AAeir. If IeWs/ then / is a d2(j^)-ideal of A and if A/IeSfs/, then / is a
di{ji/)-idea\ of A. If J?/ is hereditary and Ie<%s/, then / is a d1(j3/)-ideal of /I and if, in
addition, also tfts/ is hereditary, then / is a do(,s/)-ideal of A. Moreover, the next two
results can easily be verified:

Proposition 2.2. Let Jf^'W be hereditary and closed under extensions. If I
and I is minimal with respect to O^A/IeJ/, then I is a d3-ideal of A.

Proposition 2.3. Let 01 ̂ "W be a radical class.

(1) dt(A) is a d2{s/)-ideal of A for all AeiV.

(2) / / 9>m is hereditary, then @(A) is a d1 (stf)-ideal of A for all AeiT.

(3) lf@ is ideal-hereditary, then M(A) is a do{s/)-ideal of A for all AeiT.

Corollary 2.4. Let "W be a d2{s/)-class. Then every radical class in W satisfies the
ADS-property; consequently the semisimple classes in ~W are hereditary.

dr and rfo-ideals arise as the radicals for certain radical classes, for we have:

Proposition 2.5. Let I

(1) / / / is a dY-ideal of A, then there exists a radical class &# with 01{A) = 1.

(2) / / / is a do-ideal of A, then there exists a hereditary radical class 01 with 0$(A) = I.

Proof. (1) Let 9l:=<£{i\. Then Ie@, hence Iz@(A). If Ijt®(A), then
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implies the existence of a non-zero accessible fi-subgroup C/I of 8$(A)/I which is a
homomorphic image of /. But this contradicts the fact that / is a dl -ideal of A.

(2) In this case, let 0t = ££{K\K is an accessible O-subgroup of / } . Since the class
which generates ^ is hereditary, so is 3% and we can proceed as in (1).

Let us remark that if if is such that all semisimple classes in if are hereditary, then
the conditions in both (1) and (2) of Proposition 2.5 are necessary and sufficient. In a
sense, the next two results motivate our approach in considering the classes presently
under discussion.

Proposition 2.6. Let if be a universal class in which every semisimple class is
hereditary. Then if is a do-class.

Proof. If if is not a do-class, there is a chain J A / A A e if with J a <io-ideal in /
but not an ideal in A. As in the proof of Proposition 2.5(2), if &: = £?{K\K is an
accessible Q-subgroup of J}, it follows that & is a hereditary radical class with $(1) = J.
By our assumption on if, 31 is in fact ideal-hereditary. But then, as is well-known, J eSt
where J is the ideal in A generated by J. Hence J £ ^ ( / ) = J which contradicts the fact
that J is not an ideal in A.

Proposition 2.7. Let if be a universal class in which every radical class has the
ADS-property. Then if is a d^-class.

Proof. Consider the chain J &I AAeif where J is a ^-ideal of /. From
Proposition 2.5(1) we know that there is a radical class 0t with J = ^ ( / ) and J&A
follows from our assumption on if.

It is well-known (trivially) that every radical class which has the ADS-property has a
hereditary semisimple class. Moreover, in all the universal classes where it is known that
the semisimple classes are hereditary, it is precisely because all the radical classes have
the ADS-property. Although the ADS-property for a radical class is not necessary for
the corresponding semisimple class to be hereditary (cf. [22]), no universal class is
known where all the semisimple classes are hereditary but not every radical class has
the ADS-property. The next result, which is also a partial converse to the last
proposition, provides some information.

Proposition 2.8. Let if be a universal class. Then every radical class in if has the
ADS-property if and only if every semisimple class in if is hereditary and if is a d^class.

The proof is obvious in view of Propositions 2.7 and 2.3(2). We conclude this section
with two properties that are quite useful in the study of general radical theory; the
proofs are straightforward.
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KUROSH-AMITSUR RADICAL THEORY 381

Proposition 2.9. Let J A / AAeW. If W is a d^)-class and I/J e {ftf, then J A A.
If W is a dl(s^)-class and si is hereditary or ifW is a d2{s/)-class, then Js^lsi implies
J&A.

