TOPOLOGICAL RINGS OF QUOTIENTS

WILLIAM SCHELTER

We investigate here the notion of a topological ring of quotients of a topological ring with respect to an arbitrary Gabriel (idempotent) filter of right ideals. We describe the topological ring of quotients first as a subring of the algebraic ring of quotients, and then show it is a topological bicommutator of a topological injective *R*-module. Unlike R. L. Johnson in [6] and F. Eckstein in [2] we do not always make the ring an open subring of its ring of quotients. This would exclude examples such as C(X), the ring of continuous real-valued functions on a compact space, and its ring of quotients as described in Fine, Gillman and Lambek [3].

Let R be a ring with 1 and \mathscr{D} a Gabriel filter of right ideals for R. Let M be a right R-module, $Q_{\mathscr{D}}(M)$ its quotient module with respect to \mathscr{D} , $T_{\mathscr{D}}(M)$ the torsion submodule, and $F_{\mathscr{D}}(M)$ be $M/T_{\mathscr{D}}(M)$. We shall omit the subscript \mathscr{D} if we are only dealing with one Gabriel filter. We now consider an operator Γ_M which assigns to subsets of M, subsets of Q(M). We require the following properties to hold, where $X_1, X_2 \subseteq M, X_3 \subseteq R$ and

$$M \xrightarrow{f} N$$

is an *R*-homomorphism :

- (1) $X_1 + T(M)/T(M) \subseteq \Gamma_M(X_1)$,
- (2) $X_1 \subseteq X_2 \Rightarrow \Gamma_M(X_1) \subseteq \Gamma_M(X_2),$
- (3) $\Gamma_{Q(M)} \circ \Gamma_M = \Gamma_M$,
- (4) $\Gamma_M(X_1)\Gamma_R(X_3) \subseteq \Gamma_M(X_1X_3),$
- (5) $\Gamma_M(X_1) + \Gamma_M(X_2) \subseteq \Gamma_M(X_1 + X_2)$, if $0 \in X_1$ or X_2 ,
- (6) $Q(f)(\Gamma_M(X_1)) \subseteq \Gamma_N(f(X_1)).$

Properties (1), (2) and (3) say that if M is torsionfree divisible, then Γ_M is a closure operator. (4), (5) and (6) just express compatibility with the *R*-module structure. To put a topology on the quotient ring, we shall take as neighborhoods of 0 the images under Γ of neighborhoods of 0 in *R*, but first we give some examples of possible choices of Γ .

Example 1. Let $\Gamma_M(X)$ be the image of X under the canonical map $M \to M/T(M)$. This corresponds to making R/T(R) an open subring of its quotient ring.

Example 2. If $X \subseteq Q(M)$ let

$$X^+ = \{q \in Q(M) : \text{there exists } D \in \mathscr{D} \text{ so that for all } d \in D, qd \in Xd\}.$$

Received April 10, 1973.

1228

If $Z \subseteq M$, let

$$\Gamma_M(Z) = \bigcap \{ X \supseteq Z + T(M) / T(M) : X \subseteq Q(M) \text{ and } X = X^+ \}.$$

We verify that Γ_M satisfies property (4), the others are checked similarly. First we show that $X_1^+X_3^+ \subseteq (X_1X_3)^+$ whenever $X_1 \subseteq Q(M)$ and $X_3 \subseteq Q(R)$. Take $q_i \in X_i^+$, and let $D_i \in \mathscr{D}$, such that $q_i d \in X_i d$ all $d \in D_i$, i = 1, 3. Let $D_{3}' = D_{3} \cap q_{3}^{-1}(D_{1})$. Now if $d \in D_{3}'$, then $(q_{1}q_{3})d = q_{1}(q_{3}d) = x_{1}(q_{3}d) = x_{1}(q_{3}d)$ $x_1(x_3d) = (x_1x_3)d$ for some $x_i \in X_i$, i = 1, 3. Thus $q_1q_3 \in (X_1X_3)^+$. Now let $X_1 \subseteq M, \ X_3 \subseteq R, \ \bar{X}_1 = X_1 + T(M)/T(M), \ \bar{X}_3 = X_3 + T(R)/T(R), \ \text{and}$ $\bar{X}_4 = \bar{X}_1 \bar{X}_3$. We then define for each ordinal α

