Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T07:21:57.316Z Has data issue: false hasContentIssue false

The potential of surplus grass production as co-substrate for anaerobic digestion: A case study in the Region of Southern Denmark

Published online by Cambridge University Press:  20 July 2015

Ane Katharina Paarup Meyer*
Affiliation:
Department of Energy Technology, Aalborg University Esbjerg, Esbjerg, Denmark.
Caroline Schleier
Affiliation:
Eberswalde University for Sustainable Development, Eberswalde, Germany.
Hans-Peter Piorr
Affiliation:
Eberswalde University for Sustainable Development, Eberswalde, Germany.
Jens Bo Holm-Nielsen
Affiliation:
Department of Energy Technology, Aalborg University Esbjerg, Esbjerg, Denmark.
*
*Corresponding author: akm@et.aau.dk

Abstract

This paper presents an assessment of the surplus grass production in the Region of Southern Denmark, and the perspectives of utilizing it in local biogas production. Grass production represents a significant role in the Danish agricultural sector. However, statistical data show an excess production of averagely 12% in the period 2006–2012. Based on spatial analyses and statistical data, the geographical distribution of grass production and consumption was estimated and mapped for the Region of Southern Denmark. An excess production of grass was estimated for several of the municipalities in the Region of Southern Denmark, but the excess production was found to be quite sensitive to the management practice of the grass fields and the productivity of the grass. The yields of excess grass estimated in the sensitive and conservative scenario were found to be sufficient to serve a sole co-substrate in 2–8 biogas plants using animal manure as primary feedstock. The yields in the intensive scenario were assessed to be sufficient to serve a sole co-substrate in 8–16 biogas plants. Alternatively, at least 31% of the regionally produced maize which is exported to the biogas sector could annually be substituted by methane produced from the production of excess grass. The intensive scenario was estimated to have significantly higher grass yields than the sensitive and conservative scenario. The environmental impacts of intensified agricultural management should, however, be assessed carefully in order to ensure that the ecosystems are not increasingly being burdened. The potential of utilizing residual grass for energy production in the region or as an alternative to the maize exported to Northern Germany, was concluded to seem as a promising possibility for a sustainable development of the regional biogas sector. Furthermore, it could provide incentives for establishing new biogas plants in the region and thereby increase the share of manure being digested anaerobically, which could help extrapolate the environmental and climate related benefits documented for the use of digested animal manure as fertilizer on agricultural land.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asam, Z., Poulsen, T.G., Nizami, A., Rafique, R., Kiely, G., and Murphy, J.D. 2011. How can we improve biomethane production per unit of feedstock in biogas plants? Applied Energy 88(6):20132018.CrossRefGoogle Scholar
Braun, R., Weiland, P., and Wellinger, A. 2010. Biogas from Energy Crop Digestion. Task 37 – Energy from Biogas and Landfill Gas. IEA Bioenergy, Paris.Google Scholar
Danish Energy Agency 2012. Begrænsning for Brug af Majs og andre Energiafgrøder til Produktion af Biogas. The Danish Energy Agency, Copenhagen.Google Scholar
Danish Energy Agency 2014. Biogas i Danmark –status, barrierer og perspektiver. The Danish Energy Agency, Copenhagen.Google Scholar
Danish Geodata Agency 2013. Danmarks Administrative Geografiske Inddeling 1:10000. Available at Web site http://download.kortforsyningen.dk/ (verified January 2013).Google Scholar