3. Characterizations of semisimple classes

Theorem 3.1. Let W be a d3-class. Then Jtsif is a semisimple class if and only if it
is a coradical class.

Proof. Let Jt be a coradical class. In order to show that Jt is a semisimple class, it
is sufficient to show that Jt satisfies condition (P). Consider the chain J A I A A e iV
where J and / are minimal with respect to I/J e Jt and A/1 e Jl respectively. From
Proposition 2.2 it follows that J is a <i3-ideal of /; hence J A A by the assumption on
"W. The converse implication is clear from Corollary 2.4 and the well-known properties
of semisimple classes.

Concerning the validity of Sands'" Theorem, we firstly have:

Theorem 3.2. Let W be a d3{s4)-class. Then Jl^iV is a semisimple class if and only
if Ji is regular, coinductive, closed under extensions and satisfies:

and Iejrf implies IeJt. (*)

Proof. Suppose M satisfies the mentioned conditions. Since Jt is regular,
ycUJt. We show that Jt^^^Jt from which the result follows. Let
Then there is an ideal / A A such that 0 ̂  A/1 e Jt. Since Jt is coinductive, we can
choose / minimal with respect to this property. If 7 = 0, we are done. Suppose thus
0 7̂  / A A e SfQlJl. Once again, we can find an ideal J A / with 0 ̂  IIJ e Jt where J is
minimal w.r.t. this property. We now show that J is a d3(j2/)-ideal of /. If not, there
exists a surjective homomorphism d:J-*C/J where C A / , C/Jes/\{0} and ker8A1-
Then J/ker 5 = C/J A I/J eJt and from (*) we infer that C/J and consequently J/Kerd
is in Jt. Since J/ker <5 A //ker 8 and

'/ker.5 /
= J 'J/ker 8

the extension closedness of Jt yields //ker 8 e Jt which contradicts the choice of J. Thus
J is a d3(j^)-ideal of / and then also an ideal in A. Once again, since Jt is closed under
extensions and from
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382 S. VELDSMAN

we conclude that A/J e M which contradicts the choice of /. The converse implication is
clear.

For the validity of Sands' Theorem, one would like to know when (*) is a
consequence of the other conditions imposed on Ji. The remainder of this section is
devoted to this problem. We start with two special cases.

Proposition 3.3. Suppose si is homomorphically closed and for all J AI AAeW with
I/J e i^si, J A A holds. Then Jl<=,W is the semisimple class of a radical class 8# for
which si ^8$ if and only if Ji is regular, coinductive, closed under extensions, Ji n si = 0
and 8& = fyJl. Furthermore, the radical class 8$ has the ADS-property.

Proof. Assume Jl satisfies the mentioned conditions and let ^:=^IJI. Since Jl is
regular, M is a radical class and if Aesi, then A/8$(A) e ̂ ^ n si since si is
homomorphically closed. If A/$(A)^0, then A/8i(A) has a non-zero homomorphic
image in Jl; consequently in Ji n si which contradicts Ji n si = 0. Hence A = 8$(A) e Si.
To show that y8fr = Jl, it is sufficient to show that Ji satisfies condition (P). Consider
thus the chain J A / A A e W where J and / are minimal with respect of IIJ e Jt and
A/IeJl. As s/c@t we have I/J e Ji c SPIlJt = ^ ^ s ystf; hence by our assumption

follows. The converse is clear; so is the fact that & has the ADS-property since

Corollary 3.4. Let stf be homomorphically closed and suppose W is a di(s4)-class.
Then Ji c,W is the semisimple class of a radical class 88. for which si £ ^ if and only if
Ji is regular, coinductive, closed under extensions, Ji nsf = 0 and M =

In view of Proposition 2.9, the hypothesis of Proposition 3.3 is satisfied from which
the proof of the above corollary follows. The proof of the next result is immediate from
Theorem 3.2.

Proposition 3.5. Let si be hereditary and suppose iV is a d3(s/)-class. Then Jl^W
is the semisimple class of a radical class $ for which 0t<=,°Usi iff Jl is regular, coinductive,
closed under extensions, stf^Jl and 8% = °UJl.

