REMARKS ABOUT THE DIGITS OF INTEGERS

RALPH ALEXANDER ${ }^{1}$
(Received 6 January 1969; revised 23 September 1969)
Communicated by B. Mond

Introduction

Let $n_{1}<n_{2}<\cdots$ be the sequence of positive integers whose base b representations involve the digit $t \leqq b-1$ at most $d-1$ times. B. D. Craven [2] shows that $\sum_{i} 1 / n_{i}$ converges by giving an upper bound for this sum as a function of b and d.

The method used by Professor Craven gives an upper bound on the sum $\sum_{i} 1 / 0_{i}$, where $0_{1}<0_{2}<\cdots$ is the much larger positive integer sequence whose members have the property that the digit t occurs at most $d-1$ times in succession in their base b representations. The first theorem is a corollary to the main theorem in [2].

Theorem 1. Let $0_{1}<0_{2}<\cdots$ be the sequence of positive integers whose base b representations involve the digit $t \leqq b-1$ at most $d-1$ times in succession. Then $\sum_{i} 1 / 0_{i}$ is less than $b^{d}(1+d \log b)$.

Using a variation of one of the methods in our article [1], we will give estimates of both types of sum mentioned above.

A method of estimating certain harmonic sums

Let $n=\sum_{r=0}^{\infty} a(n, r) b^{r}$ be the representation of n to the base b. We define $L(n)$ to be $k+1$, where k is the largest integer i for which $a(n, i) \neq 0$. Clearly $L(n)$ is the number of significant digits in the base b representation of n. For any positive integer n,

$$
\begin{equation*}
n<b^{L(n)} \leqq b n \tag{1}
\end{equation*}
$$

If $\left\{a_{i}+j c_{i}: j=0,1, \cdots\right\}, i=1,2, \cdots$, is a pairwise disjoint sequence of arithmetic progressions in the positive integers, then

$$
\begin{equation*}
\sum_{i} 1 / c_{i} \leqq 1 \tag{2}
\end{equation*}
$$

[^0]This follows at once from the observation that the natural density of the i-th progression is $1 / c_{i}$.

Theorem 2. Let $n_{1}<n_{2}<\cdots$ be the sequence of positive integers whose base b representations involve the digit $t \leqq b-1$ at most $d-1$ times. Then $\sum_{i} 1 / n_{i}$ is at most $d b^{2}$.

Proof. Let $m_{1}<m_{2}<\cdots$ be the sequence of positive integers whose base b representations involve the digit t exactly k times. We claim that the sequence of arithmetic progressions

$$
\left\{\left[m_{i}+t b^{L\left(m_{i}\right)}\right]+j b^{L\left(m_{i}\right)+1}: j=0,1, \cdots\right\}, \quad i=1,2, \cdots
$$

is pairwise disjoint. Indeed, given any integer in the union of these progressions, the associated m_{i} is immediately identified by noting where the $(k+1)$-st t occurs in the base b representation of that integer. For example (using arabic notation with $b=10, t=0$, and $k=2$), suppose the integer is $103,020,109$; then our method of construction would give m_{i} as 20,109 . Hence, $\sum_{i} b^{-L\left(m_{i}\right)-1} \leqq 1$ by remark (2) and by remark (1) it follows that $\sum_{i} 1 / m_{i} \leqq b^{2}$. Letting $k=0,1, \cdots$, $d-1$ and summing, we obtain $\sum_{i} 1 / n_{i} \leqq d b^{2}$.

Theorem 3. Let $0_{1}<0_{2}<\cdots$ be the sequence of positive integers whose base b representations do not have the digit $t \leqq b-1$ appearing d times in succession. Then

$$
\sum_{i} 1 / 0_{i} \leqq b^{d+2}
$$

Proof. We consider the sequence of progressions

$$
\left\{\left[0_{i}+\sum_{k=1}^{d} t b^{L\left(0_{i}\right)+k}\right]+j b^{L\left(0_{i}\right)+d+1}: j=0,1, \cdots\right\}, \quad i=1,2, \cdots
$$

As before, these progressions are pairwise disjoint, since an integer in the union of the progressions may be associated with a unique 0_{i} simply by examining the blocks of t 's in the integer's base b representation. For example (using arabic notation with $b=10, t=9$, and $d=3$), suppose the integer is $699,909,927$; then our method of construction identifies 0_{i} as 9,927 .

Thus

$$
\sum_{i} b^{-L\left(0_{i}\right)-d-1} \leqq 1
$$

be remark (2), and

$$
\sum_{i} 1 / 0_{i} \leqq b^{d+2}
$$

by remark (1).

Closing remarks

By a more careful estimate of the sums occurring in the proof of Theorem 2, we could replace $d b^{2}$ by $K d b \log b$, where K is a constant slightly larger than 1 .

Also, we note that Theorem 3 improves Theorem 1 only if $d \log b>b^{2}$. Assuming $t=0$ and using a more elaborate estimate, we could replace b^{d+2} by $K b^{d} \log b$ in Theorem 3.

Finally, we wish to thank the referee for a number of comments which helped improve the accuracy and clarity of our article.

References

[1] R. Alexander, 'Density and digits of sequences of integers', Michigan Math, J. 16 (1969), 85-92.
[2] B. D. Craven, 'On digital distribution in some integer sequences', J. Australian Math. Soc. 5 (1965), 325-330.

University of Illinois 61801

[^0]: ${ }^{1}$ This research was supported by NSF grant gp-7537.