Danish Ministry of Climate Energy and Buildings 2012. Aftale mellem regeringen (Socialdemokraterne, Det Radikale Venstre, Socialistisk Folkeparti) og Venstre, Dansk Folkeparti, Enhedslisten og Det Konservative Folkeparti om den danske energipolitik 2012–2020. The Danish Ministry of Climate, Energy and Buildings.Google Scholar
Danish Ministry of the Environment 2013. Naturbeskyttelsesloven. LBK nr. 951 af 03/07/2013. The Danish Ministry of the Environment, Copenhagen.Google Scholar
Danish Natural Environment Portal 2013. Beskyttede naturtyper. Available at Web site http://arealinformation.miljoeportal.dk (verified November 2013).Google Scholar
Danish Plant Directorate 2013. Vejledning om gødsknings-og harmoniregler. Planperioden 1. August til 31 Juli 2014. The Danish Ministry of Food, Agriculture and Fisheries.Google Scholar
Dansk Jordbrugsforskning 1979. Jordbundsdata. The Faculty of Agricultural Sciences, Aarhus University.Google Scholar
Egg, R.P., Egg, C.G., Coble, C.R., and Engler, D.H. 1993. Feedstock storage, handling and processing. Biomass and Bioenergy 5(1):7194.CrossRefGoogle Scholar
European Commission 1991. Council Directive 91/676/EEC of 12 December 1991 Concerning the Protection of Waters against Pollution Caused by Nitrates from Agricultural Sources. Official Journal of the European Communities 375(31.12).Google Scholar
Eurostat 2015. Cattle population – annual data [apro_mt_lscatl]. Available at Web site http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=apro_mt_lscatl&lang=en (verified October 2015).Google Scholar
Geological Survey of Denmark and Greenland 2011. Grundvand: Terrænnær og ændrede grundvandsstande. Available at Web site http://download.kortforsyningen.dk/content/grundvand-terr%C3%A6nn%C3%A6r-og-%C3%A6ndrede-grundvandsstande (verified November 2013).Google Scholar
Hansen, M.N. 2001. Håndbog til driftsplanlægning. Dansk Landbrugsrådgivningscenter, Aarhus.Google Scholar
Holm-Nielsen, J.B., Al Seadi, T., and Oleskowicz-Popiel, P. 2009. The future of anaerobic digestion and biogas utilization. BioresourceTechnology 100(22):54785484.Google Scholar
Jacobsen, B.H., Laugesen, F.M., Dubgaard, A., and Bojesen, M. 2013. Biogasproduktion i Danmark – Vurderinger af drifts-og samfundsøkonomi. Institut for Fødevare-og Ressourceøkonomi, Københavns Universitet, Frederiksberg (IFRO Rapport; Nr. 220).Google Scholar
Jørgensen, P.J. 2009. Biogas – Green Energy. PlanEnergi and Researcher for a Day, Faculty of Agricultural Sciences, Aarhus University, Aarhus.Google Scholar
Knowledge Centre for Agriculture 2002. Dyrkningsvejledning – Græs og kløvergræs til slæt. Knowledge Centre for Agriculture, Aarhus.Google Scholar
Knowledge Centre for Agriculture 2012. Oversigt over landsforsøgene. Forsøg og undersøgelser i dansk landbrugsrådgivning. Knowledge Centre for Agriculture, Aarhus.Google Scholar
Knowledge Centre for Agriculture 2013a. Counts of Cattle, Sheep and Goats in the Region of Southern Denmark. Knowledge Centre for Agriculture, Aarhus.Google Scholar
Knowledge Centre for Agriculture 2013b. Grass Consumption for Cattle – Data from the Danish Dairy Management System. Knowledge Centre for Agriculture, Aarhus.Google Scholar
Larsen, S.U., Stefanek, K., and Møller, H.B. 2010. Udbytter, gaspotentialer og omkostninger ved dyrkning af forskellige afgrøder til biogas. Plantekongres 2010 M4:236–238.Google Scholar
Laursen, P.H. and Petersen, M.B. 2010. Tab fra mark til foderbord—Høje udbytter i slætgræs. Available at Web site https://www.landbrugsinfo.dk/kvaeg/foder/grovfoder/slaetgraes/sider/Hoejeudbytterislaetgraes.aspx (verified September 2014).Google Scholar
Lehtomäki, A., Huttunen, S., Lehtinen, T.M., and Rintala, J.A. 2008. Anaerobic digestion of grass silage in batch leach bed processes for methane production. Bioresource Technology 99(8):32673287.Google Scholar