Let 38<=,iV be a class with the property J A / AAe8§ implies J AA. In this case
(as in all our other choices for si), we tacitly assume that 88^0 in W when considering

Theorem 3.6. Let W be a di{8S)-class. Then Jl^if is a semisimple class iff Ji is
regular, coinductive and closed under extensions.

Proof. We only have to show that condition (*) is a consequence of the other
conditions imposed on Jl (cf. Theorem 3.2). Let 0 / / A A e J t with ls8S. By the
regularity and coinductiveness of Ji, choose J At minimal w.r.t. O^I/JeJl. Suppose
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KUROSH-AMITSUR RADICAL THEORY 383

. We distinguish two cases. If J AA, then the regularity of Ji yields a non-zero
homomorphic image of J which is in Jt. If J is not an ideal in A, it is not a d3(^)-ideal
of /. Then there are ideals K and C of / with / C s J s C and J/K^C/Je^\{0}. Since
0 ̂  C/J AI/J e Jl and ^ is regular, C/J and thus also J, has a non-zero homomorphic
image which is in Jt. Thus, in both cases we can find an ideal B AJ with O^J/BeJl.
Since B A J A / e ^ , B A ' holds. From

and the fact that Jt is closed under extensions, I/BeJ/. But this contradicts the choice
of J; hence J = 0 and leJi follows which proves the theorem.

For our next choices of srf, we have to fix some notation and recall some ft-group
notions, mainly from Higgins [7]. Let A e W. By AQ. we denote the subset of A defined
by

A£l: = {cuo\(oe£l and ao) = ala2...anco where ateA}.

A is a trivial il-group if AQ = 0. Let 2£ be the class of all trivial fi-groups in "W. It is
easy to verify that 2£ is homomorphically closed and hereditary. A radical class M^if
is hypersolvable if 2£<^0l and hypoidempotent of SH^WSt (or equivantly, if 2£<^yg/l).
Propositions 3.4 and 3.5 give characterizations of the semisimple classes of hypersolv-
able and hypoidempotent radical classes in d3(^")-classes. For certain d3(^)-classes,
these results can be extended to arbitrary semisimple classes.

Convention. For the duration of this section, we assume that Q # 0 and any coeQ
has weight at least 2.

We say that •W is abelian if A+ is abelian for all AeW where A* is"the underlying
group of A.

Theorem 3.7. Let if be an abelian d3(2f)-class. Then Jl^if is a semisimple class iff
Jt is regular, coinductive and closed under extensions.

Since if is abelian, 2£<=,@) and the result follows from Theorem 3.6.

For subsets C and D of AfW, the commutor group [C,D] of C and D is the
Q-subgroup of A consisting of all f(c,d) with ceC and deD where fix^y) is a
commutator word in x and y. From Theorem 4.B in [7], it follows that if C, D A A,
then [C,£>] is the ideal of C + D generated by —c — d + c + d and — ca> — da> + (£+d)a>
for all c,£eC, d,d_eD and caefl. The lower central series
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384 S. VELDSMAN

and the derived series

are defined inductively by

Al = A,A' = lAl-l,A] for i = 2,3,4,...

and

X(O) = y4,i4<0 = [^< '"1U( '~1 ) ] for i= 1,2,3,...

For each i= 1,2,3,..., /4' A A and /4(0 A ^ " " 1 ' .
X is nilpotent (soluble; sometimes called solvable) if An = 0(Ain) = 0 respectively) for

some n ̂  1. Every nilpotent Q-group is soluble. For groups, associative rings, Lie rings,
etc., these notions coincide with the usual. Ae'W is abelian if A2 = 0. This means A+ is
abelian; the converse need not be true. If a> e Q, then co is distributive on A if

at... at_! (a, + b)ai+ 2 . . . anco = aco + at... a,-_ tb at+1... anw

for all b,aeA and i = 1,2,...,n.
a> is associative on A if for all a 1 , a 2 , . . . , a 2 n - i e ' 4 '

fl!a2... afai+i...ai+n(o)ai+n+1...a2n_^co

= al...ai+l(ai+2.--ai+n+la))ai+n+2...a2n-1co

for all i = 0, l , 2 , . . . , « - 2 .
A is a distributive (associative) Q-group if cu is distributive (respectively associative) on