 $X_{i}^{0} = X_{i}$ $X_i^{\alpha} = (X_i^{\beta})^+$ if $\alpha = \beta + 1$, $X_i^{\alpha} = \bigcup_{\beta < \alpha} X_i^{\beta}$ if α is a limit ordinal,

for i = 1, 3, 4. For a sufficiently large γ we have $X_i^{\gamma} = \Gamma_M(X_i), i = 1, 3, 4$. We show by induction that $X_1^{\alpha}X_3^{\alpha} \subseteq X_4^{\alpha}$. If $\alpha = \beta + 1$, then

$$X_{1^{\beta+1}}X_{2^{\beta+1}} = (X_{1^{\beta}})^{+}(X_{2^{\beta}})^{+} \subseteq (X_{1^{\beta}}X_{2^{\beta}})^{+} \subseteq (X_{4^{\beta}})^{+} = X_{4^{\beta+1}}$$

using the inductive assumption $X_1^{\beta}X_2^{\beta} \subseteq X_4^{\beta}$ and the easily checked fact that + is monotone. If α is a limit ordinal, and if $q_i \in X_i^{\alpha}$ (i = 1, 3), then $q_i \in X_i^{\beta}$, for some $\beta < \alpha$, and so $q_1q_3 \in X_1^{\beta}X_3^{\beta} \subseteq X_4^{\beta} \subseteq X_4^{\beta}$.

Example 3. Let R be a commutative ring, $X \subseteq M$, where M is any R-module. We define

$$\Gamma_M(X) = \{ \sum (x_i + T(R)/T(R)) q_i : x_i \in X, q_i \in Q(R) \}.$$

It is easily verified that properties $(1), (2), \ldots, (6)$ hold. Commutativity is necessary for (3).

We now assume that R is any topological ring, \mathcal{D} any Gabriel filter of right ideals, and Γ an operator satisfying the conditions (1), (2), ..., (6). We shall usually omit the subscript for Γ . Let \mathscr{V} be the neighborhood filter at 0 of R. Let $\mathscr{W} = \{ \Gamma_R(V) : V \in \mathscr{V} \}$. Let

 $Q^* = \{q \in Q(R) : \text{ for all } W \in \mathcal{W}, \text{ there exists } V \in \mathcal{V}, qV \subseteq W, Vq \subseteq W\}.$ We may later write $Q_{\mathcal{Q}}^*(R) = Q^*$.

PROPOSITION 1. Q^* is a topological ring, with \mathcal{W} a base for the neighborhood filter at 0.

Proof. We first note that every element of \mathcal{W} is contained in Q^* by (1) and (5). To show that Q^* is a topological group we need to show that if $V \in \mathscr{V}$, then

(a) there is a $U \in \mathscr{V}$, $\Gamma(U) + \Gamma(U) \subseteq \Gamma(V)$; (b) there is a $T \in \mathscr{V}$, $\Gamma(T) \subseteq -\Gamma(T)$.

For (a), take $U \in \mathscr{V}$ such that $U + U \subseteq V$, and apply (4). To see (b), we have $(\Gamma(V))(-1) \subseteq \Gamma(V)\Gamma(-1) = -\Gamma(V)$ by (1) and (4). Then letting T = -V, $\Gamma(T) \subseteq -\Gamma(-T) = -\Gamma(V)$. It remains to check continuity of multiplication. If $q \in Q^*$, $W \in \mathcal{W}$, $W = \Gamma(V)$, $V \in \mathcal{V}$, take $U, T \in \mathcal{V}$ such that $U + U \subseteq V$ and $qT \subseteq \Gamma(U)$, $Tq \subseteq \Gamma(U)$, and $T T \subseteq U$. Thus $(q + \Gamma(T)) \Gamma(T) \subseteq q\Gamma(T) + \Gamma(T)\Gamma(T) \subseteq \Gamma(qT) + \Gamma(TT) \subseteq \Gamma(U) + \Gamma(U) \subseteq \Gamma(V)$.

We shall call Q^* the topological quotient ring of R with respect to \mathcal{D} and Γ .

Example A. Let R be C(X), X compact Hausdorff, the \mathscr{D} be the Utumi filter, the topology for R be the one induced by the sup norm, and Γ be as defined in Example 2. Then Q^* is the ring of real-valued functions which are continuous and bounded on a dense open subset of X, and its topology is that induced by the sup norm. We recall from [3] that Q(R) is the ring of all realvalued functions continuous on a dense open subset of X, and an ideal D of R is in \mathscr{D} if and only if the cozero set of D is dense. To prove our assertion about Q^* , if $\epsilon > 0$ let

 $W = \{g \in Q(R) : |g(x)| \leq \epsilon \text{ all } x \text{ in an open dense set } \mathscr{O} \subseteq X\}.$

We claim that $\Gamma(W \cap R) = W$. Take $g \in (W \cap R)^+$. Thus

there exists $D \in \mathscr{D}$ such that for all $d \in D$, $gd \in (W \cap R)d$.

