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Abstract

We present an extension of the λ(η)-calculus with a case construct that propagates through

functions like a head linear substitution, and show that this construction permits to recover

the expressiveness of ML-style pattern matching. We then prove that this system enjoys the

Church–Rosser property using a semi-automatic ‘divide and conquer’ technique by which

we determine all the pairs of commuting subsystems of the formalism (considering all the

possible combinations of the nine primitive reduction rules). Finally, we prove a separation

theorem similar to Böhm’s theorem for the whole formalism.

1 Introduction

Lambda-calculus has been introduced by Church in the 1930s (Church 1941) as

a universal language to express computations of functions. Despite its remarkable

simplicity, λ-calculus is rich enough to express all recursive functions. Since the rise of

computers, λ-calculus has been used fruitfully as the basis of all functional program-

ming languages, from LISP to the languages of the ML family. From the theoretical

point of view, untyped λ-calculus enjoys many good properties (Barendregt 1984),

such as Church–Rosser property expressing determinism of computations. In Logic,

λ-calculus is also a fundamental tool to describe the computational contents of

proofs via the Curry–Howard correspondence.

Although arbitrarily complex data structures can be encoded in the pure λ-

calculus, modern functional programming languages provide primitive constructs for

most data structures, for which a purely functional encoding would be inefficient.

One of the most popular extensions of λ-calculus is pattern matching on constructed

values (a.k.a. variants), a problem that has been widely investigated in functional
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programming (Milner et al. 1990; Hudak et al. 1992; The Objective Caml language)

and in rewriting (van Oostrom 1990; Cirstea & Kirchner 1998; Cerrito & Kesner

1999; Kahl 2003; Jay 2004; Jay & Kesner 2006).

However, introducing objects of different kinds – functions and constructed

values – in the same formalism addresses the problem of their interaction. What

does it mean to apply a constructed value to an argument? Should the constructed

value accumulate the extra argument? Or should it produce an error? Similarly,

what does it mean to perform case analysis on a function?

Unfortunately, these problems are usually not addressed in the literature because

they are irrelevant in a typed setting – applications go with functions, case analyses

with variants. However, one should not forget that one of the reasons of the

success of the λ-calculus in computer science and in logic lies in its excellent

operational semantics in the untyped case. The best example is given by Böhm’s

separation theorem (Böhm et al. 1979) that expresses that two observationally

equivalent βη-normal λ-terms are intentionally equal. In the pure λ-calculus, βη-

normal terms are not canonical forms because they cannot be further reduced;

they are canonical forms because the computational behaviour of a βη-normal term

cannot be expressed by another βη-normal term.

The situation is far from being as clear when we add pattern matching to the

untyped λ-calculus. As far as we know, there is no generalisation of Böhm’s theorem

for this kind of extension. One reason for that is that the notion of normal form is

not as clear as in the pure λ-calculus, precisely because the traditional operational

semantics says nothing about the computational behaviour of ill-typed constructions,

such as a case analysis over an abstraction.

An extended operational semantics of case analysis In this paper, we propose an

extension of the untyped λ-calculus with constructors and case analysis that fills the

holes of the traditional operational semantics. Technically, the main novelty is that

we let application and case analysis (written {|θ|}.M) commute via the (ill-typed1)

reduction rule

(CaseApp), {|θ|}. (MN) → ({|θ|}.M)N.

where θ denotes a case binding, that is a finite map from constructors to terms (cf.

Section 2.1). In practice, this rule pushes case analysis to the head of the destructured

term before performing constructor substitution:

{|c �→ M|}. (cN1 · · ·Nk) →∗
CaseApp

({|c �→ M|}. c)N1 · · ·Nk

→CaseCons MN1 · · ·Nk

(More examples of the uses of this rule will be given in Section 2.3.) Symmetrically,

we introduce a reduction rule

(CaseLam) {|θ|}. (λx.N) → λx. ({|θ|}.M) (x /∈ FV (θ))

1 Observe that M is treated as a function in the l.h.s. of the rule whereas it is treated as a constructed
value in the r.h.s. This rule should not be confused with the rule of commutative conversion ({|θ|}.M)N =
{|θN|}.M that comes from logic, a rule which is well typed. . . but incompatible with the reduction
rules of our calculus!
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to let case analysis go through abstractions. In this way, case analysis can be

understood as a form of head linear explicit substitution. . . of constructors.

Surprisingly, the system we obtain is not only computationally sound – we will

show (Section 4) that it is confluent and conservative over the untyped λη-calculus –

but it also permits to decompose ML-style pattern matching (with patterns of any

arity) from the construction {|θ|}.M that only performs case analysis on constant

constructors (Section 2).

Finally, we will show (Section 5) a theorem of weak separation for the whole

calculus, using a separation technique inspired by Böhm’s (Böhm 1979; Barendregt

1984). For this reason, the formalism provides a special constant written � and

called the daimon (following the terminology and notation of Girard 2001) that

requests the termination of the programme – something like an exit system call –

and which will be used as the main technical device to observe normal forms and

separate them.

This article is an extension of Arbiser et al. (2006).

2 Syntax and reduction rules

2.1 Syntax

The λ-calculus with constructors distinguishes two kinds of names: variables (written

x, y, z, etc.) and constructors (written c, c′, etc.) The set of variables and the set

of constructors are written V and C, respectively. In what follows, we assume that

both sets V and C are denumerable and disjoint.

The terms (written M, N, etc.) and the case bindings (written θ, φ, etc.) of the

λ-calculus with constructors are inductively defined as follows:

Terms M,N ::= x (Variable)

| c (Constructor)

| � (Daimon)

| MN (Application)

| λx.M (Abstraction)

| {|θ|}.M (Case construct)

Case bindings θ, φ ::= c1 �→ M1; . . . ; cn �→ Mn (ci �= cj for i �= j)

We denote the set of terms with ΛC, the set of case bindings with B, and the

disjoint union of ΛC and B with ΛC + B.

Constructor binding Each case binding θ is formed as a finite unordered list of

constructor bindings of the form (c �→ M) whose l.h.s. are pairwise distinct. We

say that a constructor c is bound to a term M in a case binding θ if the binding

(c �→ M) belongs to the list θ. From the definition of case bindings, it is clear that a

constructor c is bound to at most one term in a given case binding θ. When there is

no such term, we say that the constructor c is unbound in θ. The domain of a case

binding θ = (c1 �→ M1; . . . ; cn �→ Mn) is defined as dom(θ) = {c1, . . . , cn}.
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We also introduce an (external) operation of composition between two case

bindings θ and φ, which is written θ ◦ φ and defined by

θ ◦ φ ≡ θ ◦ (c1 �→ M1; . . . ; cn �→ Mn) ≡ c1 �→ {|θ|}.M1; . . . ; cn �→ {|θ|}.Mn

Notice that this operation is not syntactically associative, since

(θ ◦ φ) ◦ (ci �→ Mi)i=1..n ≡ (ci �→ {|θ ◦ φ|}.Mi)i=1..n

whereas

θ ◦ (φ ◦ (ci �→ Mi)i=1..n ≡ (ci �→ {|θ|}. {|φ|}.Mi)i=1..n

However, composition of case bindings only makes sense in the presence of the case

conversion reduction rule {|θ|}. {|φ|}.M → {|θ ◦ φ|}.M (see Section 2.2) that makes

the two terms convertible.

Free variables and substitution The notions of bound and free occurrences of a

variable are defined as expected. The set of free variables of a term M (resp. a case

binding θ) is written FV (M) (resp. FV (θ)). In particular:

FV ((ci �→ Mi)i=1..n) = FV (M1) ∪ · · · ∪ FV (Mn)

FV ({|θ|}.M) = FV (θ) ∪ FV (M).

As in the (ordinary) λ-calculus, terms are considered up to α-conversion (i.e. up to

a renaming of bound variables). Notice that the renaming policy of the λ-calculus

with constructors is strictly the same as in the λ-calculus: it only affects (bound)

variable names, but leaves constructor names unchanged.

The external substitution operation of the λ-calculus, written M{x := N}, is

extended to the λ-calculus with constructors as expected. The same operation is also

defined for case bindings (notation: θ{x := N}). In particular:

(ci �→ Mi)i=1..n{x := N} = (ci �→ Mi{x := N})i=1..n

({|θ|}.M){x := N} = {|θ{x := N}|}.M{x := N}.

2.2 Reduction rules

The λ-calculus with constructors has nine primitive reduction rules that are depicted

in Figure 1. These rules contain the usual β (now called AppLam) and η (now

called LamApp) reduction rules of the λ(η)-calculus. Case analysis is propagated

through terms using the rules CaseApp and CaseLam, and constructor substitution

is performed by the rule CaseCons. There is also a rule CaseCase that composes

adjacent case constructs – thus performing an identification that is essential to

achieve separation.2 Finally, the daimon � comes with three reduction rules LamDai,

AppDai and CaseDai describing how the constant � destructs its evaluation context.

(This will be given a formal meaning in Section 5.2, Lemma 24.) Note that the

2 Unlike the CaseApp reduction rule, the CaseCase reduction rule is really a commutative conversion
rule.
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Beta-reduction

AppLam (AL) (λx.M)N → M{x := N}
AppDai (AD) �N → �

Eta-reduction

LamApp (LA) λx.Mx → M (x /∈ FV (M))

LamDai (LD) λx.� → �

Case propagation

CaseCons (CO) {|θ|}. c → M ((c �→ M) ∈ θ)

CaseDai (CD) {|θ|}.� → �

CaseApp (CA) {|θ|}. (MN) → ({|θ|}.M)N

CaseLam (CL) {|θ|}. λx.M → λx. {|θ|}.M (x /∈ FV (θ))

Case conversion

CaseCase (CC) {|θ|}. ({|φ|}.M) → {|θ ◦ φ|}.M

Fig. 1. Reduction rules of the λ-calculus with constructors.

daimon can be understood as an exception, but only as an exception that cannot be

caught – a feature that is essential in the proof of separation. In a domain-theoretic

setting, the daimon would naturally be interpreted as the top element � (maximal in-

formation, immediate termination), the opposite of Scott’s bottom ⊥ (undefinedness,

non-termination).

In what follows, we will be interested not only in the system induced by

the nine reduction rules taken together, but more generally in the 512 subsystems

formed by all subsets of the nine reduction rules. (Analysing the commutation and

composition properties of all these subsystems is the key ingredient of the confluence

proof we will present in Section 4.) We denote by λBC the calculus generated by all

rules of Figure 1, and we write BC the sub-calculus generated by all rules but AppLam

(a.k.a. β).

Notice that AppLam (β) and LamApp (η) are the only reduction rules that may

apply to an ordinary λ-term in λBC.

2.3 Examples

ML-style pattern matching Constructors and the case construct of λBC basically

implement enumerated types. For instance, booleans are represented in λBC using

two constructors true and false, and by setting:

if N then M1 else M2 ≡ {|true �→ M1; false �→ M2|}. N
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From the CaseCons reduction rule of the calculus, we have

if true then M1 else M2 ≡ {|true �→ M1; false �→ M2|}. true → M1

if false then M1 else M2 ≡ {|true �→ M1; false �→ M2|}. false → M2

However, the CaseApp reduction rule permits to go beyond simple case analysis, and

to implement pattern matching over non constant patterns. To understand how it

works, consider the predecessor function (over unary integers) that maps 0 to 0 and

s n to n. In λBC, this function is implemented as

pred ≡ λn. {|0 �→ 0; s �→ λz. z|}. n

(where 0 and s are distinct constructors). The computation of pred 0 is obvious from

the rules AppLam (= β) and CaseCons:

pred 0 → {|0 �→ 0; s �→ λz. z|}. 0 → 0.

More interesting is the case of pred (sN) (where N is an arbitrary term)

pred (s N) → {|0 �→ 0; s �→ λz. z|}. (s N)

→ ({|0 �→ 0; s �→ λz. z|}. s) N → (λz. z) N → N

which shows how the case construct captures the head occurrence of the constructor s

via the reduction rule CaseApp. More generally, ML-style pattern matching (on

disjoint patterns) is translated in λBC as follows:

match N with

| c1(x1, . . . , xn1
) �→ M1

...

| ck(x1, . . . , xnk ) �→ Mk

becomes

{|c1 �→ λx1 · · · xn1
.M1 ;

...

ck �→ λx1 · · · xnk .Mk ;

|} ·N

Pattern matching and recursion Recursion is implemented in λBC in the same way

as in the pure λ-calculus, by using a fixpoint combinator such as Church’s Y or

Turing’s Θ ≡ (λyf. f(yyf)) (λyf. f(yyf)). Combining recursion with case analysis,

one can define recursive functions on algebraic datatypes, such as for example the

function ‘append’ that concatenates two lists

append ≡ Θ
(
λfl1l2. {|nil �→ l2; cons �→ λxl′. cons x (f l′ l2)|}. l1

)
(where lists are represented as usual with two constructors nil and cons). In what

follows, we will use the following arithmetic operators:

plus ≡ Θ
(
λfnm. {|0 �→ m; s �→ λp. s (f p m)|}. n

)
minus ≡ Θ

(
λfnp. {|0 �→ n; s �→ λq. f (pred n) q)|}. p

)
Variadic constructors Since constructors have no fixed arity in λBC, it is tempting

to use (some of) them as variadic constructors, that is, as constructors that may be

applied to an arbitrary number of arguments.

For instance, a natural idea consists to represent vectors (i.e. variadic tuples) using

a single constructor vec, letting:

(v1, . . . , vn) ≡ vec x1 · · · xn.
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With such a naive encoding, it is possible to write the concatenation function

vappend ≡ λv1v2. {|vec �→ v1|}. v2,

but not the function accessing an element of a vector given by its index. Indeed,

accessing the ith element xi of a vector v = vec x1 · · · xn requires to skip the first

i − 1 arguments, but also to drop the n − i − 1 remaining arguments. Alas, the

latter cannot be implemented in λBC since there is no way to count the number of

arguments a constructor is applied to.

The solution to fix this problem is to provide the length explicitly, as the first

argument of the constructor vec, and thus to encode vectors as

(v1, . . . , vn) ≡ vec n̄ x1 · · · xn.

Using this encoding, it is possible to write functions computing the length of a vector

or accessing one of its elements:

skip ≡ Θ
(
λfnx. {|0 �→ x; s �→ λpz. fpx|}. n

)
length ≡ λv. {|vec �→ λn. skip n n|}. v
access ≡ λvi. {|vec �→ λn. skip i (λx. skip (minus n (s i)) x)|}. v

Of course, it is still possible to define the concatenation function, though its code is

slightly more complex than before:

vappend ≡ λv1v2. {|vec �→ λn1. {|vec �→ λn2. vec (plus n1 n2)|}. v2|}. v1

3 Preliminary results

Before proving the Church–Rosser property (Section 4), we first state some basic

definitions and results.

3.1 General definitions and commutation results

We first recall some classic definitions.

Definition 1

An Abstract Rewriting System (ARS) is a pair A = (|A|,→A) formed by an arbitrary

set |A| (called the carrier of A) equipped with a binary relation →A on |A|. We denote

by →=
A the reflexive closure of →A, by →∗

A the reflexive-transitive closure of →A,

and by �A the reflexive-symmetric-transitive closure of →A.

