Twelve years of Glitches in the Vela Pulsar

Claire S. Flanagan

Hartebeesthoek Radio Astronomy Observatory, South Africa

1. Introduction

The Vela pulsar (PSR B0833-45) has been observed from Hartebeesthoek RAO since 1984, as part of an ongoing monitoring project. During this time, the pulsar has undergone five sudden and relatively large spin-ups ("glitches"). Good observational coverage was obtained for the four most recent of these events.

2. Post-glitch Timing Behaviour

The post-glitch behaviour of $\dot{\nu}(t)$ is modelled by:

$$\dot{\nu}(t - T_G) = \dot{\nu}_0 + \ddot{\nu}_0(t - T_G) + \sum_i \Delta \dot{\nu}_i \exp(-(t - T_G)/\tau_i) + \Delta \dot{\nu}_{nl} \left[1 - \frac{1}{1 + e^{-(t - T_G)/\tau_{nl}} \left(e^{t_0/\tau_{nl}} - 1 \right)} \right], \qquad (1)$$

where T_G is the glitch epoch and subscript nl refers to a "non-linear" recovery component of the form discussed by Alpar *et al.* (1989). The results of a preliminary fit of this model to all five glitches are given in table 1. The "baseline model" describes the long-term behaviour; no single simple model provides an adequate fit to all three of the longer inter-glitch eras observed (Flanagan 1996). The immediate post-glitch behaviour (the "transients" in table 1) are modelled with simple exponentials; three such components are required for the larger and better-observed glitches of 1988 and 1991. Following Alpar *et al.* (1993), a model incorporating common timescales for all five glitches was also fitted. The data are consistent with a recovery described by at least three exponential decays of $\Delta \dot{\nu}$, over timescales $50\pm 20 d$, $5\pm 2 d$ and $0.49\pm 0.08 d$, following each of the most recent five glitches. In addition, the moment of inertia $I_i =$ $\Delta \dot{\Omega}_i \tau_i / \Delta \Omega_c I$ associated with the 5d component is $(5\pm 3) \times 10^{-3}$. The data are inconsistent with the 0.49d recovery being associated with the same moment of inertia (as defined here) at every glitch.

<u> </u>		1985	1988	1991	1994	1994A
baseline model:	:					
$\dot{ u}(T_G)$ 10 ⁻¹³ Hz s ⁻¹		-155.54(3)	-156.45(3)	-156.62(4)	-156.54(3)	-156.59(3)
$\ddot{\nu}_0$ 10 ⁻²² Hz s ⁻²			+9.3(7)	+8.3(2)		
$\Delta \dot{\nu}_{nl} / \dot{\nu}$	%		+0.11(2)			
$ au_{nl}$	days		9(6)			
$t_0 \\ \Delta \dot{ u} / \dot{ u}$	days %	+0.87(2)	468(6)			
τ	days	760(40)				
transients:						
$\Delta \dot{ u}_1 / \dot{ u}$	%		+0.26(4)	+0.35(6)		
$ au_1$	days		70(20)	49(6)		
$\Delta \dot{ u}_2 / \dot{ u}$	%	+1.8(3)	+1.2(5)	+2.3(7)		+0.4(2)
$ au_2$	days	6.8(4)	5(1)	4.9(ò)		6(7)
$\Delta \dot{ u}_3 / \dot{ u}$	%		+16(6)	+40(10)		
τ_3	days		0.53(9)	0.59(4)		

Table 1. Model Parameters.

The components listed in column 1 are those of eqn. 1. T_G is the glitch epoch.

Errors are 2- σ in the least significant digit quoted.

References

Alpar, M. A., Cheng, K. S. & Pines, D. 1989, ApJ, 346, 823 Alpar, M. A., Chau, H. F., Cheng, K. S. & Pines, D. 1993, ApJ, 409, 345 Flanagan, C. S. 1996, in preparation

104