The cozero set of D is open and dense, and for $x \in \operatorname{coz} D$ choose $d \in D$, $d(x) \neq 0$. Then $g(x)d(x) = w(x)d(x) \leq \epsilon d(x)$. Thus $|g(x)| \leq \epsilon$ and we have $g \in W$. Conversely if $g \in W$, and \mathcal{O} is the open dense set in the definition of W, let

 $D' = \{ d \in R : d^{-1}(0) \text{ is a neighborhood of } X \setminus \mathcal{O} \}.$

Since X is normal, $\operatorname{coz} D' = \mathcal{O}$, and thus $D' \in \mathcal{D}$. We define

$$w(x) = \begin{cases} 0 \text{ on } X \setminus \mathcal{O} \\ g(x) \text{ on the closure of } X \setminus d^{-1}(0) \\ \text{otherwise extend it continuously with values in } [-\epsilon, \epsilon]. \end{cases}$$

We have gd = wd, $w \in W \cap R$), and therefore $g \in (W \cap R)^+$. We have shown that $(W \cap R)^+ = W$, but it is easily verified that $W^+ = W$, and thus $\Gamma(W \cap R) = W$. Every function which is bounded and continuous on a dense open set is in some W for a sufficiently large ϵ , and therefore in $\Gamma(W \cap R) \subseteq \Gamma(R) \subseteq Q^*$. Conversely if $g \in Q^*$, then there exists $\delta > 0$ such that

 $g \cdot \{f \in R : |f| \leq \delta\} \subseteq W.$

Thus $g \cdot \delta = w$, for some $w \in W$, and $g = w/\delta$, a function which is bounded (by ϵ/δ) on a dense open set. That the topology on Q^* is the sup norm, is clear from $\Gamma(W \cap R) = W$.

Example B. This example also uses Γ as in Example 2. We give here a general construction, which applies to any ring, and which when applied to a ring of algebraic integers gives the ring of Adele's (together with its topology) modulo

the Archimedean part (see [1]). Let R be a ring, \mathscr{D} the Utumi filter of right ideals. Let \hat{R} be the Hausdorff completion. \hat{R} will have a linear topology, i.e. a base for the neighborhood filter at 0 consisting of right ideals, so let \mathscr{D}' be the smallest Gabriel filter containing it. We now form the topological ring $O^*_{\alpha'}(\hat{R})$. To see what this is if R is a ring of algebraic integers, we first note that

$$\hat{R} = \prod_{P_i \in \text{Spec}R} \hat{R}_{P_i}$$

by [3] where \hat{R}_{P_i} denotes the P_i -adic completion of R. The topology on \hat{R} is the product topology, and thus ideals in \mathscr{D}' are of the form $\prod_i X_i$, where $X_i = \hat{R}_{P_i}$ for almost all *i*, and otherwise $X_i = \mathcal{M}_i^{n_i}$, $n_i \in \mathbb{N}$, \mathcal{M}_i the maximal ideal in \hat{R}_{P_i} . Let $\mathcal{M}_i = a_i \hat{R}_{P_i}$, $Q_{\mathcal{Q}'}(\hat{R})$ is then the local product of the $Q_i = a_i^{-1} \hat{R}_{P_i}$, with respect to the \hat{R}_{P_i} , $O_{\mathcal{Q}'}(\hat{R}) = O_{\mathcal{Q}'}^*(\hat{R})$, and it is clear that the topology of O^* is the usual one.

Example C. If R commutative, Γ is as in Example 3, and if we localize at a prime P, then $Q^* = R_P$ and its topology is the M-adic topology where $M = PR_P$

Example D. If R is any topological ring, \mathscr{D} the Utumi filter, and Γ is as in Example 1, then $O^* = C(R)$, where C(R) is defined by R. L. Johnson in [6].

We now wish to show that O^* can be obtained as a topological bicommutator. If M is a topological R-module, E the ring of continuous endomorphisms End (M_R, M_R) , and S = End $(_RM, _EM)$, we shall call S, endowed with the topology of pointwise convergence, the topological bicommutator of M. It comes equipped with the continuous canonical ring homomorphism $R \rightarrow S$.