Definition 2

An ARS A is strongly normalising (SN) (or terminating) if there is no infinite

sequence of objects (Mi)i∈� ∈ |A|� such that Mi →A Mi+1 for all i ∈ �.

Definition 3

Let (S,→A) and (S,→B) be two ARSs defined on the same set. We say that:
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− A weakly commutes with B, written A //w B, if for all M,M1,M2 such that

M →A M1 and M →B M2 there exists M3 such that M1 →∗
B M3 and M2 →∗

A

M3. In other words, the following diagram holds:

M
A

����
�� B

���
��

�

M1

B

∗
��

M2

A

∗
��

M3

− A commutes with B, written A // B, if for all M,M1,M2 such that M →∗
A M1

and M →∗
B M2 there exists M3 such that M1 →∗

B M3 and M2 →∗
A M3. In other

words, the following diagram holds:

M
A

∗����
�� B

∗ ���
��

�

M1

B

∗
��

M2

A

∗
��

M3

− A strongly commutes with B if for all M,M1,M2 ∈ S such that M →A M1 and

M →B M2 there exists M3 ∈ S such that M1 →=
B M3 and M2 →∗

A M3. In other

words, the following diagram holds:

M
A

����
�� B

���
��

�

M1

B

=

��

M2

A

∗
��

M3

Note that strong commutation is not a symmetrical relation, while commutation

is.

Definition 4

Let A be an ARS. We say that

− A is weakly confluent, locally confluent or weakly Church–Rosser (WCR), if

A //w A.

− A is confluent, or Church–Rosser (CR), if A // A.

− A enjoys the diamond property if for all M,M1,M2 such that M →A M1 and

M →A M2 there exists M3 such that M1 →A M3 and M2 →A M3.

Given two ARSs A and B defined on the same carrier set, we write A+B the (set-

theoretic) union of both relations. The confluence proof of λBC relies on standard

results of rewriting (Baader & Nipkow 1999; Terese 2003), and in particular on the

following lemmas:

Lemma 1

Let A,B, C be ARSs.

1. If A //w B and A //w C then A //w B + C .

2. If A // B and A // C then A // B + C .
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Proof

The first item is immediate from the definitions. The second item is proved by

induction on the length of the B + C reduction. �

Lemma 2 (Newman’s Lemma)

Let A be an ARS. If A is weakly confluent and strongly normalising, then A is

confluent.

Proof

See Baader & Nipkow (1999) and Terese (2003). �

In what follows, we will use a generalisation of Newman’s Lemma to pairs of

weakly commuting systems:

Lemma 3

If A //w B and A + B is SN, then A // B.

Proof

Similar to Newman’s Lemma, by well-founded induction. �

Lemma 4

If A strongly commutes with B, then A // B.

Proof

See Baader & Nipkow (1999) and Terese (2003). �

3.2 Free variables and substitution

The following lemmas are straightforward extensions of standard lemmas of the

λ-calculus to the λ-calculus with constructors.

Lemma 5

Let M be a term or a case binding, P a term and x a variable. Then FV (M{x :=

P }) ⊆ (FV (M) − {x}) ∪ FV (P ).

Proof

By a straightforward induction on M. �

Lemma 6

Let P ,Q ∈ ΛC + B. If P →λBC Q, then FV (Q) ⊆ FV (P ).

Proof

By induction on P , analysing each one of the rules. Note that rules AppLam,

AppDai, CaseCons and CaseDai may remove free variables, while the rest of the

rules will not. Also note that the case of rule CaseCase relies on the fact that

FV (θ ◦ φ) ⊆ FV (θ) ∪ FV (φ). �

Lemma 7

Let M be a term or a case binding, P a term, and x a variable such that x /∈ FV (M).

Then M{x := P } = M.

Proof

By a straightforward induction on M. �
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Lemma 8 (Substitution lemma)

For all terms and case bindings M, for all terms P , Q and variables x, y such that

x �= y and x /∈ FV (Q) we have

M{x := P }{y := Q} = M{y := Q}{x := P {y := Q}}.

Proof

By induction on M (cf. appendices). �

The following lemma expresses that substitution is preserved under each reduction

rule of the calculus:

Lemma 9

Let R be one of the rules AppLam, AppDai, LamApp, LamDai, CaseLam, CaseApp,

CaseDai, CaseCons, CaseCase.

1. For all terms and case bindings M, N, for every term P and variable y,

if M →R N then M{y := P } →R N{y := P }.
2. For all terms and case bindings M, for all terms P , Q and variable y,

if P →R Q, then M{y := P } ∗→R M{y := Q}.

Proof

By a straightforward induction on M. When R = CaseCase, we use the fact that

(θ ◦ φ){y := P } = θ{y := P } ◦ φ{y := P }. �

This lemma immediately extends to many-steps reduction:

Corollary 1

Let R be one of the rules AppLam, AppDai, LamApp, LamDai, CaseLam, CaseApp,

CaseDai, CaseCons, CaseCase.

1. For all terms and case bindings M, N, for every term P and variable y,

if M
∗→R N then M{y := P } ∗→R N{y := P }.

2. For all terms and case bindings M, for all terms P ,Q and variable y,

if P
∗→R Q, then M{y := P } ∗→R M{y := Q}.

3.3 Strong normalization of the BC-calculus

We now prove that the sub-calculus BC = (λBC \ AppLam) enjoys the strong

normalization property (SN), a property which will be a key ingredient in the

proof of confluence of Section 4.

Proposition 1 (SN of the BC-calculus)

The BC-calculus is SN.

Proof

See the appendices. �

Corollary 2 (SN of λBC-subsystems)

For every subsystem s of the λBC-calculus (induced by a subset of the nine primitive

rules), s is SN if AppLam /∈ s.
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4 The Church–Rosser property

4.1 Critical pairs and closure conditions

Each of the nine primitive reduction rules of λBC describes the interaction between

two syntactic constructs of the language, which is reflected by the name of the rule:

AppLam for ‘Application over a Lambda’, etc. These reduction rules induce 13 different

critical pairs that are summarised in Figures 2 and 3.

Critical pairs occur for all pairs of rules of the form FooBar/BarBaz, which

corresponds to a situation where a FooBar-redex and a BarBaz-redex overlap on a

syntactic aggregate of the form

FooBar-redex

{
Foo

�
Bar

�
Baz

}
BarBaz-redex

A quick examination of Figures 2 and 3 reveals that each time we have to close

such a critical pair, we need to use the third rule FooBaz when this rule exists. This

occurs for the six critical pairs (2), (4), (5), (6), (7) and (8) of Figure 2; in the other

cases, the critical pair is closed by the only rules FooBar and BarBaz.

This remark naturally suggests the following definition:

Definition 5 (Closure conditions)

We say that a subset s of the nine rules given in Figure 1 fulfils the closure conditions

and write s |= CC if:

(CC1)

(CC2)

(CC3)

(CC4)

(CC5)

(CC6)

AppLam ∈ s ∧ LamDai ∈ s ⇒ AppDai ∈ s

LamApp ∈ s ∧ AppDai ∈ s ⇒ LamDai ∈ s

CaseApp ∈ s ∧ AppLam ∈ s ⇒ CaseLam ∈ s

CaseApp ∈ s ∧ AppDai ∈ s ⇒ CaseDai ∈ s

CaseLam ∈ s ∧ LamApp ∈ s ⇒ CaseApp ∈ s

CaseLam ∈ s ∧ LamDai ∈ s ⇒ CaseDai ∈ s

Intuitively, a subset that fulfils the six closure conditions defines a system in

which all critical pairs can be closed, and thus constitutes a good candidate for

Church–Rosser. The aim of this section is to turn this intuition into a formal

statement:

Theorem 1 (Church–Rosser)

For each of the 512 subsystems s of λBC the following propositions are equivalent:

1. s fulfils the closure conditions (CC1)–(CC6);

2. s is weakly confluent;

3. s is confluent.

Since the full system (i.e. λBC) obviously fulfils all closure conditions, we will get

as an immediate corollary:

Corollary 3 (Church–Rosser)

λBC is confluent.
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(1) AppLam/LamApp (2) AppLam/LamDai

(λx.Mx)N [x/∈FV (M)]

AppLam

����
��

�� LamApp

���
��

��
�

MN MN

(λx.�)N

AppLam

����
��

��
�

LamDai

���
��

��
��

�

�
�

�
�

�
�

�
� �N

AppDai��
�

(3) LamApp/AppLam (4) LamApp/AppDai

λx. (λy.M)x [x/∈FV (M)]

LamApp

����
��

�� AppLam

���
��

��
�

λy.M λx.M{y := x}

λx. (� x)

LamApp

����
��

�� AppDai

���
��

��
�

�

�
�

�

�
�

� λx.�

LamDai��
�

(5) CaseApp/AppLam (6) CaseApp/AppDai

{|θ|}. ((λx.M)N) [x/∈FV (θ)]

CaseApp

����
��

�� AppLam

���
��

��
�

({|θ|}. λx.M)N

CaseLam

��

{|θ|}. (M{x := N})

�
�
�
�
�
�

�
�
�
�
�
�

(λx. {|θ|}.M)N

AppLam ��
({|θ|}.M){x := N}

{|θ|}. (�N)

CaseApp

����
��

�� AppDai

���
��

��
�

({|θ|}.�)N

CaseDai

��

{|θ|}.�

CaseDai

��

�N

AppDai ��
�

(7) CaseLam/LamApp (8) CaseLam/LamDai

{|θ|}. λx. (Mx) [x/∈FV (M,θ)]

CaseLam

����
��

�� LamApp

���
��

��
�

λx. {|θ|}. (Mx)

CaseApp

��

{|θ|}.M

�
�
�
�
�
�

�
�
�
�
�
�

λx. ({|θ|}.M)x

LamApp ��
{|θ|}.M

{|θ|}. λx.�
CaseLam

����
��

�� LamDai

���
��

��
�

λx. {|θ|}.�

CaseDai

��

{|θ|}.�

CaseDai

��

λx.�

LamDai ��
�

Fig. 2. Critical pairs 1–8 (/13).
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(9) CaseCase/CaseCons (10) CaseCase/CaseDai

{|θ|}. {|φ|}. c [(c �→M)∈φ]

CaseCase

����
��

�� CaseCons

���
��

��
�

{|θ ◦ φ|}. c

CaseCons ��

{|θ|}.M

�
�

�

�
�

�

{|θ|}.M

{|θ|}. {|φ|}.�
CaseCase

����
��

�� CaseDai

���
��

��
�

{|θ ◦ φ|}.�

CaseDai ��

{|θ|}.�

CaseDai��
�

(11) CaseCase/CaseApp (12) CaseCase/CaseLam

{|θ|}. {|φ|}. (MN)

CaseCase

����
��

�� CaseApp

���
��

��
�

{|θ ◦ φ|}. (MN)

CaseApp

��

{|θ|}. ({|φ|}.M)N

CaseApp

��
({|θ|}. {|φ|}.M)N

CaseCase��
({|θ ◦ φ|}.M)N

{|θ|}. {|φ|}. λx.M
CaseCase

����
��

�� CaseLam

���
��

��
�

{|θ ◦ φ|}. λx.M

CaseLam

��

{|θ|}. λx. {|φ|}.M

CaseLam

��
λx. {|θ|}. {|φ|}.M

CaseCase��
λx. {|θ ◦ φ|}.M

(13) CaseCase/CaseCase

{|θ|}. {|φ|}. {|ρ|}.M
CaseCase

����
��

�� CaseCase

���
��

��
�

{|θ ◦ φ|}. {|ρ|}.M

CaseCase

��

{|θ|}. {|φ ◦ ρ|}. t

CaseCase

��
{|θ ◦ (φ ◦ ρ)|}.M

CaseCase
∗��

{|(θ ◦ φ) ◦ ρ|}.M

Fig. 3. Critical pairs 9–13 (/13).

The proof of Theorem 1 relies on a systematic analysis of the commutation

properties of all pairs of subsystems (s1, s2) of λBC. For that, we first have to

generalise the notion of closure condition to any pair (s1, s2) of subsystems. This

leads us to adopt the following definition:

Definition 6 (Binary closure conditions)

We say that a pair (s1, s2) of subsystems fulfils the binary closure conditions and

write (s1, s2) |= BCC if
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(BCC1)

(BCC2)

(BCC3)

(BCC4)

(BCC5)

(BCC6)

(BCC7)

(BCC8)

(BCC9)

AppLam ∈ s1 ∧ LamDai ∈ s2 ⇒ AppDai ∈ s1
LamApp ∈ s1 ∧ AppDai ∈ s2 ⇒ LamDai ∈ s1
CaseApp ∈ s1 ∧ AppLam ∈ s2 ⇒ CaseLam ∈ s2
CaseApp ∈ s1 ∧ AppDai ∈ s2 ⇒ CaseDai ∈ (s1 ∩ s2)

CaseLam ∈ s1 ∧ LamApp ∈ s2 ⇒ CaseApp ∈ s2
CaseLam ∈ s1 ∧ LamDai ∈ s2 ⇒ CaseDai ∈ (s1 ∩ s2)

CaseCase ∈ s1 ∧ CaseDai ∈ s2 ⇒ CaseDai ∈ s1
CaseCase ∈ s1 ∧ CaseApp ∈ s2 ⇒ CaseApp ∈ s1
CaseCase ∈ s1 ∧ CaseLam ∈ s2 ⇒ CaseLam ∈ s1

as well as the nine symmetric conditions (obtained by exchanging s1 with s2).

Again, the nine binary closure conditions come from an analysis of critical pairs.

For example (BCC1) comes from the observation that critical pair (2) of Figure 2

can be formed as soon as s1 contains AppLam and s2 contains LamDai, and that it

can be closed only if s1 contains AppDai.

We can also remark that when we take s1 = s2 = s, the binary closure conditions

(BCC1)–(BCC6) degenerate to the (simple) closure conditions (CC1)–(CC6) whereas

(BCC7)–(BCC9) become tautologies, so that:

Fact 1

For every subsystem s of λBC: s |= CC if (s, s) |= BCC.

We first show that:

Proposition 2

For every pair (s1, s2) of subsystems of λBC the following propositions are equivalent:

1. (s1, s2) |= BCC (binary closure conditions);

2. s1 //w s2 (weak commutation).

Proof

(1. ⇒ 2.) Let (s1, s2) be a pair of subsystems of λBC that fulfils the binary closure

conditions. By induction on M we show that if M →r1 M1 and M →r2 M2 (for some

r1 ∈ s1 and r2 ∈ s2), then there is a term M3 such that M1 →∗
s2
M3 and M2 →∗

s1
M3.

We distinguish cases depending on the structure of M and the rules r1 and r2. The

crucial cases correspond to the critical pairs (1)–(13), each of them being closed

using the rule(s) given by the corresponding binary closure condition.