A for all co en and if is distributive (associative) if /I is distributive (respectively
associative) for all Aeif. If A is a distributive Q-group, then ao> = 0 if a, = 0 for some i
and also,

for all i.
Lastly, W is a class of 0-symmetric il-groups if each /I e # " is 0-symmetric, i.e. for all

coeQ and a e / 1 , we have aa> = 0 if a, = 0 for some i. Of course, if W is distributive, then
T̂ " consists of 0-symmetric fi-groups.

Proposition 3.8. Let A be a 0-symmetric il-group and let k^2. If coeCl, aeA and
aieAk~l for some i, then a(oeAk.

Proof. Let x = (0,0, . . . ,0,a, ,0, . . . ,0) and let y=(a1 , . . . ,a I_1 ,O,a i + 1 , . . . ,aB) . Then
xeAk~l and ye A. Hence
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aw — — xco—y

The following can easily be verified:

Proposition 3.9. Let A be a O-symmetric Q-group. Then A2=0 if and only if A+ is
abelian and AQ = 0.

Lemma 3.10. Let Jf^if be coinductive and closed under extensions. Then
IA A e {/"KM and A2 = 0 implies leJt.

Proof. If 7 = 0, we are done. Suppose 7#0. Then, from the definition of yoilJt, there
is an ideal J A 7 such that 0/7/JeJ(. Since Ji is coinductive, we can choose J
minimal w.r.t. this property. Since A2 = 0, J A A holds. If J # 0 , choose KAJ minimal
w.r.t. O^J/KeJi. From /2 = 0, we have K A J and because Ji is closed under extension
and (I/K)/{J/K)^I/JeJi, I/KeJt. This contradicts the choice of J; hence J = 0 and
IeJi.

Lemma 3.11. Let if be a d3-class. If Ji^if is regular, coinductive and closed under
extensions, then IA A e £?<%Jt and 72 = 0 implies IeJi.

Proof. Suppose 7#0 and choose J A ' minimal w.r.t. 0#7/JeJ i . Then J &A; if not
there are ideals K,CAI with K g J g C and O^J/K^C/J. Since 72 = 0, so is I/J and
from Lemma 3.10, C/J and thus also J/K is in Ji. From {I/K)/(J/K)^I/JeJ! we have
I/K e Jt which contradicts the choice of J. Thus, JAA. If J # 0, choose B £\J minimal
w.r.t. O^J/BeJf. Since J2 = 0, the same reasoning as above yields BA7. Then
which contradicts the choice of J. Hence J = 0 and 7 e Jl holds.

Let &~: = {Aeir \A2 = 0}. If TT is abelian, then f c j and, if in addition, W is also
0-symmetric, 2£ = $~. However, in general the equality need not hold.

Combining Lemma 3.11 and Theorem 3.2, we immediately have:

Theorem 3.12. Let if be a d3(&~)-class. Then Jt^if is a semisimple class if and
only if J{ is regular, coinductive and closed under extensions.

Let us mention that this result also follows from Theorem 3.6 since &'^38.
Let jV: = {Ae"0r\A" = O for some n ^ l } . In order to extend Theorem 3.12 to the more

general d3 (./^-classes, it appears that we have to impose some restrictions on the
operators in fi. Firstly we need a certain subset A* of A e if which generalizes the
concept of an annihilator:

all we£l and be A, —

bnw = 0foT all i= 1,2,...,«}.

Proposition 3.13. Let A be a distributive Q-group. Then A* A A; in fact for any
Cl-subgroup B of A for which B+ is normal in A* and B^A*,BAA holds.
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Proof. Since A is distributive, A* simplifies to

A*: = {aeA |for all a>eQ beA,b1b2..-bi-labi+1...bnco=0 for all i=\,2,...,n}.

Let a,b&A*,coeQ,x,xeA. For any ie{1,2,...,«} we have

and

Hence /I* A A.