Given \mathscr{D} a Gabriel filter for R, and Γ an operator satisfying (1), (2), ..., (6) we let

$$I = \prod_{j \in J} \{ E(R/K_j) : K_j \leq r, R, R/K_j \text{ torsionfree} \}.$$

Let $i_0 = (1 + K_j)_{j \in J} \in I$. A base for neighborhoods of 0 in I, will be

$$\mathscr{U} = \{ \Gamma_I(i_0 V) \colon V \in \mathscr{V} \}$$

where \mathscr{V} is the neighborhood filter of 0 in R. We let

$$I^* = \{i \in I : \text{ for all } U \in \mathscr{U} \text{ there exists } V \in \mathscr{V} \text{ with } iV \subseteq U\}.$$

It is clear that I^* is a topological *R*-module.

A topological *R*-module *E* is said to be a topological injective (see [5]) if for M' an open submodule of a topological module M, any continuous map $M' \xrightarrow{f} E$ admits a continuous extension to M.

LEMMA. I_{R}^{*} is a topological injective.

Proof. Let

$$M' \xrightarrow{f} I^*$$

as in the definition. We know there is a map

 $M \xrightarrow{f} I$

extending f. If $m \in M$ and $U \in \mathscr{U}$, there is a $V \in \mathscr{V}$ such that $mV \subseteq f^{-1}(U)$. Thus $\overline{f}(m)V \subseteq U$, so $\overline{f}(M) \subseteq I^*$. Continuity is clear since M' is open and $\overline{f}|_M$, is continuous.

THEOREM. Q^* is the topological bicommutator of I^* .

Proof. First we show that $Ei_0 = I^*$. Take $i \in I^*$. Define $h: i_0 R \to I^*$: $i_0 r \mapsto ir$. We can extend h to $\bar{h}: I^* \to I$. If $x \in I^*$, and $U \in \mathscr{U}$ we know there is a $V \in \mathscr{V}$ with $iV \subseteq U$ and a $W \in \mathscr{V}$ such that $xW \subseteq \Gamma(i_0V)$. We have $\bar{h}(x)W = \bar{h}(xW) \subseteq \bar{h}(\Gamma(i_0V)) \subseteq \Gamma(\bar{h}(i_0V)) = \Gamma(iV) \subseteq \Gamma(U) = U$. Thus $\bar{h}(I^*) \subseteq I^*$. \bar{h} is continuous, for if $U \in \mathscr{U}$, take $V \in \mathscr{V}$ such that $iV \subseteq U$, and then $\bar{h}(\Gamma(i_0V)) \subseteq U$.

Since $Ei_0 = *$, we have a monomorphism $S \to I^* : s \mapsto i_0 s$. We wish to show that

 $R \xrightarrow{\kappa} S$

is essential, or equivalently $i_0R \subseteq i_0S$ is essential. Suppose for $i = i_{0S} \in i_0S$, $iR \cap i_0R = 0$. Then we define $e: iR + i_0R \to I^*$ by e(i) = i and $e(i_0) = 0$. e is continuous, and by an argument similar to that above one obtains a continuous extension $\bar{e}: I^* \to I^*$. Thus

$$i = e(i) = \bar{e}(i) = \bar{e}(i_0 s) = (\bar{e}i_0)s = 0.$$

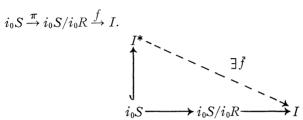
It is clear that $\operatorname{Ker}(R \to S) = T(R)$. Thus we have shown that S_R is an essential extension of R/T(R). In order to show that S_R is a subring of Q(R) (i.e., $Q_{\mathscr{Q}}(R)$) it suffices to show that $S(R)/\kappa(R)$ is \mathscr{D} -torsion. We know $S_R/\kappa(R) \cong i_0 S_R/i_0 R$. Suppose

$$i_0 S_R / i_0 R \xrightarrow{f} I, \quad f \neq 0.$$

We know there is an

$$I^* \xrightarrow{f} I$$

extending the map



We claim $\tilde{f}(I^*) \subseteq I^*$ and \tilde{f} is continuous. Take $i \in I^*$ and $U \in \mathscr{V}$. Then there is a $V \in \mathscr{V}$, such that $iV \subseteq \Gamma(i_0 U) \subseteq Q_{\mathscr{Q}}(i_0 R)$. Thus $\tilde{f}(iV) = 0$, since