(¬1. ⇒ ¬2.) Assume (s1, s2) is a pair of subsystems of λBC that does not fulfil (at

least) one of conditions (BCC1)–(BCC9). We easily build a counter-example from

the originating critical pair. �
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4.2 The ‘divide and conquer’ proof technique

Let us now consider the 512 × 512 matrix formed by all 131, 328 (unordered) pairs

of subsystems of λBC
3. From Proposition 2 and Corollary 2, we have:

s1 //w s2 ⇔ (s1, s2) |= BCC

(s1 + s2) is SN ⇔ AppLam /∈ (s1 + s2)

for all pairs (s1, s2) of subsystems of λBC. From this it is clear that:

Fact 2
Both relations ‘s1 //w s2’ and ‘(s1 + s2) is SN’ are decidable.

With the help of a small computer programme, we easily check that:

− There are exactly 13, 396 pairs of subsystems (s1, s2) such that s1 //w s2.
− There are exactly 5, 612 pairs of subsystems (s1, s2) such that s1 //w s2 and

(s1 + s2) is SN. From Lemma 3, we deduce that (at least) all these pairs

commute, that is: s1 // s2.

The situation is summarised in the following table:

Pairs (s1, s2) s1 = s2

Commuting + SN (= BCC + ¬AppLam) 5,612 160 CR+SN

Weakly commuting (= BCC) 13,396 248 WCR

Total 131,328 512

It now remains to show that the commutation property ‘s1 // s2’ also holds for the

remaining 13, 396−5, 612 = 7, 784 pairs of systems that weakly commute, but whose

union is not SN.

For that, we propose a simple ‘divide and conquer’ technique to reduce the

number of lemmas to prove. The idea is to deduce the remaining 7, 784 expected

commutation properties from a much smaller set of commutation properties by

mechanically applying the second item of Lemma 1:

If A // B and A // C , then A // (B + C)

in order to propagate the knowledge of pairs of commuting subsystems (using the

algorithm described in Figure 4). Actually, this method is sufficient to reduce the

problem of proving the 7, 784 expected commutation properties to the problem of

proving the 12 commutation properties of Table 1, since:

Fact 3
If the 12 pairs of subsystems of Table 1 commute, then all 13, 396 weakly commuting

pairs of systems commute.

Proof
This is mechanically checked by applying the algorithm of Figure 4. �

3 In what follows, we count (s1, s2) and (s2, s1) as a single pair of systems.
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Table 1. The 12 initial commutation lemmas

(1) AppLam // AppLam

(2) AppLam // AppDai

(3) AppLam // LamApp

(4) AppLam // CaseCons

(5) AppLam // CaseDai

(6) AppLam // CaseLam

(7) AppLam // CaseCase

(8) AppLam + AppDai // LamDai

(9) AppLam + AppDai // LamApp + LamDai

(10) AppLam + CaseLam // CaseApp

(11) AppLam + CaseLam // LamApp + CaseApp

(12) AppLam + AppDai + CaseDai + CaseLam //

LamApp + LamDai + CaseDai + CaseApp

In the following piece of code, C[s1, s2] denotes a symmetric matrix of

booleans indexed by all pairs of subsystems (s1, s2). We assume that each

assignment C[s1, s2] := b implicitly performs the symmetric assignment

C[s2, s1] := b in order to preserve symmetry.

Global invariant: C[s1, s2] ⇒ s1 // s2

[Initialise C with all SN + commuting pairs]

for each (s1, s2) do

C[s1, s2] := check bcc(s1, s2) ∧ AppLam /∈ (s1 ∪ s2)

done;

[Manually set the 12 initial commutation lemmas]

for each (s1, s2) ∈ Table 1 do

C[s1, s2] := true

done;

[Close matrix using Lemma 1, item 2]

while

there are s1, s2, s3 such that :

C[s1, s2] ∧ C[s1, s3] ∧ ¬C[s1, (s2 ∪ s3)]

do C[s1, (s2 ∪ s3)] := true done;

[Check that all BCC-pairs commute]

for each (s1, s2) do

assert
(
C[s1, s2] ⇔ check bcc(s1, s2)

)
[Produces an error if not true]

done

[If no error has been produced, then Fact 3 holds]

Fig. 4. Algorithm to build the commutation matrix.

The rest of this section is thus devoted to the proof of the 12 commutation

properties of Table 1. Appendix B shows the complete deduction of confluence of

the whole calculus from these 12 basic properties.
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Remarks

The algorithm of Figure 4 can be refined in order to determine the smallest

possible set of commutation lemmas which is necessary to generate all the desired

commutation lemmas from the rule of inference ‘if A // B and A // C , then

A // (B + C)’. (Actually, it can be shown that such a minimal set of commutation

lemmas is unique, using a simple combinatorial argument based on the sizes of

the sets of rules.) By applying this refined version of the algorithm, we obtain the

minimal set of commutation lemmas – which is precisely the set formed by the

12 lemmas of Table 1.

This technique for proving the confluence of a system with many reduction rules

is an alternative to the interpretation method (Rı́os 1993) – with the benefit that

commutation and confluence results are obtained for all subsystems as well.

4.3 Proof of the 12 initial commutation properties

The first commutation property of Table 1 expresses the confluence of the reduction

rule AppLam. As usual, we prove it (following Tait and Martin-Löf) by introducing

the corresponding notion of parallel reduction:

Definition 7

The relations of parallel AppLam-reduction on terms and on case bindings (both

written ⇒) are defined as follows:

M ⇒ M (pRef)

M ⇒ M ′ N ⇒ N ′

(λx.M)N ⇒ M ′{x := N ′}
(pAppLam)

M ⇒ M ′

λx.M ⇒ λx.M ′ (pLam) M ⇒ M ′ N ⇒ N ′

MN ⇒ M ′N ′ (pApp)

M ⇒ M ′ θ ⇒ θ′

{|θ|}.M ⇒ {|θ′|}.M ′ (pCase)

M1 ⇒ M ′
1 · · · Mn ⇒ M ′

n

(ci �→ Mi)i=1..n ⇒ (ci �→ M ′
i )i=1..n

(pCBind)

As usual, we check the following Proposition. Its item 4 will be used in the proof

of Lemma 11.

Proposition 3 (Properties of ⇒)

1. If M →β M ′, then M ⇒ M ′ (i.e. →β ⊂ ⇒)

2. If M ⇒ M ′, then M →∗
β M ′ (i.e. ⇒ ⊂ →∗

β)

3. If M ⇒ M ′ and N ⇒ N ′, then M{x := N} ⇒ M ′{x := N ′}
4. If θ ⇒ θ′ and φ ⇒ φ′, then θ ◦ φ ⇒ θ′ ◦ φ′

5. If M ⇒ M1 and M ⇒ M2, then

there exists M3 s.t. M1 ⇒ M3 and M2 ⇒ M3 (diamond property)

Proof

Item 1: by induction on the derivation of M →β M ′ (cf. Appendix A). Item 2: by

induction on the derivation of M ⇒ M ′ (cf. Appendix A). Item 3: by induction
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on the derivation of M ⇒ M ′ (cf. Appendix A). Item 4: immediately follows from

(pCase) (cf. Appendix A). Item 5: by induction on the derivation of M ⇒ M1 (cf.

Appendix A). �

From this we deduce that ⇒∗ = →∗
β , and thus:

Proposition 4 (1/12 )

AppLam // AppLam, i.e. AppLam is confluent.

The next five commutation properties (2–6) are of the form ‘AppLam // r’, where

the reduction rule r is linear, that is, a rule that cannot duplicate subterms during

contraction. (But it may erase subterms.)

Lemma 10

For each reduction rule

r ∈ {AppDai; LamApp; CaseCons; CaseDai; CaseLam},

the rule r strongly commutes with AppLam.

Proof

This is proved by a straightforward induction. Notice that the reduction rules AppDai,

CaseCons, CaseDai and CaseLam induce no critical pair with AppLam. Only the rule

LamApp induces critical pairs with AppLam, but these pairs are trivially closed (as in

the pure λ-calculus). �

Proposition 5 (2–6/12 )

For each reduction rule

r ∈ {AppDai; LamApp; CaseCons; CaseDai; CaseLam},

we have AppLam // r.

The commutation between AppLam and CaseCase is more delicate to handle since

both rules may duplicate redexes of the other kind during contraction. However, the

problem is greatly simplified if we replace AppLam by ⇒ (parallel AppLam-reduction),

since:

Lemma 11

CaseCase strongly commutes with ⇒.

Proof

By induction on the derivation of ⇒ (cf. Appendix A). �

Proposition 6 (7/12 )

AppLam // CaseCase.

Proof

By Lemma 4, we know that CaseCase commutes with ⇒. But since we know

that ⇒∗ =→∗
β , we are done. �
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The following lemma describes the interaction between the reduction rules AppLam

and LamDai, generalising critical pair (2) of Figure 2:

Lemma 12 (AppLam/LamDai)

The following diagram holds:

•
AL

����
��

�� LD

���
��

��
�

•

LD

∗

��

•

AL+AD��•

Proof

By structural induction on the initial term (top of the diagram). In all configurations

where the initial AppLam- and LamDai-redexes are disjoint, contracting the AppLam-

redex may duplicate the LamDai-redex (hence →∗
LD

to close on the l.h.s.) whereas

contracting the LamDai-redex leaves the AppLam-redex unaffected (hence →AL to

close on the r.h.s.). In the configuration of the critical pair AppLam/LamDai, we need

no LamDai-reduction step to close on the l.h.s., but a single AppDai-reduction step

to close on the r.h.s. (hence the use of AD). �

Lemma 13 (AppDai/LamDai)

The following diagram holds:

•
AD

����
��

�� LD

���
��

��
�

•

LD

=

��

•

AD��•

Proof

Obvious since both rules are linear and induce no critical pair. Notice that

contracting the AppDai-redex may erase the LamDai-redex, hence the ‘=’ to close on

the l.h.s. �

The argument for the need of →= in the previous proof will be used in the proof

of other lemmas without explicit mention.

By merging the diagrams of Lemmas 12 and 13 we deduce:

Lemma 14

LamDai strongly commutes with AppLam + AppDai.

Proposition 7 (8/12 )

AppLam + AppDai // LamDai.

Again, the following lemma describes the interaction between the reduction rules

LamApp and AppDai, generalising critical pair (4) of Figure 2:
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Lemma 15 (LamApp/AppDai)

The following diagram holds:

•
LA

����
��

�� AD

���
��

��
�

•

AD

=

��

•

LA+LD

=

��•

(The proof follows the same idea as for Lemma 12.)

Lemma 16

LamApp + LamDai strongly commutes with AppLam + AppDai:

•
LA+LD

����
��

�� AL+AD

���
��

��
�

•
=

AL+AD ��

•
∗

LA+LD��•

Proof

The proof proceeds by merging the following diagrams, that cover all the possible

cases when M →LA+LD M1 and M →AL+AD M2:

•
LA

����
��

�� AL

���
��

��
�

•
=

AL ��

•
∗

LA��•

•
LA

����
��

�� AD

���
��

��
�

•
=

AD ��

•
=

LA+LD��•

•
LD

����
��

�� AL+AD

���
��

��
�

•
=

AL+AD ��

•
∗

LD��•
The first diagram is Lemma 10 with rule r = LamApp, the second diagram is

Lemma 15, and the third diagram is Lemma 14. �

Proposition 8 (9/12 )

AppLam + AppDai // LamApp + LamDai.

Lemma 17 (CaseApp/CaseLam)

The following diagrams hold:

•
CA

����
��

�� CL

���
��

��
�

•

CL ��

•

CA��•

•
CA

����
��

�� CL

∗ ���
��

��
�

•

CL

∗

��

•

CA��•

•
CA

∗����
��

�� CL

���
��

��
�

•

CL ��

•

CA

∗

��•

Proof

The first diagram is proved by induction on the top term (there is no critical pair).

The second (resp. third) diagram follows from diagram 1 by induction on the number

of CaseLam (resp. CaseApp) reduction steps. �
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Lemma 18 (CaseApp/AppLam)

The following diagrams hold:

•
CA

����
��

�� AL

���
��

��
�

•
CL

=
��

•

CA

∗

��
•

AL
��•

•
CA

∗����
��

�� AL

���
��

��
�

•
CL

∗
��

•

CA

∗

��
•

AL
��•

Proof

The first diagram is obtained by generalising critical pair (5) of Figure 2, following

the spirit of Lemmas 12 and 15. The second diagram is deduced from the first, by

induction on the number of CaseApp-reduction steps (top left), using the second

diagram of Lemma 17 to close. �

Proposition 9 (10/12 )

AppLam + CaseLam // CaseApp.

Proof

By induction on the number of (AppLam + CaseLam)-reduction steps, using the third

diagram of Lemma 17 and the second diagram of Lemma 18. �

Lemma 19 (CaseApp/AppDai)

The following diagram holds:

•
CA

����
��

�� AD

���
��

��
�

•
CD

=
��

•

CD+CA

=

��
•

AD
��•

Proof

This diagram is obtained by generalising critical pair (6) of Figure 2, following the

spirit of Lemmas 12 and 15. �

Lemma 20 (CaseLam/LamApp)

The following diagram holds:

•
CL

����
��

�� LA

���
��

��
�

•
CA

=
��

•

CL

=

��
•

LA
��•

Proof

This diagram is obtained by generalising critical pair (7) of Figure 2. �
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Lemma 21 (CaseLam/LamDai)

The following diagram holds:

•
CL

����
��

�� LD

���
��

��
�

•
CD

=
��

•

CL+CD��
•

LD
��•

Proof

This diagram is obtained by generalising critical pair (8) of Figure 2. �

Lemma 22

The following diagrams hold:

•
LA+CA

����
��

�� AL+CL

���
��

��
�

•
CL

=
��

•

LA+CA

∗

��
•

AL

=
��•

•
LA+CA

∗����
��

�� AL+CL

���
��

��
�

•
CL

∗
��

•

LA+CA

∗

��
•

AL

=
��•

Proof

The first diagram is obtained by merging the following diagrams that cover all the

possible cases:

•
LA

����
��

�� AL

���
��

��
�

•

AL

=

��

•

LA

∗

��•

•
LA

����
��

�� CL

���
��

��
�

•

CL

=

��

•
CA

=
��•

LA
��•

•
CA

����
��

�� AL

���
��

��
�

•
CL

=
��

•

CA

∗

��
•

AL
��•

•
CA

����
��

�� CL

���
��

��
�

•

CL ��

•

CA��•
The diagrams above come from Lemmas 10, 20, 18 and 17, respectively. The

second diagram is deduced from the first diagram, by induction on the number of

(LamApp + CaseApp)-reduction steps (see Appendix A for the details). �

Proposition 10 (11/12 )

AppLam + CaseLam // LamApp + CaseApp.