Proposition 3.14. Let A be a distributive Sl-group. Then Ak = 0 implies Ak~1^A*.

Proof (by induction on k). If fc = 2, then AQ = 0 (Proposition 3.9). Thus Al = A^A*.
Suppose Ak+i=0,k^2. In view of Proposition 3.13, it is sufficient to verify that the
generators of Ak = [_Ak~1,A'], namely

-a-b + a + b,aeAk~l,beA

and

— aco — bco + (a + b)co, a> eii, a e Ak~l, b e A;

are in A*.

Let co'eQxeA. Then

by Proposition 3.8 since aeAk~l and be A implies — a — b + a + be[Ak~l,A~] =
Hence — a — b + a + beA* for all aeAk~l,beA.

Secondly, consider

Since qeAk + 1 and be A, we have

- aw - bco + (a + b)co e [Ak~ \ A~] = Ak.

Thus zeAk + i=0 from Proposition 3.8 and
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—qco — ba> + (a + b)coeA* follows.

Our next four results are the fi-group variants of the corresponding ring-theoretic
versions from Ann, Loi and Wiegandt [5] and Anh and Wiegandt [6] and are proved
by using the same arguments.

Proposition 3.15. Let Jl^if be closed under extensions and consider the chain

allk = 0,l,2,...,n-l,thenA/IneJ(.

Corollary 3.16 Let Jt £ "W be closed under extensions. If 3~ £ Jt, then Jt contains all
soluble (and hence all nilpotent) Q-groups from "W.

Proposition 3.17 Let Jt'S.'W be regular and closed under extensions. If
InAIn-iA---AIiAI0 = Aeir and IJIk+leJ( for all k = 0,l,2,...,w-l; then

where @: =

Proposition 3.18. Let "W be abelian and distributive. Let Jt^ifbe regular, coinduc-
tive, closed under extensions and assume y^UJt is hereditary. Then st&ymjf and A
nilpotent implies AeJt.

Proof (by induction on k, the degree of nilpotency of A). If A2 = 0, the result follows
from Lemma 3.10. Assume the result holds for k-1^2 and let As^^UM with /l* = 0.
Choose IAA minimal w.r.t. OjLA/IeJt and suppose / # 0 . Choose J AI minimal w.r.t.
Q^I/JeJf. Since A+ is abelian, A*nJ AA (by Proposition 3.13). Let

A l and J' = -
A*nJ A*nJ A*nJA*nJ

Then J'AI'AA', l'lJ'^l/JeJi and A'/I'^A/IeJf From Proposition 3.17,
M(A')<=;®(J') where ®: = <%Jl. Since ygt^yoilJt is hereditary, 0l(J') = 9l(A\ Using
Proposition 3.14, we have J*"1 <=Ak~l^A*; hence (J'f-l=0. Thus (J'/Wtf-^O.
Moreover, from J'/@(J')ey<%J! and the induction assumption, J'l®(J')eJ(. Consider
the chain

•/' / ' A'

') 0t(A) ®(A')

Using Proposition 3.15, we get A'/3i(A') e Jt. Since &(A') AA' = A/(A* n J), 0l(A') is of
the form &(A') = L/(A* nJ) where LA A. This means A/L^A'/@(A')eJ?. But

nJ) implies L^
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Our choice of / implies L = J = I which contradicts 0#/ /J . Thus 7 = 0 and AeJf
which completes the proof.

Combining Proposition 3.18, Theorem 3.2 and Corollary 2.4, we immediately have:

Theorem 3.19. Let if be an abelian and distributive d3(^V)-class. Then M<=,if is a
semisimple class if and only if Jt is regular, coinductive and closed under extensions.

4. On the termination of the lower radical construction

For all the (infinite) universal classes for which it is known that the lower radical
construction terminates, it is either trivial and terminates at the second step (if the
relation of being an ideal is transitive) or it has the first limit ordinal u> as upper bound
(e.g. associative or alternative rings). The usual argument in showing that the lower
radical construction terminates at w, is being able to prove the following for the
generating class Jt s if:

If O^C A A 4 and CeJti, then CeJtq for some finite q

where C is the ideal in A generated by C.