1232

 $Q_{\mathscr{D}}(i_0R)/i_0R$ is \mathscr{D} -torsion. Since $\overline{f}(i)V = 0$ we certainly have $\overline{f}(i) \in I^*$. Similarly, $\overline{f}(\Gamma(i_0V)) \subseteq \Gamma(\overline{f}(i_0V)) = \Gamma(0)$, so \overline{f} is continuous. Now for any $s \in S, f \cdot \pi(i_0s) = \overline{f}(i_0s) = (\overline{f}i_0)s = 0$. Therefore f = 0. Thus we may think of S and Q^* as two subrings of Q(R) containing R/T(R). To show that $Q^* \subseteq S$, it will suffice to show that $g: I^* \to I^*: i \to iq$ is a well defined and continuous E-homomorphism. We know I is a Q(R) module. Let $i \in I^*$ and $q \in Q^*$. Take $U \in \mathscr{U}$ and $V \in \mathscr{V}$ such that $iV \subseteq U$. Take $W \in \mathscr{V}$ such that $qW \subseteq \Gamma(V)$. Then $(iq)W \subseteq i\Gamma(V) \subseteq \Gamma(iV) \subseteq \Gamma(U) = U$. Therefore $iq \in I^*$. To check continuity, $V' \in \mathscr{V}$. Then there is a $W \in \mathscr{V}$ such that $Wq \subseteq \Gamma(V')$.

$$\Gamma(i_0 W)q \subseteq \Gamma(i_0 Wq) \subseteq \Gamma(i_0 \Gamma(V')) \subseteq \Gamma(\Gamma(i_0 V')) = \Gamma(i_0 V').$$

It remains to check that g is an *E*-endomorphism. Take $e \in E$, $I \in I^*$, and $D \in \mathscr{D}$ such that $q(D) \subseteq R/T(R)$. Then (e(iq) - (ei)q)d = e(iqd) - (ei)qd = (ei)qd - (ei)qd = 0, each $d \in D$. Since I^* is \mathscr{D} -torsionfree, e(iq) = (ei)q.

We now show $S \subseteq Q^*$. Take $V \in \mathscr{V}$. We know $i_0 \Gamma(V) \subseteq \Gamma(i_0) \Gamma(V) \subseteq \Gamma(i_0 V) \subseteq Q(i_0 R) = i_0 Q(R)$. Let

$$i_0 R \xrightarrow{\mathbf{I}} R: i_0 \to 1$$

c

 $Q(f)(\Gamma(i_0 V)) \subseteq \Gamma(f(i_0 V)) = \Gamma(V)$. Thus $\Gamma(i_0 V) \subseteq i_0 \Gamma(V)$, i.e., $\Gamma(i_0 V) = i_0 \Gamma(V)$. Since *s* is a continuous endomorphism, there is a $W \in \mathscr{V}$, such that

 $(i_0W)s \subseteq \Gamma(i_0W)s \subseteq \Gamma(i_0V) = (i_0\Gamma(V)).$

Thus $Ws \subseteq \Gamma(V)$. On the right side, since $i_0 s \in I^*$, there is a $W' \in \mathscr{V}$, such that $(i_0 s)W' \subseteq \Gamma(i_0 V) = i_0 \Gamma(V)$, i.e., $sW' \subseteq \Gamma(V)$. Therefore $s \in Q^*$.

Finally it remains to show that the topology of pointwise convergence on S coincides with the topology of Q^* . If $i \in I^*$, and $V \in \mathscr{V}$, a typical neighborhood of 0 in S is $X = \{s \in S : is \in \Gamma(i_0V)\}$. If $i = i_0$ then this is just $\Gamma(V)$ so the topology of S is finer than that of Q^* . Conversely, we know $i = ei_0$ some $e \in E$. Thus $X = \{s \in S : i_0s \in e^{-1}(\Gamma(i_0V))\}$. Since e is continuous, $\Gamma(i_0V)$ is a neighborhood of 0 in I^* , i.e. there is a $W \in \mathscr{V}$ such that $e^{-1}(\Gamma(i_0V)) \supseteq \Gamma(i_0W) = i_0\Gamma(W)$. Thus $X \supseteq \Gamma(W)$.

References

- 1. J. Cassels and A. Fröhlich, Algebraic number theory (Academic Press, New York, 1967).
- 2. F. Eckstein, Topologische Quotientringe und Ringe ohne Offene Links ideale, Habilitationschrift, Tech. Univ. Munich, 1972.
- 3. N. Fine, L. Gillman, and J. Lambek, *Rings of quotients of rings of functions* (McGill University Press, Montreal, 1965).
- 4. P. Gabriel, Des catégories abeliennes, Bull. Soc. Math. France 90 (1962), 323-448.
- O. Goldman and Chi-Han Sah, Locally compact rings of special type, J. Algebra 11 (1969), 363-454.
- 6. R. L. Johnson, Rings of quotients of topological rings, Math. Ann. 179 (1969), 203-211.
- 7. J. Lambek, Torsion theories, additive semantics, and rings of quotients, Lect. Notes in Math. 177 (Springer, Berlin, 1970).

University of Leeds, Leeds, England