Proof

From the second diagram of Lemma 22, by induction on the number of (AppLam +

CaseLam)-reduction steps. �

Lemma 23

Let s1 = AppLam + AppDai + CaseDai + CaseLam and s2 = LamApp + LamDai +

CaseDai + CaseApp. The following diagram holds:

•
s1

����
��

�� s2

���
��

��
�

•
s2

∗

��

•
CL+CD

=
��•

s1

=
��•
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Proof

The proof proceeds by merging the following diagrams, that cover all the possible

cases:

•
AL

����
��

�� LA

���
��

��
�

•

LA

∗

��

•

AL

=

��•

•
AL

����
��

�� LD

���
��

��
�

•

LD

∗

��

•

AL+AD��•

•
AL

����
��

�� CA

���
��

��
�

•

CA

∗

��

•
CL

=
��•

AL
��•

•
AL

����
��

�� CD

���
��

��
�

•

CD

∗

��

•

AL

=

��•
(Lemma 10) (Lemma 12) (Lemma 18) (Lemma 10)

•
AD

����
��

�� LA

���
��

��
�

•

LA+LD

=

��

•

AD

=

��•

•
AD

����
��

�� LD

���
��

��
�

•

LD

=

��

•

AD��•

•
AD

����
��

�� CA

���
��

��
�

•

CD+CA

=

��

•
CD

=
��•

AD
��•

•
AD

����
��

�� CD

���
��

��
�

•

CD

=

��

•

AD

=

��•
(Lemma 15) (Lemma 13) (Lemma 19)

•
CL

����
��

�� LA

���
��

��
�

•
CA

=
��

•

CL

=

��
•

LA
��•

•
CL

����
��

�� LD

���
��

��
�

•
CD

=
��

•

CL+CD��
•

LD
��•

•
CL

����
��

�� CA

���
��

��
�

•

CA ��

•

CL��•

•
CL

����
��

�� CD

���
��

��
�

•

CD ��

•

CL

=

��•
(Lemma 20) (Lemma 21) (Lemma 17)

•
CD

����
��

�� LA

���
��

��
�

•

LA

=

��

•

CD

=

��•

•
CD

����
��

�� LD

���
��

��
�

•

LD

=

��

•

CD��•

•
CD

����
��

�� CA

���
��

��
�

•

CA

=

��

•

CD��•

•
CD

����
��

�� CD

���
��

��
�

•

CD

=

��

•

CD

=

��•
(Non-annotated diagrams describe the interaction between two linear rules that have

no critical pair.) �

Proposition 11 (12/12 )

AppLam+AppDai+CaseDai+CaseLam commutes with LamApp+LamDai+CaseDai+

CaseApp.

Proof

Again, let s1 = AppLam + AppDai + CaseDai + CaseLam and s2 = LamApp + LamDai +

CaseDai+CaseApp. The proof of confluence is done by induction on the (s2+CL+CD)-

depth of the top term, using Lemma 23 to close the diagram. �

5 Separation

In this section, we now prove the weak separation theorem for λBC, which basically

expresses that two distinct normal forms of the calculus can be separated using a

well chosen context. Since the calculus provides no mechanism to recover a pattern

matching failure (represented by a subterm of the form {|θ|}. c where c is unbound
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in θ), we have to exclude all such subterms from the separation process – which

explains the distinction between defined and undefined normal forms we introduce

in Section 5.1.

As for Böhm’s theorem in the pure λ-calculus, the main technical difficulty is to

separate head normal forms of different arities (i.e. starting with a different number

of λ-abstractions). To solve this problem, we split the separation process in two

steps. First, we define a notion of disagreement (at some depth d), and show that

two distinct normal forms of the calculus can be η-expanded (‘cooked’) in such a

way that they disagree at some depth (Lemma 26). The advantage of the notion of

disagreement is that it maintains the consistency of arities of all head-normal forms

that are encountered along the disagreement path, thus preparing both terms for

separation. Once this property has been proved, it suffices to show that any pair of

disagreeing terms can be separated using a suitable context (Prop. 13).

This section is organised as follows. In Section 5.1 we define the different notions

of normal forms we will use throughout the proof, as well as the notions of defined

and undefined terms. Separation contexts are introduced in Section 5.2, as well as

the corresponding notion of observation. In Section 5.3 we introduce the standard

encoding of tuples in the λ-calculus and study its interactions with the case construct,

before showing how we technically separate distinct free variables in Section 5.4. The

formal definition of disagreement is introduced in Section 5.5, with the corresponding

cooking lemma (Lemma 26). Then we introduce the notion of parallel substitution

in Section 5.6 before proving the main proposition (Prop. 13) in Section 5.7.

5.1 Quasi-normal forms

Definition 8 (Head term)

We call a head term (and write H , H1, H
′, etc.) any term that has one of the following

four forms:

Head term H ::= x | c

| {|θ|}. x | {|θ|}. c (c /∈ dom(θ))

When a head term H is of one of the first three forms (variable, constructor, case

binding on a variable), we say that H is defined. When H is of the last form (case

binding on an unbound constructor), we say that H is undefined.

Definition 9 (Quasi-head normal form)

A term M is said to be in quasi-head normal form if it has one of the following two

forms

Quasi-hnf M ::= � | λx1 · · · xn.HN1 · · ·Nk

where H is an arbitrary head term, called the head of M, and where N1, . . . , Nk are

arbitrary terms (k � 0).

Here, the prefix ‘quasi’ expresses that such terms are in head normal form w.r.t.

all the reduction rules, but (possibly) the rule LamApp (a.k.a. η). For instance, the

term λx. cx is in quasi-head normal form according to the definition above, but still
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contains an η-redex at root position. In what follows, ‘quasi’ will systematically refer

to ‘all the reduction rules but LamApp’.

As for head terms, we distinguish defined quasi-head normal forms from undefined

ones, by saying that a quasi-head normal form M is defined when it has one of the

forms

M ::= � | λx1 · · · xn.HN1 · · ·Nk (where H is defined)

and that M is undefined otherwise, that is, when M has the form

M ::= λx1 · · · xn. ({|θ|}. c)N1 · · ·Nk (c /∈ dom(θ))

More generally, we call a defined term (resp. an undefined term) any term that

reduces in zero or more steps to a quasi-head normal form which is defined (resp.

undefined). The class of defined terms is closed under arbitrary reduction, as for

the class of undefined terms. Moreover, the class of undefined terms is closed under

arbitrary substitution. (The notion of substitution will be defined in Section 5.6.)

Definition 10 (Quasi-normal form)

A term (resp. a case binding) is said to be in quasi-normal form when it is in normal

form w.r.t. all the reduction rules but LamApp.

Terms (resp. case bindings) that are in quasi-normal form are simply called quasi-

normal terms (resp. quasi-normal case bindings). In particular, we call a quasi-normal

head term any head term H which is in quasi-normal form. These notions have the

following syntactic characterisation:

Proposition 12

Quasi-normal terms, quasi-normal head terms, and quasi-normal case bindings are

(mutually) characterised by the following BNF:

Q.n.-terms

Q.n.-head-terms

Q.n.-case bind.

N ::= � | λx1 · · · xn.HN1 · · ·Nk (k � 0)

H ::= x | c | {|θ|}. x | {|θ|}. c (c /∈ dom(θ)

θ ::= c1 �→ N1; . . . ; cp �→ Np (p � 0)

5.2 Separation contexts

The notion of context with one hole (notation C[], C ′[], etc.) is defined in the λ-

calculus with constructors as expected. The term obtained by filling a context with

one hole C[] with a term M is written C[M], and the composition of two contexts

C[] and C ′[] is written C ′[C[]].

In what follows, we will mainly use contexts of a particular form, namely,

evaluation contexts:

Evaluation contexts E[] ::= []N1 · · ·Nn | {|θ|}. []N1 · · ·Nn

(The second form should be read ({|θ|}. [])N1 · · ·Nn.)

Notice that the composition E ′[E[]] of two evaluation contexts E[] and E ′[] is not

always an evaluation context, but that it always reduces to an evaluation context
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using zero, one or several steps of the CaseApp rule, possibly followed by a single

step of the CaseCase rule:[
[]N1 · · ·Nk

]
N ′

1 · · ·N ′
k′ = []N1 · · ·NkN

′
1 · · ·N ′

k′[
{|θ|}. []N1 · · ·Nk

]
N ′

1 · · ·N ′
k′ = {|θ|}. []N1 · · ·NkN

′
1 · · ·N ′

k′

{|θ′|}.
[

[]N1 · · ·Nk

]
N ′

1 · · ·N ′
k′ →∗ {|θ′|}. []N1 · · ·NkN

′
1 · · ·N ′

k′

{|θ′|}.
[

{|θ|}. []N1 · · ·Nk

]
N ′

1 · · ·N ′
k′ →∗ {|θ′ ◦ θ|}. []N1 · · ·NkN

′
1 · · ·N ′

k′

Remark 1

An evaluation context E[] can always be regarded as a term (of a particular form)

that contains exactly one occurrence of a distinguished variable depicted [] – the hole.

In particular, since the unique occurrence of the hole [] in an evaluation context E[]

is outside the scope of all the binders of E[], the operation of replacement E[M]

works just as the ordinary operation of substitution E{[] := M} of λ-calculus. (This

is of course not the case for the general notion of context with one hole – think of

C[x] where C[] = λx. [].)

The daimon � which represents immediate termination naturally absorbs all the

evaluation contexts:

Lemma 24

In any evaluation context E[] one has E[�] →∗ �.

Symmetrically, each subterm of the form {|θ|}. c (with c /∈ dom(θ)) blocks the

computation process at head position so that undefined terms absorb all evaluation

contexts as well:

Lemma 25

Given an undefined term U, the term E[U] is undefined in any evaluation context

E[].

The daimon � and undefined terms are thus natural candidates to define the

notion of separation:

Definition 11 (Separability)

We say that two terms M1 and M2 are:

− weakly separable if there exists a context with one hole C[] such that either:

• C[M1] →∗ � and C[M2] is undefined, or

• C[M2] →∗ � and C[M1] is undefined;

− strongly separable if there exists two contexts C1[] and C2[] such that

• C1[M1] →∗ � and C1[M2] is undefined, and

• C2[M2] →∗ � and C2[M1] is undefined.

On the other hand, two undefined terms cannot be separated from each other

(precisely because their heads block all computations), so that we have to exclude

them from our study of the separation property.
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Definition 12 (Completely defined quasi-normal term)

A quasi-normal term M is said to be completely defined if it contains no subterm of

the form {|θ|}. c, where c /∈ dom(θ).

In what follows, we will show that distinct completely defined normal terms are

weakly separable.

5.3 Tuples and casuples

In order to retrieve subterms in a given term in normal form (the so called ‘Böhm-

out’ technique), we need tuples, that are encoded as usual by setting 〈M1; . . . ;Mn〉 ≡
λp. pM1 · · ·Mn. In what follows, we will use a slightly more general notation to

represent the partial application of the n-uple constructor to its first k arguments

and waiting the remaining n − k arguments:

〈M1; . . . ;Mk; ∗n−k〉 ≡ λxk+1 · · · xnp. pM1 · · ·Mkxk+1 · · · xn (0 � k � n)

With these notations, the n-uple constructor is written 〈∗n〉. Its arguments are

successively filled in as follows:

〈∗n〉M1M2 · · ·Mn → 〈M1; ∗n−1〉M2 · · ·Mn → · · · → 〈M1;M2; . . . ;Mn〉,

the (n + 1)th argument finally acting as an eliminator:

〈M1;M2; . . . ;Mn〉P → PM1M2 · · ·Mn.

When a tuple – or a partial application of the n-uple constructor – is attacked on

the lefthand side by a case construct

{|θ|}. 〈−→
M; ∗〉 = {|θ|}. λ	xp. p−→

M	x →∗ λ	xp. {|θ|}. p−→
M	x,

the case construct goes through all the abstractions and stops in front of the head

variable (which is here the elimination variable). We then obtain a hybrid object

formed as a combination of a case construct with a tuple – a casuple – that will be

written:

{|θ | M1; . . . ;Mk; ∗n−k〉〉 ≡ λxk+1 · · · xnp. {|θ|}. pM1 · · ·Mkxk+1 · · · xn.

Casuples work just as ordinary tuples

{|θ | ∗n〉〉M1M2 · · ·Mn → {|θ | M1; ∗n−1〉〉M2 · · ·Mn

→ · · · → {|θ | M1;M2; . . . ;Mn〉〉,

except that they preserve the entangled case construct through the successive partial

applications. When the tuple is finally eliminated, the case is then restored and put

in head position:

{|θ | M1;M2; . . . ;Mn〉〉P → {|θ|}. PM1M2 · · ·Mn.

Casuples frequently appear in the process of separating terms (cf. Proposition 13

and its proof in Appendix A), typically when a variable x in a subterm of the form

({|θ|}. x)N1 · · ·Nk is substituted (during a β-contraction step) by a n-uple constructor

sent by the separation context to analyse this subterm.
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5.4 Encoding names

Separation of distinct free variables is achieved by substituting them with closed

terms that can be easily separated. For that, we associate to every variable x a

unique numeral sn0 that we write x (using the same name written in typewriter face)

and call the symbol of x.

The equality of two symbols x and y (associated to variables x and y) is easily

tested using the equality test for natural numbers:

eq ≡ Θ(λfxy. {| 0 �→ {|0 �→ true; s �→ λy′. false|}. y;
s �→ λx′. {|0 �→ false; s �→ λy′. fx′y′|}. y|}. x)

(where Θ is Turing’s fixpoint combinator, cf. Section 2.3). We easily check that

eq (sn0) (sm0) →∗

{
true if n = m

false if n �= m

for all n, m ∈ �, so that the term eq x y reduces to true if and only if x and y are

the same variable, and it reduces to false otherwise.

5.5 Disagreement

Definition 13 (Skeleton equivalence)

We say that two defined head terms H1 and H2 have the same skeleton and write

H1 ≈ H2 if either:

− H1 = x1 and H2 = x2 for some x1, x2 ∈ V, and x1 = x2; or

− H1 = c1 and H2 = c2 for some c1, c2 ∈ C, and c1 = c2; or

− H1 = {|θ1|}. x1 and H2 = {|θ2|}. x2 for some case bindings θ1, θ2 and for some

x1, x2 ∈ V, and dom(θ1) = dom(θ2) and x1 = x2.

Considering the negation of the former equivalence, it is clear that two defined

head terms H1 and H2 have not the same skeleton (H1 �≈ H2) when either:

− H1 is a variable, and H2 is a constructor (or symmetrically); or

− H1 is a case-variable, and H2 is a constructor (or symmetrically); or

− H1 is a case-variable, and H2 is a variable (or symmetrically); or

− H1 and H2 are both variables, but not the same variable; or

− H1 and H2 are both constructors, but not the same constructor; or

− H1 = {|θ1|}. x1 and H2 = {|θ2|}. x2 for some case bindings θ1, θ2 and for some

x1, x2 ∈ V, and either x1 �= x2 or dom(θ1) �= dom(θ2).

(Notice that we do not consider the case of a head term of the form {|θ|}. c where

c /∈ dom(θ), which is excluded from our definition.)

Definition 14 (Disagreement at depth d)

For each numeral d ∈ �, we define a binary relation on the class of completely

defined quasi-normal terms, called the disagreement relation at depth d. This relation,

written disd(M1,M2) (‘M1 and M2 disagree at depth d’), is defined by induction

on d ∈ � as follows:
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− (Base case) We write dis0(M1,M2) if either:

• M1 = � and M2 = λx1 · · · xn.HN1 · · ·Nk; or

• M1 = λx1 · · · xn.HN1 · · ·Nk and M2 = �; or

• M1 = λx1 · · · xn.H1N1,1 · · ·N1,k1
and

M2 = λx1 · · · xn.H2N2,1 · · ·N2,k2
and

H1 �≈ H2.

