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Recent years have seen an increase in the interest and application of the low-loss region (<~20 eV) in 
electron energy-loss spectroscopy (EELS). The spectral detail in this region is associated with 
excitations of the valence electrons and includes interband transitions and collective excitations. In 
addition, for many materials, an independent particle approximation for the excitations will be 
inadequate and quasi-particle or excitonic effects must be considered. For these reasons this so-
called valence EELS can be quite complex and calculation of the spectra from first principles is 
important for their interpretation. The valence EELS has connections to optical response functions 
and there are a number of sophisticated approaches already available for the calculations of these; so 
the task is less daunting than it might first appear. However, the incident electric fields associated 
with light or with a fast electron are distinctly different from one another in their time and spatial 
dependence. This becomes particularly important for inhomogeneous materials. 

The traditional approach to EELS, as first derived by Ritchie [1], starts by considering the total 
energy loss as the work done on the external charge, ext( ,t), (the incident electron with trajectory 

0(t)) by the induced potential Vind( ,t):
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An expression for the induced potential is found, the temporal and spatial Fourier transforms of the 
induced potential and external charge are used and the energy loss probability can be determined by 
recognizing that the total energy loss is also given by:
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An equivalent and arguably more revealing starting point is to instead consider the electrostatic 
potential energy of the induced charge, ind( ,t), due to the external potential Vext( ,t).
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The density response function (sometimes referred to as the reducible polarizability), ( , ’,t,t’), 
connects the induced charge to the external potential, and can be introduced to give. 
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This equation is more general as it can apply to any external potential, either that of light or an 
incident electron. In addition, the connection of EELS to calculation methods developed for optical 
spectra, which focus on first deriving ( , ’,t,t’), becomes more clear. In the trivial case of bulk 
materials and using the appropriate expressions for the external potentials it is possible to derive 
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from Eqn. 4 the usual expressions for the energy-loss spectra [I( ) Im(-1/ )] and optical absorption 
spectra [(I( ) Im( )]. Fig. 1 shows EEL spectra calculated for bulk LiF using Yambo [2], a code 
developed for many body calculations of optical spectra. Only when full quasiparticle corrections 
and excitonic effects are included are the experimental spectra reasonably well reproduced. Fig. 2 
shows optical absorption spectra for clusters of 55 gold atoms of two different atomic arrangements. 
These were calculated using Octopus [3], a real-space time dependent density functional theory 
(TDDFT) code. As yet, the existing and readily available codes for calculation of optical properties, 
such as these, have not been adapted to calculate the spatially resolved EELS in inhomogeneous 
systems. However, as Eqn. 4 illustrates, the necessary modifications should not be difficult to 
implement. 
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FIG. 1. EELS spectra for LiF calculated using 
the random phase approximation (RPA), 
including quasiparticle corrections (QP) and 
with full excitonic effects and quasiparticle 
corrections using the Bethe-Salpeter equation 
(BSE). These are compared to the experimental 
EELS from Mauchamp [4] and the expected 
EELS based on the optical constants available 
in Palik [5]. The first sharp peak is an exciton 
peak which is only correctly predicted using 
the BSE.

FIG. 2. Optical absorption spectra for two 
different atomic arrangements of a cluster 
of 55 gold atoms. There are significant 
differences between the two spectra.

Microsc. Microanal. 17 (Suppl 2), 2011 773

https://doi.org/10.1017/S1431927611004739 Published online by Cambridge University Press

https://doi.org/10.1017/S1431927611004739