We generalize this result and show that it in fact gives more than just the termination of
the lower radical construction. Firstly, recall that an ordinal a is a y-number (cf. Monk
[12]) if it is 0 or of the form a/ for some ordinal p. y-numbers a has the (characterizing)
property: e, <5<<x implies £ + <5<<x.

Theorem 4.1. Let if be a universal class of Q-groups such that for a fixed y-number a.
(^0) and every chain O^J /\I AAeJt, there is an ideal B&A with Q^Be{J}p for
some p<a. (/? depends on J). Then every semisimple class in if is hereditary and the lower
radical construction terminates at a..

Proof. Let Jt^if be a semisimple class, let 3i: = ̂ lJt and consider the chain
A / &AeM = y0l. If ^ ( / )^0 , our assumption on if yields an ideal BAA with

@(I)}p for some )?<a. Since 0l(l)e@, we have Be{@(I)}^&{M(l)}^® which
contradicts A e if Si.

To prove the second assertion, let Jt^if and let BeZ£Jl. Let A be any non-zero
homomorphic image of B. Then AsS£Jt and consequently it contains a non-zero
accessible Q-subgroup C with CeJiy. We complete the proof by showing that A has a
non-zero ideal D which is in Ma for some a < a. Firstly, note that if X e Jl^ for some T,
then {X}V^J?Z+V for all ordinals v. Let us suppose that

and we proceed by induction on n.
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For « = 3, the assumption on "W yields an ideal D with 0#De{C}^ for some /3<a.
Then DeJta where <r = l+/?<a.

Suppose the assertion holds for n— 1. Then there is an ideal E A C»-i with 0 ^ £ e ^ v

for some v<a. Consider the chain 0 # £ A C n - i A Cn = A. By our assumption on 1F,
there is a non-zero ideal DAA with De{£}t for some T<OC. Then DeJ(o where
<j = v +1 < a which completes the proof.

Some of the properties considered in the first section can be expressed in terms of the
lower radical determined by subideals. The proofs of the next two results are
straightforward and are omitted. Also, whenever we have a chain J A ^ A ^ e " W , J will
denote the ideal in A generated by J.

Proposition 4.2. The following are equivalent for any universal class iV:

(1) For every chain 0 # J A / A A e "W, there is an ideal BAA with 0¥=Be£C{J}.

(2) SP<e{A) is hereditary for all A e if.

(3) Every semisimple class in "W is hereditary.

Proposition 4.3. The following are equivalent for any universal class "W:

(1) For every chain 0 # J AI AAeiT, Je&{J}.

(2) £C{A} has the ADS-property for all Aeif.

(3) Every radical class in "W has the ADS-property.

A special case of Theorem 4.1 is

Proposition 4.4. Let if be a universal class such that for every chain
0¥=J AI AAeW there is a finite number q (depending on J) such that Je{J}q. Then the
lower radical construction in "W terminates at w.

Theorem 4.5.* Let if be a d^-class. Then, for every chain 0 # J AI AAeif,J e{J}2

holds (or equivalently, every non-zero homomorphic image of J contains a non-zero ideal
which is a homomorphic image of J). Hence the lower, radical construction terminates at co.

For alternative rings, this result has been proved by Krempa [8]. Since his proof only
uses the isomorphism theorems (his Lemma 3 is provided by our assumption on iT),
the proof carries over verbatim.

Quite often, for certain classes Jt, the lower radical construction terminates at the
second or third step. We give a few examples.

*E. R. Puczylowski (On general theory of radicals) has proved that the lower radical construction
terminates at to in a
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Proposition 4.6. Let if be a d2(s/)-class or a dt(s/)-class with s/ hereditary. If
(or equivalently, if Ji^ n s4 = % then

Proof. Let AtJ(z and let B be any non-zero homomorphic image of A. Since
BeJ?3, there is a chain O^J AIAB with J e Jt ^ty st. From Proposition 2.9, JAA
holds and we are done.