− (Inductive case) For all d ∈ �, we write disd+1(M1,M2) if

M1 = λx1 · · · xn.H1N1,1 · · ·N1,k1
and

M2 = λx1 · · · xn.H2N2,1 · · ·N2,k2
and

H1 ≈ H2, and if either

• H1 = {|θ1|}. y and H2 = {|θ2|}. y for some case bindings θ1, θ2 and for some

variable y, and there is a constructor c ∈ dom(θ1) = dom(θ2) such that

disd(θ1(c), θ2(c)); or

• There is a position 1 � k � min(k1, k2) such that disd(N1,k , N2,k).

Lemma 26 (Cooking lemma)
If M1 and M2 are two completely defined normal terms (w.r.t. all the reduction

rules including LamApp = η) such that M1 �= M2, then one can find two completely

defined quasi-normal terms M ′
1 and M ′

2 such that M ′
1 →∗

η M1, M
′
2 →∗

η M2, and

disd(M
′
1,M

′
2) for some d ∈ �.

Proof
This is proved by induction on the maximum (or the sum) of the sizes of M1 and M2,

doing case analysis on M1 and M2:

– Case 1. M1 = � and M2 is of the form M2 = λx1 · · · xn.HN1 · · ·Nk (or

symmetrically). Then M1 and M2 disagree at depth 0 by definition.
– Case 2. M1 and M2 are of the form

M1 = λx1 · · · xn1
. H1N1,1 · · ·N1,k1

and

M2 = λx1 · · · xn2
. H2N2,1 · · ·N2,k2

.

Without loss of generality, we can assume than n1 � n2, and that the first

n1 abstractions of M2 use the same variable names as the n1 abstractions

of M1. We distinguish two cases, depending on n1 = n2 or n1 �= n2.
– Case 2.1. n1 = n2 = n. We distinguish three cases: H1 �≈ H2, H1 ≈ H2 but

H1 �= H2, and finally H1 = H2.
– Case 2.1.1. H1 �≈ H2. In this case, M1 disagrees with M2 at depth 0.
– Case 2.1.2. H1 ≈ H2 but H1 �= H2. This means that H1 and H2 are of the

form H1 = {|θ1|}. y and H2 = {|θ2|}. y, with dom(θ1) = dom(θ2). Since H1 �= H2,

there exists a constructor c and two terms P1 and P2 such that (c �→ Pi) ∈ θi for

i = 1, 2, and P1 �= P2. By induction hypothesis, there are defined quasi-normal

terms P ′
i →∗

η Pi (for i = 1, 2) such that disd(P1, P2) for some d ∈ �. For i = 1, 2,

let θ′
i be the case binding θi in which the binding (c �→ Pi) has been replaced

by the binding (c �→ P ′
i ), and let M ′

i = λx1 · · · xn. ({|θ′
i |}. y)Ni,1 · · ·Ni,ki We have

M ′
i →∗

η Mi for i = 1, 2, and disd+1(M
′
1,M

′
2).

– Case 2.1.3. H1 = H2 = H . In this case, our initial assumption M1 �= M2

expresses that the lists (N1,1, . . . , N1,k1
) and (N2,1, . . . , N2,k2

) differ. Again, we

distinguish two cases:
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– Case 2.1.3.1. There exists 1 � k � min(k1, k2) such that N1,k �= N2,k . By

induction hypothesis, there are terms N ′
i,k (i = 1, 2) such that N ′

i,k →∗
η Ni,k

and disd(N
′
1,k , N

′
2,k) for some d ∈ �. Let then define M ′

i (i = 1, 2) from Mi

by replacing the subterm Ni,k by N ′
i,k . We have M ′

i →∗
η Mi for i = 1, 2, and

disd+1(M
′
1,M

′
2).

– Case 2.1.3.2. For all 1 � k � min(k1, k2), one has N1,k = N2,k . From

M1 �= M2, we get k1 �= k2. Without loss of generality, let us assume that

k1 < k2, and consider a fresh variable y. Since y �= N2,k1+1, there exists by

induction hypothesis two terms N ′
1,k1+1 and N ′

2,k1+1 such that N ′
1,k1+1 →∗

η y,

N ′
2,k1+1 →∗

η N2,k1+1 and disd(N
′
1,k1+1, N

′
2,k1+1) for some d ∈ �. Let us set

M ′
1 = λx1 · · · xny.HN1,1 · · ·N1,k1

N ′
1,k1+1 and

M ′
2 = λx1 · · · xny.HN2,1 · · ·N2,k1

N ′
2,k1+1N2,k1+2 · · ·N2,k2

y.

By construction we have M ′
i →η Mi for i = 1, 2 and disd+1(M

′
1,M

′
2).

– Case 2.2. n1 < n2. In order to keep the same number of abstractions in M1

and M2, let us η-expand M1 by letting

M ′
1 = λx1 · · · xn2

. H1N1,1 · · ·N1,k1
xn1+1 · · · xn2

.

Notice that M ′
1 �= M2, since M2 is in η-normal form whereas M ′

1 is not. The

rest of the proof proceeds as in case 2.1, replacing M1 by M ′
1.

(The reader is invited to check that the proof of case 2.1. only relies on the

fact that n1 = n2, and does not use the fact that M1 and M2 are η-normal

forms – which is no more the case when we replace M1 by M ′
1.) �

5.6 Substitutions

A (parallel) substitution4 is a finite set of pairs of the form

σ = {(x1 := N1); . . . ; (xn := Nn)}

(where x1, . . . , xn are variables and N1, . . . , Nn terms). Given a term M (resp. a case

binding θ) and a substitution σ, we write M[σ] (resp. θ[σ]) the term (resp. the case

binding) defined by

x[σ] ≡
{
M if x bound to M in σ

x if x unbound in σ

c[σ] ≡ c

(λx.M)[σ] ≡ λx.M[σ] (x fresh w.r.t. σ)

(MN)[σ] ≡ M[σ]N[σ]

({|θ|}.M)[σ] ≡ {|θ[σ]|}.M[σ]

(c1 �→ M1; . . . ; cn �→ Mn)[σ] ≡ (c1 �→ M1[σ]; . . . ; cn �→ Mn[σ])

Given a finite set of variables X = {x1; . . . ; xn} and an integer K � 0, we write

σK
X ≡ {(x1 := 〈x1; ∗K〉); . . . ; (xn := 〈xn; ∗K〉)}

4 The notion of parallel substitution should not be confused with the sequential substitution M{x1 :=
N1} · · · {xn := Nn}. However, both notions coincide in the case where (FV (N1) ∪ · · · ∪ FV (Nn)) ∩
{x1; . . . ; xn} = �.
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the substitution which maps each variable xi ∈ X to a (K + 1)-uple constructor

which is partially applied to the symbol xi of the variable xi.

5.7 The separation theorem

Let M be a term in quasi-normal form. We call the application strength of M the

largest integer k � 0 such that M has a subterm of the form HN1 · · ·Nk .

Lemma 27

Let M be a defined quasi-head normal term which is not the daimon, that is, a term

of the form

M ≡ λx1 · · · xn.HN1 · · ·Nk

(where H is defined). Given a finite set X of variables such that FV (M) ⊂ X and

an integer K � k, one can find a closed evaluation context E1[] such that

E1

[
M[σK

X ]
]

→∗ �

and another closed evaluation context E2[] such that

E2

[
M[σK

X ]
]

is undefined.

Proof

Let us write X ′ = X ∪ {x1; . . . ; xn}. We distinguish the following cases, depending

on the shape of the head H .

1. H = y (variable). Take

E1[] ≡ []〈x1; ∗K〉 · · · 〈xn; ∗K〉?k+1 · · ·?K�

where ?k+1, . . . , ?K are arbitrary closed terms. We have

E1

[
M[σK

X ]
]

= (λx1 · · · xn. yN1 · · ·Nk)[σ
K
X ]〈x1; ∗K〉 · · · 〈xn; ∗K〉?k+1 · · ·?K�

→∗ 〈y, ∗K〉N1[σ
K
X ′ ] · · ·Nk[σ

K
X ′ ]?k+1 · · ·?K�

→∗ � y N1[σ
K
X ′] · · ·Nk[σ

K
X ′] ?k+1 · · ·?K

→∗ �

Similarly for E2 we take E2[] ≡ []〈x1; ∗K〉 · · · 〈xn; ∗K〉?k+1 · · ·?KU where

?k+1, . . . , ?K are arbitrary terms, and U any closed undefined head term.

2. H = {|θ|}. y (case variable). It suffices to take the very same evaluation contexts

E1[] and E2[] as above. The additional case construct is absorbed both by the

daimon � and by the undefined head term U.

3. H = c (constructor). Set E1[] ≡ {|c �→ �|}. []. We check that

E1

[
M[σK

X ]
]

= {|c �→ �|}. (λx1 · · · xn. cN1 · · ·Nk)[σ
K
X ]

=
(
{|c �→ �|}. (λx1 · · · xn. cN1 · · ·Nk)

)
[σK

X ]

→∗ (
λx1 · · · xn. ({|c �→ �|}. c)N1 · · ·Nk

)
[σK

X ]

→∗ (
λx1 · · · xn.�N1 · · ·Nk

)
[σK

X ]

→∗ �

Similarly, for E2[] we take E2[] ≡ {||}. [] (empty case construct). �

https://doi.org/10.1017/S0956796809007369 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007369


612 A. Arbiser et al.

Proposition 13 (Separation of disagreeing terms)

Let K be a natural number, and M1, M2 be completely defined quasi-normal terms

whose application strength is less than or equal to K , and such that M1 and M2

disagree at some depth d ∈ �. Then there exists a closed evaluation context E[]

such that either

− E
[
M1[σ

K
X ]

]
→∗ � and E

[
M2[σ

K
X ]

]
is undefined, or

− E
[
M2[σ

K
X ]

]
→∗ � and E

[
M1[σ

K
X ]

]
is undefined;

where X is any finite set of variables that contains at least the free variables of M1

and M2, and where σK
X is the substitution defined in Section 5.6.

Proof

The proof proceeds by induction on the depth d of the disagreement between M1

and M2 (cf. appendices for the details). �

Theorem 2 (Separation)

Let M1 and M2 be completely defined terms in normal form. If M1 �= M2, then M1

and M2 are weakly separable.

Proof

Assume that M1 and M2 are distinct normal terms. By the cooking lemma, there

exist two completely defined quasi-normal terms M ′
1 and M ′

2 such that M ′
i →∗

η Mi

(for i = 1, 2) and disd(M
′
1,M

′
2) for some d ∈ �. Now set X = FV (M ′

1) ∪ FV (M ′
2)

and define K as the maximum of the application strengths of M ′
1 and M ′

2. From the

latter proposition, there exists a closed evaluation context E[] such that

E
[
M ′

1[σ
K
X ]

]
→∗ � and E

[
M ′

2[σ
K
X ]

]
undefined (or symmetrically)

It suffices to set C[] ≡ E[(λx1 · · · xn. [])σK
X (x1) · · · σK

X (xn)] (where x1, . . . , xn are the

elements of X) and we are done by Corollary 3 (Church–Rosser). �

6 Conclusion

We have introduced an extension of λ-calculus, λBC, in which pattern matching

is implemented via a mechanism of case analysis that behaves like a head linear

substitution over constructors. We have shown that the reduction relation of λBC
is confluent and that it is complete in the sense that it provides sufficiently many

reduction rules to identify all observationally equivalent normalisable terms.

Using the divide-and-conquer method for other proofs of confluence An original

aspect of this work is the way we proved confluence by systematically studying

the commutation properties of all pairs of subsystems of λBC. Surprisingly, the

mechanical propagation rule

‘if A // B and A // C then A // (B + C)’

(combined with the primitive knowledge of all commutation properties between

subsystems that do not involve AppLam) is sufficient to reduce the proof of the

expected 7,784 non-trivial commutation lemmas to only 12 primitive lemmas, that
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are established by hand. It would be interesting to investigate further to see whether

the same method can be used to prove the confluence of other rewrite systems with

many reduction rules – typically, systems with explicit substitutions.

A notion of Böhm tree for λBC The separation theorem we proved suggests that

head normal forms of λBC could be the adequate bricks to define a notion of

Böhm-tree (Böhm 1979; Barendregt 1984) for λBC – and more generally, for ML-

style pattern matching. However, the fact that it is a weak separation theorem also

suggests that the observational ordering is non-trivial on the set of normal forms.

Characterising observational ordering on normal forms could be the next step to

deepen our understanding of both operational and denotational semantics of λBC.

Which type system for λBC? The reduction rules CaseApp and CaseLam which are

the starting point of this work deeply challenge the traditional intuition of the

notion of type, for which functions and constructed values live in different worlds.

However, the good operational semantics of the calculus naturally raises the exciting

question of finding a suitable type system for λBC.
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Appendix A. Proofs

Proof of Proposition 1 p. 590 (Strong normalisation of the BC-calculus).

We define a measure function h on both terms (notation: M, N, etc.) and case

bindings (notation: θ, φ, etc.) of the BC-calculus by letting

h(x) = 1 h(MN) = h(M) + h(N)

h(c) = 1 h(λx.M) = h(M) + 1

h(�) = 1 h({|θ|}.M) = (h(θ) + 2)h(M)

h(θ) =
∑

c∈dom(θ)

h(θ(c))

Note that for all terms and case bindings M we have h(M) � 1.

First, we prove that for all case bindings θ, φ: h(θ ◦ φ) = (h(θ) + 2) × h(φ). Let us

write φ = {ci �→ Ni}ki=1 (k � 0) and θ ◦ φ = {ci �→ {|θ|}. Ni}ki=1. We have

h(θ ◦ φ) =

k∑
i=1

h({|θ|}. Ni) =

k∑
i=1

(h(θ) + 2) × h(Ni)

= (h(θ) + 2) ×
k∑

i=1

h(Ni) = (h(θ) + 2) × h(φ). �

Now we prove that for every redex M �M ′ (reduction at root) of the BC-calculus,

we have h(M) > h(M ′). We distinguish the following eight cases:

– AppDai: �M → �

h(�M) = 1 + h(M) � 2 > 1 = h(�).

– LamApp: λx.M x → M (x /∈ FV (M))

h(λx.M x) = h(M) + 2 > h(M).

– LamDai: λx.� → �

h(λx.�) = 2 > 1 = h(�).

– CaseCons: {|θ|}. c → θ(c) (c ∈ dom(θ))

h({|θ|}. c) = (h(θ) + 2) × 1 � h(θ(c)) + 2 > h(θ(c)).