Livestock Knowledge Transfer Management Team 2001. Reducing Silage Loss. Grassland; ADAS/IGER 101. University of Bristol.Google Scholar
Madsen, K.H. and Larsen, S.U. 2011. Vejen Frem. Momentum 3:1519.Google Scholar
Matson, P.A., Parton, W.J., Power, A.G., and Swift, M.J. 1997. Agricultural intensification and ecosystem properties. Science 277(5325):504509.CrossRefGoogle ScholarPubMed
McEniry, J. and O'Kiely, P. 2013. Anaerobic methane production from five common grassland species at sequential stages of maturity. Bioresource Technology 127:143150.CrossRefGoogle ScholarPubMed
Meyer, A.K.P., Raju., C.S., Kucheryavskiy, S., and Holm-Nielsen, J.B. 2015. The Energy Balance of Utilising Nature Conservation Grass for Anaerobic Digestion in Denmark. Manuscript submitted for publication.Google Scholar
Ministry of Food, Agriculture and Fisheries of Denmark 2014a. Bekendtgørelse om god landbrugs- og miljømæssig stand (GLM). The Ministry of Food, Agriculture and Fisheries of Denmark, Copenhagen.Google Scholar
Ministry of Food, Agriculture and Fisheries of Denmark 2014b. Jordbrugsanalyser. Available at Web site http://naturerhverv.dk/landbrug/kort-og-markblokke/jordbrugsanalyser/ (verified October 2014).Google Scholar
Nielsen, K.A. and Søegaard, K. 2014. Prognoser for slætgræs. Available at Web site https://www.landbrugsinfo.dk/Kvaeg/Foder/Grovfoder/Slaetgraes/Sider/pl_prognoser-for-slaetgraes.aspx (verified October 2014).Google Scholar
Nizami, A. and Murphy, J.D. 2010. What type of digester configurations should be employed to produce biomethane from grass silage? Renewable and Sustainable Energy Reviews 14(6):15581568.Google Scholar
Nizami, A.S., Orozco, A., Groom, E., Dieterich, B., and Murphy, J.D. 2012. How much gas can we get from grass? Applied Energy 92:783790.Google Scholar
Prochnow, A., Heiermann, M., Plöchl, M., Linke, B., Idler, C., Amon, T., and Hobbs, P.J. 2009. Bioenergy from permanent grassland – A review: 1. Biogas. Bioresource Technology 100(21):49314944.Google Scholar
Pugesgaard, S., Olesen, J.E., Jørgensen, U., and Dalgaard, T. 2004. Renewable agriculture and food systems. Renewable Agriculture and Food Systems 29(1):2841.Google Scholar
Rinne, M., Jaakkola, S., and Huhtanen, P. 1997. Grass maturity effects on cattle fed silage-based diets. 1. Organic matter digestion, rumen fermentation and nitrogen utilization. Animal Feed Science and Technology 67(1):117.Google Scholar
Scharling, M. 2012. Dataset for use in research and education. Daily and monthly values 1989–2010. Available at Web site http://www.dmi.dk/laer-om/generelt/dmi-publikationer/2013/#c10659 (verified January 2014).Google Scholar
Sørensen, K.L. 2014. Andre afgrøder kan fordoble produktionen. Effektivt Landbrug 2 September 2014: 9.Google Scholar
Statbank Denmark 2014a. AFG07: Cultivated area by region, unit and crop. Available at Web site http://www.statistikbanken.dk/ (verified September 2014).Google Scholar
Statbank Denmark 2014b. ANI7: Production and use of milk by unit. Available at Web site http://www.statistikbanken.dk/ (verified January 2014).Google Scholar
Statbank Denmark 2014c. FODER1: Feed stuffs in agriculture by type of fodder, origin and unit. Available at Web site: http://www.statistikbanken.dk/ (verified January 2014).Google Scholar
Statbank Denmark 2014d. HST77: Harvest by region, crop and unit. Available at Web site http://www.statistikbanken.dk/ (verified January 2014).Google Scholar
Statbank Denmark 2014e. HDYR07: Livestock by county, unit and type. Available at Web site http://www.statistikbanken.dk/ (verified January 2014).Google Scholar
Sundstöl, F. 1993. Energy systems for ruminants. Icelandic Agricultural Science 7:1119.Google Scholar
Thamsiriroj, T. and Murphy, J.D. 2010. Difficulties associated with monodigestion of grass as exemplified by commissioning a pilot-scale digester. Energy Fuels 24:44594469.CrossRefGoogle Scholar