Apart from the properties of the ^.-classes in the general radical theory of associative
rings, another important property is the validity of the Andrunakievic Lemma. In order
to give more examples of classes for which the lower radical construction terminates at
the second or third step, we introduce a condition which generalizes the Andrunakievic
Lemma: IV satisfies condition a($4) if for any chain 0¥=J AI AAeiV there are ideals
BUB2 in A, not both zero, with B^J,B2<^1 and if Bj=0, then B2esf.

Proposition 4.7. Let IV satisfy condition a(s/). If Ji^iV is hereditary and homomor-
phically closed with s&' 'zJt, then S£M = M2.

Proof. Let B&Jtz and let A be any non-zero homomorphic image of B. Since
BEJ?3, there is a chain O^JAIAA with 3eM^ = Ji. By our assumption on W,
there are ideals BltB2AA with B^J and B2^I. If B ^ O , then B^eJt^ by the
hereditariness of Jtx; if B1=0, then 0#B2e^'<=,Jt = Jtx. Hence BeJ(2.

Proposition 4.8. Let W be a d4(&)-class which satisfies condition a(SS) (@l is as defined
in Section 3). Then Z£J{ = Jt'3 for any hereditary and homomorphically closed subclass

Proof. Let BeJt^ and let A be any non-zero homomorphic image of B. Since
AeJtt, there is a chain 0^ / j AI2 Ah A I4 = A with 7 , -E^, for i = 1,2,3,4. Consider-
ing I2 Ah AI* = A and applying condition a{88), we have two ideals Bj and B2 of A,
not both zero with B^^h and B2 —^3- Since Jl^Jt^ is hereditary, so is J(k for all k
and we have BlsM2 and B2eJlz. If B^O, we are done. Suppose thus Bt=0. Then
Q^B2e88. Since B2eJt3, there are ideals O^XAYAB2 with XeJtv But B2e38;
hence X AB2. Then 0^Xe{X}2^Jf2 (where X is the ideal in A generated by X) from
Theorem 4.5. Thus AeJt3, which proves the assertion.

5. Examples

5.1. Any universal class IV of groups is a d4-class. Indeed, if J AIA A and JA.A,
then there is an aeA such that a + J-a^J. Let C: = (a+J-a) + J. Then CAI and
5:J->CIJ defined by 6(x) = (a + x — a) + J is the desired homomorphism. It is not known
whether Sands' Theorem is valid for groups.

5.2. It is well-known that any universal class of associative or alternative rings is a
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d4(iT)-class ( = d4(^)-class), and thus a d4(^)-class—cf. Anderson, Divinsky and
Sulinski [1], Terlikowska-Oslowska [18, 19] and Krempa [8].

5.3. Let iV be any universal class of T-rings. Then W is a d4(^?)-class. This can
easily be verified as for the associative ring case.

5.4. In this example we consider a variant on the cubic rings introduced by
Nobusawa [13]. An abelian group M is a left commutative and associative cubic ring if
it is endowed with a ternary operation such that for all a,b,c,d,eeM the following
holds:

(1) (a + b)cd = acd + bcd
(2) a(b + c)d = abd + acd
(3) ab(c + d) = abc + abd
(4) ab(cde)=(abc)de = a(bcd)e (associativity)
(5) abc = bac (left commutativity).

Then A&M if and only if A is a subgroup of M, MMAzA and MAM^A. Any
universal class of left commutative associative cubic rings is a d4($?)-class (as can easily
be verified as for the associative ring case).

5.5. A non-associative ring A is an autodistributive ring if a(bc) = (ab)(ac) and
(ab)c = (ac)(bc) for all a,b,csA. Let if be a universal class of autodistributive rings.
Then if is a d4(^)-class. Indeed, if J A / A As if and J/k.A, then here is an a s A such
that Ja^J or aJ^J. Suppose Ja<£j (the other case is treated similarly). Let C=Ja+J.
Then C A ' and S:J->C/J defined by S(x) = xa + J is the required homomorphism with
C/J s@\{0}. if satisfies condition a{38)—this follows from Corollary 2.7 and Proposi-
tion 2.8 in Anderson and Gardner [2].