– CaseDai: {|θ|}.� → �

h({|θ|}.�) = (h(θ) + 2) × 1 � 2 > 1 = h(�).
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– CaseApp: {|θ|}. (MN) → ({|θ|}.M)N

h({|θ|}. (MN)) = (h(θ) + 2) × (h(M) + h(N))

� (h(θ) + 2) × h(M) + 2h(N)

> (h(θ) + 2) × h(M) + h(N) = h(({|θ|}.M)N)

– CaseLam: {|θ|}. λx.M → λx. {|θ|}.M (x /∈ FV (θ))

h({|θ|}. λx.M) = (h(θ) + 2) × (h(M) + 1)

� (h(θ) + 2) × h(M) + 2

> (h(θ) + 2) × h(M) + 1 = h(λx. {|θ|}.M)

– CaseCase: {|θ|}. {|φ|}.M → {|θ ◦ φ|}.M

h({|θ|}. {|φ|}.M) = (h(θ) + 2) × (h(φ) + 2) × h(M)

=
(
(h(θ) + 2) × h(φ) + 2h(θ) + 4

)
× h(M)

� ((h(θ) + 2) × h(φ) + 4) × h(M)

> ((h(θ) + 2) × h(φ) + 2) × h(M)

= (h(θ ◦ φ) + 2) × h(M) = h({|θ ◦ φ|}.M). �

Finally, we prove that if M → M ′ (resp. θ → θ′) in the BC-calculus, then h(M) >

h(M ′) (resp. h(θ) > h(θ′)). It is done by a straightforward induction on the following

rules:
M→M ′

M�M ′
λx.M→λx.M ′

M→M ′
MN→M ′N
M→M ′

MN→MN ′

N→N ′

{|θ|}.M→{|θ′ |}.M
θ→θ′

{|θ|}.M→{|θ|}.M ′

M→M ′
{ci �→Ni}ki=1→{ci �→N ′

i }ki=1

Ni0
→N ′

i0
Ni≡N ′

i (i�=i0) �

Proof of Lemma 8 p. 590 (Substitution Lemma).

By induction on M.

– If M = x we have by Lemma 7 that P {y := Q} = P {y := Q}.
– If M = y, we have that Q = Q since by hypothesis x /∈ FV (Q).

– If M = z( �= x, y), we have that z = z.

– If M = c a constructor, we have that c = c.

– If M = �, we have that � = �.

– If M = M1M2, M{x := P }{y := Q} =

M1{x := P }{y := Q}M2{x := P }{y := Q} =IH

M1{y := Q}{x := P {y := Q}}M2{y := Q}{x := P {y := Q}} =

M{y := Q}{x := P {y := Q}}.
– If M = λz.M1, M{x := P }{y := Q} =

λz.M1{x := P }{y := Q} =IH

λz.M1{y := Q}{x := P {y := Q}} =

M{y := Q}{x := P {y := Q}}.
– If M = θ = (ci �→ Mi)i=1..n, θ{x := P }{y := Q} =

(ci �→ Mi{x := P }{y := Q})i=1..n =IH

(ci �→ Mi{y := Q}{x := P {y := Q}})i=1..n =

θ{y := Q}{x := P {y := Q}}.
– If M = {|θ|}.M1, M{x := P }{y := Q} =

{|θ{x := P }{y := Q}|}.M1{x := P }{y := Q} =IH
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{|θ{y := Q}{x := P {y := Q}}|}.M1{y := Q}{x := P {y := Q}} =

M{y := Q}{x := P {y := Q}}.
�

Proof of Proposition 3 p. 597, item 1 (→AL ⊆ ⇒).

We show that M →AL N implies M ⇒ N by induction on M.

– If M = x, c,�, the result holds vacuously.

– If the reduction takes place at the root, say (λx.P )Q →AL P {x := Q}, then

(λx.P )Q ⇒ P {x := Q} using P ⇒ P , Q ⇒ Q, Corollary 1 and (pRef).

– If M = PQ →AL P ′Q = N, by IH P ⇒ P ′ so M ⇒ N by (pApp).

– If M = PQ →AL PQ′ = N, analogous.

– If M = λx.P →AL λx.P ′ = N, by IH P ⇒ P ′ so M ⇒ N by (pLam).

– If M = θ →AL θ′, let θ = (ci �→ Mi)i=1,...,n with Mj →AL M ′
j for some 1 � j � n

and θ′ = (ci �→ M ′
i )i=1,...,n where M ′

i = Mi for i �= j, then by IH Mj ⇒ M ′
j thus

θ ⇒ θ′ by (pCBind).

– If M = {|θ|}.M1 →AL {|θ′|}.M1 = N, by IH θ ⇒ θ′ so M ⇒ N by (pCase).

– If M = {|θ|}.M1 →AL {|θ|}.M ′
1 = N, by IH M1 ⇒ M ′

1 so M ⇒ N by (pCase).
�

Proof of Proposition 3 p. 597, item 2 (⇒ ⊆ →∗
AL

).

We prove that P ⇒ Q implies P
∗→AL Q by induction on the derivation of P ⇒ Q:

– if (pRef) was applied, trivial

– for (pAppLam), P = (λx.M)N →AL M{x := N} ∗→AL M ′{x := N ′} = Q, since by

IH M
∗→AL M ′ and N

∗→AL N ′, and using Corollary 1

– for (pApp), P = MN
∗→AL M ′N ′ = Q since by IH M

∗→AL M ′ and N
∗→AL N ′

– for (pLam), P = λx.M
∗→AL λx.M ′ = Q since by IH M

∗→AL M ′

– for (pCBind), P = (ci �→ Mi)i=1,...,n
∗→AL (ci �→ M ′

i )i=1,...,n = Q since by IH

Mi
∗→AL M ′

i for 1 � i � n

– for (pCase), P = {|θ|}.M ∗→AL {|θ′|}.M ′ = Q since by IH θ
∗→AL θ′ and M

∗→AL M ′.

�

Proof of Proposition 3 p. 597, item 3.

We first prove that, for every term and case binding M, for all terms P ,Q and every

variable y, if P ⇒ Q, then M{y := P } ⇒ M{y := Q}, by induction on M.

– If M = y, then we have P ⇒ Q.

– If M = x �= y, then by (pRef) x ⇒ x.

– If M = �, then by (pRef) � ⇒ �.

– If M = c a constructor, then by (pRef) c ⇒ c.

– If M = M1M2, then by IH and (pApp) M{y := P } = M1{y := P }M2{y := P } ⇒
M1{y := Q}M2{y := Q} = M{y := Q}.

– If M = λx.M1, then by IH and (pLam) M{y := P } = λx.M1{y := P }
⇒ λx.M1{y := Q} = M{y := Q}.
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– If M = θ = (ci �→ Mi)i=1,...,n, then by IH and (pCBind)

M{y := P } = (ci �→ Mi{y := P })i=1,...,n

⇒ (ci �→ Mi{y := Q})i=1,...,n = θ{y := Q}.
– If M = {|θ|}. N, then by IH and pCase

M{y := P } = {|θ{y := P }|}. N{y := P }
⇒ {|θ{y := Q}|}. N{y := Q} = M{y := Q}.

Now we generalize: for all terms and case bindings M,M ′, for all terms N,N ′ and

every variable y, if M ⇒ M ′ and N ⇒ N ′, then M{y := N} ⇒ M ′{y := N ′}, by

induction on the derivation of M ⇒ M ′.

– if (pRef) was applied, M = M ′, then by the above result M{y := N} ⇒ M ′{y :=

N ′}.
– for (pAppLam), M = (λx.P )Q, M ′ = P ′{x := Q′} with P ⇒ P ′ and Q ⇒ Q′, then

((λx.P )Q){y := N} = (λx.P {y := N})Q{y := N}. By IH, P {y := N} ⇒ P ′{y :=

N ′} and Q{y := N} ⇒ Q′{y := N ′}, thus

(λx.P {y := N})Q{y := N} ⇒ P ′{y := N ′}{x := Q′{y := N ′}}
= P ′{x := Q′}{y := N ′} (by Lemma 8)

= M ′{y := N ′} since x is fresh by the free variable convention.

– for (pApp), M = PQ, M ′ = P ′Q′ with P ⇒ P ′ and Q ⇒ Q′, then (PQ){y :=

N} = P {y := N}Q{y := N} ⇒IH P ′{y := N ′}Q′{y := N ′} = (P ′Q′){y := N ′}
– for (pLam), (λx.P ){y := N} = λx.P {y := N} ⇒IH λx.P ′{y := N ′} = (λx.P ′){y :=

N ′}
– for (pCase), (ci �→ Mi)i=1,...,n{y := N} = (ci �→ Mi{y := N})i=1,...,n ⇒IH (ci �→

M ′
i{y := N ′})i=1,...,n = (ci �→ M ′

i )i=1,...,n{y := N ′}
– for (pCBind), ({|θ|}. P ){y := N} = {|θ{y := N}|}. P {y := N} ⇒IH

{|θ′{y := N ′}|}. P ′{y := N ′} = ({|θ′|}. P ′){y := N ′}
�

Proof of Proposition 3 p. 597, item 4.

We prove that for all case bindings θ, θ′, φ, φ′, if θ ⇒ θ′ and φ ⇒ φ′ then

θ ◦ φ ⇒ θ′ ◦ φ′. Let φ = (di �→ Ni)i=1,...,n ⇒ (di �→ N ′
i )i=1,...,n = φ′ with Ni ⇒ N ′

i for all

1 � i � n. Then θ ◦ φ = (di �→ {|θ|}. Ni)i=1,...,n ⇒ (di �→ {|θ′|}. N ′
i )i=1,...,n = θ′ ◦ φ′. �

Proof of Proposition 3 p. 597, item 5 (diamond property).

We prove that the following diagrams hold (for terms and case bindings, respectively)

M

��
��

�
��

�
�� ��

���
�

M1

��

M2

��
M3

θ

��
��

�
��

�
�� ��

���
�

θ1

��

θ2

��
θ3

by induction on the derivation of M ⇒ M1 (resp. θ ⇒ θ1). We distinguish the

following cases:

1. (pRef) was applied, with M = M1, take M3 = M2.

2. (pAppLam) was applied, with M = (λx.P )Q, M1 = P ′{x := Q′} with P ⇒ P ′,

Q ⇒ Q′. From the definition of ⇒, one of the following cases hold:
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– either M2 = (λx.P ′′)Q′′ with P ⇒ P ′′, Q ⇒ Q′′, in which case

(λx.P )Q

��
��

��
�

��
��

�

�� ��
��

�
��

��
�

P ′{x := Q′} (λx.P ′′)Q′′

By IH the following diagrams close for some P ′′′, Q′′′:

P

��
��

�
��

�
�� ��

���
�

P ′

��
P ′′

��
P ′′′

Q

��
�������� ��

����

Q′

��
Q′′

��
Q′′′

By Proposition 3 (3), the desired diagram is closed taking M3 = P ′′′{x := Q′′′}.

– or M2 = P ′′{x := Q′′} with P ⇒ P ′′, Q ⇒ Q′′, in which case

(λx.P )Q

��
��

��
�

��
��

�

�� ��
��

�
��

��
�

P ′{x := Q′} P ′′{x := Q′′}

Again by Proposition 3 (3), the diagram is closed taking M3 = P ′′′{x := Q′′′}.

3. (pLam) was applied, with M = λx.P , M1 = λx.P ′, P ⇒ P ′′, and from the

definition of ⇒, we have M2 = λx.P ′ with P ⇒ P ′, in which case

λx.P

��
��

��
�

��
��

�

�� ��
��

�
��

��
�

λx.P ′ λx.P ′′

By IH we have

P

��
��

�
��

�
�� ��

���
�

P ′

��
P ′′

��
P ′′′

so that

λx.P ′

��

λx.P ′′

��
λx.P ′′′

4. (pCBind) was applied, with θ = (ci �→ Ni)i=1,...,n, θ
′ = (ci �→ N ′

i )i=1,...,n with Ni ⇒ N ′
i

for 1 � i � n and from the definition of ⇒ we have θ′′ = (ci �→ N ′′
i )i=1,...,n with

Ni ⇒ N ′′
i for 1 � i � n, in which case

θ

��
��

�
��

�
�� ��

���
�

θ′ θ′′
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so for every 1 � i � n we have by IH the diagram

Ni

��
������ ����

N ′
i

��
N ′′

i

��
N ′′′

i

then taking θ′′′ = (ci �→ N ′′′
i )i=1,...,n

θ′

��
θ′′

��
θ′′′

5. (pApp) was applied, with M = PQ, M1 = P ′Q′ with P ⇒ P ′, Q ⇒ Q′, so that

from the definition of ⇒ one of the following cases holds:

– either M2 = P ′′Q′′ with P ⇒ P ′′, Q ⇒ Q′′, in which case

PQ

��
��

��
�

��
��

�

�� ��
��

�
��

��
�

P ′Q′ P ′′Q′′

and by IH we have the diagrams

P

��
��

�
��

�
�� ��

���
�

P ′

��
P ′′

��
P ′′′

and

Q

��
�������� ��

����

Q′

��
Q′′

��
Q′′′

so that

P ′Q′

��

P ′′Q′′

��
P ′′′Q′′′

– or M2 = N ′′{x := Q′′} with P = λx.N, N ⇒ N ′′ and Q ⇒ Q′′, in which

case from the definition of ⇒ we know that P ′ = λx.N ′ with N ⇒ N ′. This

case is symmetrical with the first item of case 2, so the diagram is closed

analogously.

6. (pCase) was applied, with M = {|θ|}. Q, M1 = {|θ′|}. Q′, so that we have that

M2 = {|θ′′|}. Q′′ with θ ⇒ θ′′, Q ⇒ Q′′ and

{|θ|}. Q

��
��

��
�

��
��

�

�� ��
��

�
��

��
�

{|θ′|}. Q′ {|θ′′|}. Q′′

and by IH we have

Q

��
�������� ��

����

Q′

��
Q′′

��
Q′′′

and

θ

��
��

�
��

�
�� ��

���
�

θ′

��
θ′′

��
θ′′′

so that

{|θ′|}. Q′

��

{|θ′′|}. Q′′

��
{|θ′′′|}. Q′′′

�
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Proof of Lemma 11 p. 598 (Strong commutation of CaseCase with ⇒).

We prove that for all terms M, M1, M2 and for all case bindings θ, θ1, θ2

1. If M ⇒ M1 and M →CC M2, then there exists M3

such that M1
∗→CC M3 and M2 ⇒ M3.

2. If θ ⇒ θ1 and θ →CC θ2, then there exists θ3

such that θ1
∗→CC θ3 and θ2 ⇒ θ3.

We reason by mutual induction on the derivations M ⇒ M1 and θ ⇒ θ1. We have

the following cases:

1. (pRef) was applied, with M = M1, take M3 = M2.

2. (pAppLam) was applied, with M = (λx. P )Q, M1 = P ′{x := Q′}, P ⇒ P ′, Q ⇒ Q′.

There are two possibilities for the CC-reduction step:

– either M2 = (λx.P ′′)Q with P →CC P ′′, that is

(λx.P )Q
CC

���
��

��

�� ��
��

�
��

��
�

P ′{x := Q′} (λx.P ′′)Q

By IH the following diagram holds for some P ′′′:

P
CC

���
���

�� ��
���
�

P ′

CC
�� ��

P ′′

��
P ′′′

By Corollary 1, P ′{x := Q′} ∗→CC P ′′′{x := Q′}, and since P ′′ ⇒ P ′′′ and

Q ⇒ Q′, (λx.P ′′)Q ⇒ P ′′′{x := Q′} so the diagram is closed taking M3 =

P ′′′{x := Q′}.
– or M2 = (λx.P )Q′′ with Q →CC Q′′, in which case

(λx.P )Q
CC

���
��

��

�� ��
��

�
��

��
�

P ′{x := Q′} (λx.P )Q′′

By IH the following diagram holds for some Q′′′:

Q
CC

���
��

�� ��
����

Q′

CC

�� ��
Q′′

��
Q′′′

By Corollary 1, P ′{x := Q′} ∗→CC P ′{x := Q′′′}, and since P ⇒ P ′ and

Q′′ ⇒ Q′′′, (λx.P )Q′′ ⇒ P ′{x := Q′′′} so the diagram is closed taking M3 =

P ′{x := Q′′′}.
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3. (pLam) was applied, with M = λx.P , M1 = λx.P ′ with P ⇒ P ′, in which case

there exists P ′′ such that

λx.P
CC

���
��

��
�

�� ��
��

�
��

��
�

λx.P ′ λx.P ′′

By IH we have

P
CC

���
���

�� ��
���
�

P ′

CC
�� ��

P ′′

��
P ′′′

so that

λx.P ′

CC �� ��

λx.P ′′

��
λx.P ′′′

4. (pCBind) was applied, with θ = (ci �→ Ni)i=1,...,n, θ
′ = (ci �→ N ′

i )i=1,...,n, Ni ⇒ N ′
i for

1 � i � n, in which case

θ
CC

���
��

�
�� ��

���
�

θ′ θ′′

so for some k ∈ {1; . . . ; n} we have by IH the diagram

Nk
CC

���
���

�� ��
���
�

N ′
k

CC

�� ��

N ′′
k

��
N ′′′

k

then taking θ′′′ = (ci �→ N ′′′
i )i=1,...,n with N ′′′

i = N ′
i for i �= k

θ′

CC
�� ��

θ′′

��
θ′′′

5. (pApp) was applied, with M = PQ and M1 = P ′Q′. There are two possibilities

for the CC-reduction step:

– either M2 = P ′′Q with P →CC P ′′, in which case

PQ
CC

���
��

��

�� ��
��

�
��

��
�

P ′Q′ P ′′Q

with Q ⇒ Q′ and P ⇒ P ′, and by IH we have the diagram

P
CC

���
���

�� ��
���
�

P ′

CC
�� ��

P ′′

��
P ′′′

so that

P ′Q′

CC �� ��

P ′′Q

��
P ′′′Q′
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– or M2 = PQ′′ with Q →CC Q′′, in which case the diagram is closed

analogously.

6. (pCase) was applied, with M = {|θ|}. Q, M1 = {|θ′|}. Q′, θ ⇒ θ′ and Q ⇒ Q′. There

are two possibilities for the CC-reduction step:

– either CaseCase was applied at the root, i.e. Q = {|φ|}. P , so that Q′ = {|φ′|}. P ′

with φ ⇒ φ′, P ⇒ P ′ and we have

{|θ|}. {|φ|}. P
CC

���
��

��

�� ��
��

�
��

��
�

{|θ′|}. {|φ′|}. P ′ {|θ ◦ φ|}. P

By Prop. 3 (4) we have θ ◦ φ ⇒ θ′ ◦ φ′, hence {|θ ◦ φ|}. P ⇒ {|θ′ ◦ φ′|}. P ′. Since

{|θ′|}. {|φ′|}. P ′ →CC {|θ′ ◦ φ′|}. P ′, the diagram is closed.

– or an internal CaseCase was applied, then

• either θ →CC θ′′, so we have

{|θ|}. Q
CC

���
��

��

�� ��
��

�
��

��
�

{|θ′|}. Q′ {|θ′′|}. Q

and by IH we have

θ
CC

���
��

�
�� ��

���
�

θ′

CC
�� ��

θ′′

��
θ′′′

so that

{|θ′|}. Q′

CC
�� ��

{|θ′′|}. Q

��
{|θ′′′|}. Q′

• or Q →CC Q′′, and the diagram is closed analogously. �

Proof of Lemma 22 p. 602.

The commutation of the first diagram

•
LA+CA

����
��

��
��

AL+CL

���
��

��
��

�

•
CL

=

��
•

LA+CA

∗

��
•

AL

=

��•
is obtained by merging the following diagrams that cover all the possible cases:

•
LA

����
��

�� AL

���
��

��
�

•

AL

=

��

•

LA

∗

��•

•
LA

����
��

�� CL

���
��

��
�

•

CL

=

��

•
CA

=
��•

LA
��•

•
CA

����
��

�� AL

���
��

��
�

•
CL

=
��

•

CA

∗

��
•

AL
��•

•
CA

����
��

�� CL

���
��

��
�

•

CL ��

•

CA��•
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(The diagrams above come from lemmas 10, 20, 18 and 17, respectively.) The

commutation of the second diagram

M
LA+CA

∗����
��

��
�

AL+CL

���
��

��
��

M1

CL

∗
��

M2

LA+CA

∗

��
•

AL

=
��
M3

is deduced from the first diagram, by induction on the number of (LamApp+CaseApp)-

reduction steps. We distinguish the following cases:

– If the derivation M
∗→LA+CA M1 has 0 steps, the result is obvious.

– If it has 1 step, this is the first diagram (see above).

– So let us assume it has � 2 steps. We proceed by lexicographic induction on the

pair (LA + CA + CL-depth of M, length of the LA + CA-derivation). The picture

is

M

∗
LA+CA

����
��

��
��

��
��

��

AL+CL

���
��

��
��

��
��

��
��

��
��

��
��

M ′
1

LA+CA

����
��

�
∗

CL

���
��

��

M1

∗
CL ���

��
��

� M ′
3

∗
LA+CA����

��
��

=

AL

���
��

��
��

��
��

��
�

M2

∗
LA+CA

����
��

��
��

��
��

��

•
∗

CL ���
��

��
�

•
=

AL ���
��

��
� M ′

2
∗

LA+CA����
��

�

M3

The upper right rectangle is closed by IH. The left-most square is closed since

LA + CA (strongly) commutes with CL. At M ′
3 the lexicographic pair clearly has

a value which is less than the value at M, since the length of M
∗→LA+CA M ′

1 is

� 1, so IH allows to close the lower rectangle. �

Proof of Proposition 13 p. 612 (Separation of disagreeing terms).

The proof proceeds by induction on the depth d of the disagreement between M1

and M2. We distinguish the following cases:

1. M1 and M2 disagree at level 0. We distinguish the following cases:

– M1 = � and M2 = λx1 · · · xn.HN1 · · ·Nk .

In this case, take a closed evaluation context E[] such that E
[
M2[σ

K
X ]

]
is

undefined (by Lemma 27) and conclude using Lemma 24.
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– M1 = λx1 · · · xn.HN1 · · ·Nk and M2 = �.

This is the symmetric case (see above).

– M1 = λx1 · · · xn.H1N1,1 · · ·N1,k1
and M2 = λx1 · · · xn.H2N2,1 · · ·N2,k2

and H1 �≈
H2. We distinguish the following cases, using the characterisation of the

negation of skeleton equivalence (Definition 13) at the begining of Section 5.5:

• H1 = y (where y is a variable), and H2 = c (where c is a constructor).

Take:

E[] ≡ {|c �→ �|}. []〈x1; ∗K〉 · · · 〈xn; ∗K〉?k1+1 · · ·?KU
where ?k1+1, . . . , ?K are arbitrary closed terms, and where U is an arbitrary

closed undefined head term. Writing X ′ = X ∪ {x1; . . . ; xn}, we get

E
[
M1[σ

K
X ]

]
=

(
{|c �→ �|}. (λx1 · · · xn. yN1,1 · · ·N1,k1

)[σK
X ]

)
〈x1; ∗K〉 · · · 〈xn; ∗K〉?k1+1 · · ·?KU

→∗ (λx1 · · · xn. ({|c �→ �|}. y)N1,1 · · ·N1,k1
)[σK

X ]

〈x1; ∗K〉 · · · 〈xn; ∗K〉?k1+1 · · ·?KU
→∗ ({|c �→ �|}. 〈y; ∗K〉)

N1,1[σ
K
X ′] · · ·N1,k1

[σK
X ′ ]?k1+1 · · ·?KU

→∗ {|c �→ � | y; ∗K〉〉N1,1[σ
K
X ′ ] · · ·N1,k1

[σK
X ′]?k1+1 · · ·?KU

→∗ ({|c �→ �|}. U)yN1,1[σ
K
X ′ ] · · ·N1,k1

[σK
X ′]?k1+1 · · ·?K,

the latter term being undefined by Lemma 25, whereas

E
[
M2[σ

K
X ]

]
=

(
{|c �→ �|}. (λx1 · · · xn. cN2,1 · · ·N2,k2

)[σK
X ]

)
〈x1; ∗K〉 · · · 〈xn; ∗K〉?k1+1 · · ·?KU

→∗ (λx1 · · · xn. ({|c �→ �|}. c)N2,1 · · ·N2,k2
)[σK

X ]

〈x1; ∗K〉 · · · 〈xn; ∗K〉?k1+1 · · ·?KU
→∗ (λx1 · · · xn.�N2,1 · · ·N2,k2

)[σK
X ]

〈x1; ∗K〉 · · · 〈xn; ∗K〉?k1+1 · · ·?KU
→∗ �

The symmetric case is treated the same way.

• H1 = {|θ|}. y (where θ is a case binding and where y is a variable), and

H2 = c (where c is a constructor). Again, let us take

E[] ≡ {|c �→ �|}. []〈x1; ∗K〉 · · · 〈xn; ∗K〉?k1+1 · · ·?KU

where ?k1+1, . . . , ?K are arbitrary closed terms, and where U is an arbitrary

closed undefined head term. As in the latter case, we easily check that

E
[
M1[σ

K
X ]

]
is undefined whereas E

[
M2[σ

K
X ]

]
→∗ �. (The reader is invited

to check that the additional case {|θ|}. plays no essential role during

reduction.) The symmetric case is treated the same way.

• H1 = {|θ|}. y1 (where θ is a case binding and where y1 is a variable), and

H2 = y2 (where y2 is a variable). Take

E[] ≡ {|c �→ �|}. []〈x1; ∗K〉 · · · 〈xn; ∗K〉 c · · · c︸ ︷︷ ︸
K+1 times
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where c is an arbitrary constructor such that c /∈ dom(θ). Writing X ′ =

X ∪ {x1; . . . ; xn}, we get

E
[
M1[σ

K
X ]

]
=

(
{|c �→ �|}. (λx1 · · · xn. {|θ|}. y1N1,1 · · ·N1,k1

)[σK
X ]

)
〈x1; ∗K〉 · · · 〈xn; ∗K〉 c · · · c︸ ︷︷ ︸

K+1

→∗ (λx1 · · · xn. ({|(c �→ �) ◦ θ|}. y1)N1,1 · · ·N1,k1
)[σK

X ]

〈x1; ∗K〉 · · · 〈xn; ∗K〉 c · · · c︸ ︷︷ ︸
K+1

→∗ ({|(c �→ �) ◦ θ[σK
X ′ ]|}. 〈y1; ∗K〉)

N1,1[σ
K
X ′ ] · · ·N1,k1

[σK
X ′] c · · · c︸ ︷︷ ︸

K+1

→∗ {|(c �→ �) ◦ θ[σK
X ′ ] | y1; ∗K〉〉

N1,1[σ
K
X ′ ] · · ·N1,k1

[σK
X ′] c · · · c︸ ︷︷ ︸

K+1

→∗ ({|(c �→ �) ◦ θ[σK
X ′ ]|}. c)

y1N1,1[σ
K
X ′ ] · · ·N1,k1

[σK
X ′] c · · · c︸ ︷︷ ︸

K

this term being undefined since c /∈ dom((c �→ �) ◦ θ) = dom(θ). On the

other hand we have

E
[
M2[σ

K
X ]

]
→∗ ({|c �→ �|}. c) y2N2,1[σ

K
X ′ ] · · ·N2,k2

[σK
X ′] c · · · c︸ ︷︷ ︸

K

→∗ � y2 N2,1[σ
K
X ′] · · ·N2,k2

[σK
X ′] c · · · c︸ ︷︷ ︸

K

→∗ �

The symmetric case is treated the same way.

• H1 = y1 and H2 = y2 (where y1 and y2 are variables), but y1 �= y2. Take

P ≡ λz. if (eq z y1) � U

E[] ≡ []〈x1; ∗K〉 · · · 〈xn; ∗K〉 P · · ·P︸ ︷︷ ︸
K+1 times

where U is an arbitrary closed undefined head term. Writing X ′ =

X ∪ {x1; . . . ; xn}, we get

E
[
M1[σ

K
X ]

]
= (λx1 · · · xn. y1N1,1 · · ·N1,k1

)[σK
X ]

〈x1; ∗K〉 · · · 〈xn; ∗K〉P · · ·P︸ ︷︷ ︸
K+1

→∗ 〈y1; ∗K〉N1,1[σ
K
X ′ ] · · ·N1,k1

[σK
X ′]P · · ·P︸ ︷︷ ︸

K+1

→∗ P y1N1,1[σ
K
X ′ ] · · ·N1,k1

[σK
X ′]P · · ·P︸ ︷︷ ︸

K

→∗ � N1,1[σ
K
X ′ ] · · ·N1,k1

[σK
X ′ ]P · · ·P︸ ︷︷ ︸

K

→∗ �
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On the other hand we have

E
[
M2[σ

K
X ]

]
→∗ Py2N2,1[σ

K
X ′] · · ·N2,k2

[σK
X ′]P · · ·P︸ ︷︷ ︸

K

→∗ UN2,1[σ
K
X ′] · · ·N2,k2

[σK
X ′ ]P · · ·P︸ ︷︷ ︸

K

which is undefined by Lemma 25.

• H1 = c1 and H2 = c2 (where c1 and c2 are constructors), but c1 �= c2.

Take

θ ≡ (c1 �→ �; c2 �→ U)

E[] ≡ {|θ|}. []

where U is an arbitrary closed undefined head term. We check that

E
[
M1[σ

K
X ]

]
= {|θ|}. (λx1 · · · xn. c1N1,1 · · ·N1,k1

)[σK
X ]

→∗ (λx1 · · · xn. ({|θ|}. c1)N1,1 · · ·N1,k1
)[σK

X ]

→∗ (λx1 · · · xn.�N1,1 · · ·N1,k1
)[σK

X ]

→∗ �

whereas

E
[
M2[σ

K
X ]

]
→∗ (λx1 · · · xn. ({|θ|}. c2)N2,1 · · ·N2,k2

)[σK
X ]

→∗ (λx1 · · · xn.UN2,1 · · ·N2,k2
)[σK

X ]

which is undefined.

• H1 = {|θ1|}. y1 and H2 = {|θ2|}. y2 for some case bindings θ1, θ2 and for

some variables y1, y2, and y1 �= y2. This case is treated similarly to the

case where H1 and H2 are distinct variables, by setting

P ≡ λz. if (eq z y1) � U

E[] ≡ []〈x1; ∗K〉 · · · 〈xn; ∗K〉 P · · ·P︸ ︷︷ ︸
K+1 times

(where U is an arbitrary closed undefined head term). The reader is

invited to check that the presence of additional case constructs {|θi|}.
does not essentially change how reduction proceeds.