5.6. Let "f be the variety of all distributive near-rings (or equivalently, all
non-abelian rings). Any such near-ring N has the property that N2 is abelian, i.e.
ab + cd = cd + ab for all a,b,c,deN (cf. Pilz [14]). Although this variety satisfies J 3 £ J
for all J A ^ A / l e ^ " where J3: = {abc\a,b,ceJ} (note that the powers defined for
subsets of near-rings is not in harmony with the fi-group theoretic notion—cf. Section
3), it is not known what results (if any) from Section 2 and Section 3 are valid in t*.
Motivated by the next result, we can improve matters if we have some substitute for the
lack of abelianness.

Proposition 5.6.1. Let ^^y be a radical class. Then SfM is hereditary if and only if
both a$(l) and @(I)a are normal subgroups of A for all as A and I

Proof. Suppose y ^ is hereditary and let I AAeSf® and as A. Then ^( /) = 0 and
both a02(A) and 0l(l)a normal subgroups of A follows trivially. Conversely, let
/ A A stf®. If @{1) fy A, then @(1) is not normal in A or ^( / ) is normal in A but there
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is an aeA such that aM(l)<k&(l) or ^ ( / ) a^^ ( / ) (without loss of generality, we may
only assume a0$(I)£@l(I)). Let J = 0l(I) and suppose it is not normal in A. Then there
is an aeA such that a + J — adj. Then C, defined by C=(a + J — a) + J, is normal in /
and since A2 is abelian, it is an ideal in /. Define a mapping <j>:J-*C/J by
<j>{x) = (a + x — a) + J. Clearly d> is surjective, preserves addition and <f>(x)<f>(y) = O. Mor-
eover, since x@(I) is normal in A, also (j>(xy) = (a + xy — a)+J = 0. Hence C/J is a non-
zero homomorphic image of J=M(l)eSt. But this contradicts C/J&.1/Je£f0l. Suppose
thus that J is normal in A but aJ^J for some aeA. Let D be defined by D = aJ+J.
Then DAI and the mapping <f>:J-*D/J defined by <f>(x) = ax + J is a surjective
homomorphism. As above, D/J e St and 0 # D/J A / / / e &&, which is impossible. Hence

= J AAe£f9l and /eSf0l follows.

Corollary 5.6.2. Let Si £ V be a radical class. Then y^t is hereditary if and only if
for all I AAeSf® and aeA.

Let us now fix some notation. If K is a normal subgroup of A e V, it will be donated
by K A A and the normal subgroup of A generated by aeA will be denoted by [a].

Proposition 5.6.3. Let A be a distributive near-ring. Then the following are equivalent:

(a) aKAA for all KAA,aeA.
(p) For all x,y,zeA, there exists an integer n (depending on x, y and z) such that

z + xy — z — n(xy).

(y) KaAAforallKAA,aeA.

Proof. If (a) is assumed, let x,y,zeA. Then x[j>] A A and z + xy—z = xc for some
ce Qy]. Since c is of the form

with d-, e A and each nf some integer, we have

m

z + xy — z= £ Hj(xy) since A2 abelian

= n(xy) where n= £ n,-.

Hence (/?) holds. The other equivalences can also easily be verified.

Classes of near-rings which satisfy condition (a) have recently been considered by
Anderson, Kaarli and Wiegandt [3] in connection with left strong radicals of near-rings.
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In the sequel, let i f be a universal class of distributive near-rings which satisfies
condition (a). Easy examples show that iV <^V and there are distributive near-rings that
satisfy condition (a), but need not be a ring (as the zero multiplication on any non-
abelian group can testify). Using the same type of arguments as in the proof of
Proposition 5.6.1, it can be verified that ~W is a d4(Jf)-class where Z: = {Aeifr\ab = 0
for all a,beA}.

Since the underlying groups in "W need not be abelian, the nearest we can get to a
version of Sands' Theorem in •W is: Ji'^'W is a semisimple class iff M is regular,
coinductive, closed under extensions and if / £ \ A s M and / 2 =0, then IeJt. We do not
know if the last condition imposed on Jt is really necessary.
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