• H1 = {|θ1|}. y and H2 = {|θ2|}. y for some case bindings θ1, θ2 and for some

variable y, and dom(θ1) �= dom(θ2). Without loss of generality, assume

that c1 is a constructor such that c1 ∈ dom(θ1) and c1 /∈ dom(θ2) (the

other case is treated by symmetry). Writing X ′ = X∪{x1; . . . ; xn} as usual,

let us set:

P ≡ λz0z1 · · · z2K. c1

E0[] ≡ []〈x1; ∗K〉 · · · 〈xn; ∗K〉P · · ·P︸ ︷︷ ︸
K+1
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We have:

E0

[
M1[σ

K
X ]

]
= (λx1 . . . xn. {|θ1|}. yN1,1 · · ·N1,k1

)[σK
X ]

〈x1; ∗K〉 · · · 〈xn; ∗K〉P · · ·P︸ ︷︷ ︸
K+1

→∗ ({|θ1[σ
K
X ′ ]|}. 〈y; ∗K〉)N1,1[σ

K
X ′] · · ·N1,k1

[σK
X ′ ]P · · ·P︸ ︷︷ ︸

K+1

→∗ {|θ1[σ
K
X ′ ] | y; ∗K〉〉N1,1[σ

K
X ′ ] · · ·N1,k1

[σK
X ′ ]P · · ·P︸ ︷︷ ︸

K+1

→∗ ({|θ1[σ
K
X ′ ]|}. P )yN1,1[σ

K
X ′] · · ·N1,k1

[σK
X ′ ]P · · ·P︸ ︷︷ ︸

K

→∗ (λz0z1 . . . z2K. {|θ1[σ
K
X ′ ]|}. c1)

yN1,1[σ
K
X ′] · · ·N1,k1

[σK
X ′ ]P · · ·P︸ ︷︷ ︸

K

→∗ λzk1+K+1 . . . z2K. {|θ1[σ
K
X ′]|}. c1

→∗ λzk1+K+1 . . . z2K. θ1(c1)[σ
K
X ′ ]

whereas

E0

[
M2[σ

K
X ]

]
→∗ λzk2+K+1 . . . z2K. {|θ2[σ

K
X ′]|}. c1

which is undefined. The term θ1(c1), which is a subterm of M1, is a

completely defined quasi-normal form, and so is the term

T ≡ λzk1+K+1 . . . z2K. θ1(c1).

Thus by Lemma 27, there exists an evaluation context F[] such that

F
[
T [σK

X ′ ]
]

= F
[
λzk1+K+1 . . . z2K. θ1(c1)[σ

K
X ′ ]

]
→∗ �

Finally, let us set E[] = F
[
E0[]

]
. We then get

E
[
M1[σ

K
X ′]

]
= F

[
E0

[
M1[σ

K
X ′]

]]
→∗ F

[
T [σK

X ′]
]

→∗ �

whereas

E
[
M2[σ

K
X ′]

]
→∗ F

[
λzk2+K+1 . . . z2K. {|θ2[σ

K
X ′]|}. c1

]
which is undefined by Lemma 25.

2. M1 and M2 disagree at level d + 1. By definition, M1 and M2 are of the

form M1 = λx1 · · · xn.H1N1,1 · · ·N1,k1
and M2 = λx1 · · · xn.H2N2,1 · · ·N2,k2

, with

H1 ≈ H2. Let us write X ′ = X ∪ {x1; . . . ; xn}. By definition of the relation of

disagreement (at depth d + 1), there are two possible cases:

– There is a position 1 � k � min(k1, k2) such that disd(N1,k , N2,k). By induction

hypothesis, there exists a closed evaluation context E0[] such that

E0

[
N1,k[σ

K
X ′]

]
→∗ � and E0

[
N2,k[σ

K
X ′]

]
is undefined

(or conversely). By case distinction on the shape of H1 ≈ H2:
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• H1 = H2 = y. Let us set

P ≡ λz0z1 . . . zK . E0[zk]

E[] ≡ []〈x1; ∗K〉 · · · 〈xn; ∗K〉P · · ·P︸ ︷︷ ︸
K+1

We check that

E
[
M1[σ

K
X ]

]
= (λx1 . . . xn. yN1,1 · · ·N1,k1

)[σK
X ]

〈x1; ∗K〉 · · · 〈xn; ∗K〉P · · ·P︸ ︷︷ ︸
K+1

→∗ 〈y; ∗K〉N1,1[σ
K
X ′ ] · · ·N1,k1

[σK
X ′ ]P · · ·P︸ ︷︷ ︸

K+1

→∗ PyN1,1[σ
K
X ′ ] · · ·N1,k1

[σK
X ′ ]P · · ·P︸ ︷︷ ︸

K

→∗ E0

[
N1,k[σ

K
X ′ ]

]
P · · ·P︸ ︷︷ ︸

k1

→∗ �P · · ·P︸ ︷︷ ︸
k1

→∗ �

whereas

E
[
M2[σ

K
X ]

]
→∗ E0

[
N2,k[σ

K
X ′]

]
P · · ·P︸ ︷︷ ︸

k2

which is undefined by Lemma 25.

• H1 = {|θ1|}. y and H2 = {|θ2|}. y. This case is treated similarly to the latter

case, using the same evaluation context E[].

• H1 = H2 = c. Let us set

θ ≡ (c �→ λz1 . . . zk. E0[zk])

E[] ≡ {|θ|}. []〈x1; ∗K〉 · · · 〈xn; ∗K〉
We check that

E
[
M1[σ

K
X ]

]
= {|θ|}. (λx1 . . . xn. cN1,1 · · ·N1,k1

)[σK
X ]

〈x1; ∗K〉 · · · 〈xn; ∗K〉

→∗ (λx1 . . . xn. ({|θ|}. c)N1,1[σ
K
X ] · · ·N1,k1

[σK
X ])

〈x1; ∗K〉 · · · 〈xn; ∗K〉

→∗ ({|θ|}. c)N1,1[σ
K
X ′] · · ·N1,k1

[σK
X ′] (since θ closed)

→∗ E0

[
N1,k[σ

K
X ′ ]

]
N1,k+1[σ

K
X ′ ] · · ·N1,k1

[σK
X ′]

→∗ �N1,k+1[σ
K
X ′] · · ·N1,k1

[σK
X ′]

→∗ �

whereas

E
[
M2[σ

K
X ]

]
→∗ ({|θ|}. c)N2,1[σ

K
X ′] · · ·N2,k2

[σK
X ′]

→∗ E0

[
N2,k[σ

K
X ′ ]

]
N2,k+1[σ

K
X ′ ] · · ·N2,k2

[σK
X ′]

which is undefined by Lemma 25.
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– H1 = {|θ1|}. y and H2 = {|θ2|}. y for some case bindings θ1, θ2 and for some

variable y, and there is a constructor c ∈ dom(θ1) = dom(θ2) such that

disd(θ1(c), θ2(c)). Again, we distinguish two cases, depending on whether

k1 = k2 or not.

(a) k1 = k2 = k. By induction hypothesis, we know that there exists an

evaluation context E0[] such that

E0

[
θ1(c)[σ

K
X ′ ]

]
→∗ � and E0

[
θ2(c)[σ

K
X ′ ]

]
is undefined

(or conversely). Let us then set

P ≡ λz0z1 . . . zK . c

E ′[] ≡ []〈x1; ∗K〉 · · · 〈xn; ∗K〉P · · ·P︸ ︷︷ ︸
K+1−k

We have

E ′[M1[σ
K
X ]

]
= (λx1 · · · xn. {|θ1|}. yN1,1 · · ·N1,k)[σ

K
X ]

〈x1; ∗K〉 · · · 〈xn; ∗K〉P · · ·P︸ ︷︷ ︸
K+1−k

→∗ ({|θ1[σ
K
X ′]|}. 〈y, ∗K〉)N1,1[σ

K
X ′] · · ·N1,k[σ

K
X ′ ]P · · ·P︸ ︷︷ ︸

K+1−k

→∗ {|θ1[σ
K
X ′] | y, ∗K〉〉N1,1[σ

K
X ′] · · ·N1,k[σ

K
X ′ ]P · · ·P︸ ︷︷ ︸

K+1−k

→∗ ({|θ1[σ
K
X ′]|}. P )yN1,1[σ

K
X ′] · · ·N1,k[σ

K
X ′ ]P · · ·P︸ ︷︷ ︸

K−k

→∗ (λz0z1 . . . zK . {|θ1[σ
K
X ′]|}. c)

yN1,1[σ
K
X ′ ] · · ·N1,k[σ

K
X ′ ]P · · ·P︸ ︷︷ ︸

K−k

→∗ {|θ1[σ
K
X ′]|}. c → θ1(c)[σ

K
X ′ ]

Similarly, we have

E ′[M2[σ
K
X ]

]
→∗ {|θ2[σ

K
X ′]|}. c → θ2(c)[σ

K
X ′ ].

Thus if we take E[] ≡ E0

[
E ′[]

]
we get

E
[
M1[σ

K
X ]

]
= E0

[
E ′[M1[σ

K
X ]

]]
→∗ E0

[
θ1(c)[σ

K
X ′ ]

]
→∗ �

whereas

E
[
M2[σ

K
X ]

]
= E0

[
E ′[M2[σ

K
X ]

]]
→∗ E0

[
θ2(c)[σ

K
X ′ ]

]
,

which is undefined.

(b) k1 �= k2. Without loss of generality, assume k1 < k2 and set

E[] ≡ []〈x1; ∗K〉 · · · 〈xn; ∗K〉 ? · · ·?︸ ︷︷ ︸
K−k2

U ? · · ·?︸ ︷︷ ︸
k2−k1−1

�
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where ‘?’s denote arbitrary closed terms, and where U is any closed

undefined head term. We then get

E
[
M1[σ

K
X ]

]
= (λx1 · · · xn. {|θ1|}. yN1,1 · · ·N1,k1

)[σK
X ]

〈x1; ∗K〉 · · · 〈xn; ∗K〉 ? · · ·?︸ ︷︷ ︸
K−k2

U ? · · ·?︸ ︷︷ ︸
k2−k1−1

�

→∗ ({|θ1[σ
K
X ′]|}. 〈y; ∗K〉)

N1,1[σ
K
X ′ ] · · ·N1,k1

[σK
X ′ ] ? · · ·?︸ ︷︷ ︸

K−k2

U ? · · ·?︸ ︷︷ ︸
k2−k1−1

�

→∗ {|θ1[σ
K
X ′] | y; ∗K〉〉

N1,1[σ
K
X ′ ] · · ·N1,k1

[σK
X ′ ] ? · · ·?︸ ︷︷ ︸

K−k2

U ? · · ·?︸ ︷︷ ︸
k2−k1−1

�

→∗ {|θ1[σ
K
X ′]|}.�yN1,1[σ

K
X ′ ] · · ·N1,k1

[σK
X ′] ? · · ·?︸ ︷︷ ︸

K−k2

U ? · · ·?︸ ︷︷ ︸
k2−k1−1

→∗ �

whereas

E
[
M2[σ

K
X ]

]
→∗ {|θ2[σ

K
X ′] | y; ∗K〉〉

N2,1[σ
K
X ′ ] · · ·N2,k2

[σK
X ′ ] ? · · ·?︸ ︷︷ ︸

K−k2

U ? · · ·?︸ ︷︷ ︸
k2−k1−1

�

→∗ {|θ2[σ
K
X ′]|}. UyN2,1[σ

K
X ′] · · ·N2,k2

[σK
X ′ ] ? · · ·?︸ ︷︷ ︸

K−k2

? · · ·?︸ ︷︷ ︸
k2−k1−1

�

which is undefined. �

Appendix B. Confluence of the whole system λBC

Each item of the following (mechanically constructed) proof states a commutation

property (s1 // s2) which is either:

– an item of Table 1;

– a consequence of (s1, s2) |= BCC and (s1 + s2) |= SN;

– a consequence of two former items using the rule of inference:

if A // B and A // C , then A // (B + C).

1. (AL |= CR) [Table 1 (1)]

2. (AL // AD) [Table 1 (2)]

3. (AL // CO) [Table 1 (4)]

4. (AL // CD) [Table 1 (5)]

5. (AL // CL) [Table 1 (6)]

6. (AL // CD + CL) since (AL // CD) [4.] and (AL // CL) [5.]

7. (AL // AD + CD + CL) since (AL // AD) [2.] and (AL // CD + CL) [6.]

8. (AL // AL + AD + CD + CL) since (AL |= CR) [1.] and (AL // AD + CD + CL) [7.]

9. (AL // CC) [Table 1 (7)]

10. (LA + LD + CD + CA // AL + AD + CD + CL) [Table 1 (12)]

11. (AL // CL + CC) since (AL // CL) [5.] and (AL // CC) [9.]

12. (AL // CD + CL + CC) since (AL // CD) [4.] and (AL // CL + CC) [11.]

13. (AL // CO + CD + CL + CC) since (AL // CO) [3.] and (AL // CD + CL + CC) [12.]

14. (AL // AD + CO + CD + CL + CC) since (AL // AD) [2.] and

(AL // CO + CD + CL + CC) [13.]
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15. (AD + CD + CL // AD + CO + CD + CL + CC) since BCC + SN

16. (AL + AD + CD + CL // AD + CO + CD + CL + CC) since

(AL // AD + CO + CD + CL + CC) [14.] and

(AD + CD + CL // AD + CO + CD + CL + CC) [15.]

17. (AL + AD + CD + CL // AD + LA + LD + CO + CD + CA + CL + CC) since

(LA + LD + CD + CA // AL + AD + CD + CL) [10.] and

(AL + AD + CD + CL // AD + CO + CD + CL + CC) [16.]

18. (AL + AD + CD + CL // AL + AD + LA + LD + CO + CD + CA + CL + CC) since

(AL // AL + AD + CD + CL) [8.] and

(AL + AD + CD + CL // AD + LA + LD + CO + CD + CA + CL + CC) [17.]

19. (LA+LD+CO+CD+CA+CL+CC // AD+LA+LD+CO+CD+CA+CL+CC)

since BCC + SN

20. (AD + LA + LD + CO + CD + CA + CL + CC //

AL + AD + LA + LD + CO + CD + CA + CL + CC) since

(AL + AD + CD + CL // AD + LA + LD + CO + CD + CA + CL + CC) [17.] and

(LA+LD+CO+CD+CA+CL+CC // AD+LA+LD+CO+CD+CA+CL+CC) [19.]

21. (AL + AD + LA + LD + CO + CD + CA + CL + CC |= CR) since

(AL + AD + CD + CL // AL + AD + LA + LD + CO + CD + CA + CL + CC) [18.] and

(AD + LA + LD + CO + CD + CA + CL + CC //

AL + AD + LA + LD + CO + CD + CA + CL + CC) [20.]

https://doi.org/10.1017/S0956796809007369 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007369

