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Abstract. We construct a ring homomorphism comparing the tautological ring,
fixing a point, of a closed smooth manifold with that of its stabilisation by S2a × S2b.

2020 Mathematics Subject Classification. Primary 55R40, 57R22

1. Introduction and statement of result.

1.1. Tautological rings. For a connected closed oriented smooth d-manifold N ,
the universal smooth fibre bundle with fibre N may be described in terms of classifying
spaces as

N
i−→ BDiff+(N, �)

π−→ BDiff+(N).

Here, Diff+(N) denotes the topological group of orientation-preserving diffeomorphisms
of N and Diff+(N, �) denotes the subgroup of those diffeomorphisms fixing a marked point
� ∈ N . Assigning to a diffeomorphism fixing � ∈ N its derivative at this point gives a map

D� : BDiff+(N, �) −→ BGL+
d (R) � BSO(d).

Using this, we may pull back any cohomology class c ∈ H∗(BSO(d); Q) to give a class on
BDiff+(N, �), which we continue to denote by c. We may then define classes

κc :=
∫

π

c ∈ H |c|−d(BDiff+(N); Q)

by integration along the fibres of the map π . These are known as tautological classes,
κ-classes or generalised Miller–Morita–Mumford classes. If |c| = d, then the degree zero
cohomology class κc is simply a characteristic number of N ; the higher degree κc’s may be
considered as analogues of characteristic numbers for families of manifolds.

The tautological ring R∗(N) ⊂ H∗(BDiff+(N); Q) is the subring generated by the
classes κc. We may pull the classes κc back along π and hence also consider them as coho-
mology classes on BDiff+(N, �), where we continue to denote them by κc. A variant of
R∗(N), the tautological ring fixing a point R∗(N, �) ⊂ H∗(BDiff+(N, �); Q) is the subring
generated by the classes κc as well as the classes c.

Context. The rings R∗(N) have been extensively studied in the case that N is an oriented
surface, as in this case BDiff+(N) is a model for the moduli space of Riemann surfaces,
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cf. [12, 10, 5, 11]. For manifolds of higher dimension, they have recently been studied by
Grigoriev, Galatius and the author [8, 6, 14], and in the case of 4-manifolds by Baraglia
[2]. In a different direction, the vanishing of tautological classes for various aspherical
manifolds has been shown by Bustamante, Farrell and Jiang [4], and by Hebestreit, Land,
Lück and the author [9]. A variant of tautological rings for Poincaré complexes rather than
manifolds has been studied by Prigge [13].

1.2. Main result. The main result of this note concerns the case d = 2(a + b), and
gives an explicit ring homomorphism R∗(N#S2a × S2b, �) → R∗(N, �). This is rather sur-
prising because – as far as we can tell – there is no corresponding map BDiff+(N, �) →
BDiff+(N#S2a × S2b, �), even at the level of rational cohomology groups.

In order to state our result, we must first explain our conventions for describing the
classes c. When d = 2n, we have H∗(BSO(2n); Q) = Q[e, p1, p2, . . . , pn−1], the polyno-
mial ring on the Euler class and Pontrjagin classes. There is a further Pontrjagin class, pn,
which agrees with e2. Using this, we may write any monomial in this ring as either pI or
epI , with I = (i1, i2, . . . , ir) having 1 ≤ ij ≤ n and pI = pi1 · · · pir .

THEOREM 1.1. Let N be a 2(a + b)-dimensional manifold. Then the formula

R∗(N#S2a × S2b, �) −→ R∗(N, �)

κpI 	−→ κpI

κepI 	−→ κepI + 2pI

c 	−→ c

gives a well-defined and surjective ring homomorphism.

REMARK 1.2.

(1) The tautological ring fixing a disc R∗(N, Dd) ⊂ H∗(BDiff+(N, Dd); Q) is the
subring generated by the classes κc. There are natural ring homomorphisms

R∗(N) −→ R∗(N, �) −→ R∗(N, Dd),

sending κc to κc, and the second map sending c to 0. Considering Diff+(N, Dd) as
the group of diffeomorphisms of N \ int(Dd) fixing the boundary, there are natural
maps BDiff+(N, Dd) → BDiff+(N#M, Dd), and these induce ring homomorphisms

R∗(N#M, Dd) −→ R∗(N, Dd),

sending κc to κc. Theorem 1.1 may be viewed as a refinement of this map which
does not require an entire disc to be fixed, but only a point.

(2) Tautological rings can equally well be defined for homeomorphism groups of topo-
logical manifolds, but for our method smoothness is used in an essential way (we
use that Diff+(Rd) is homotopy equivalent to a compact Lie group).

Our method can more generally be used to compare tautological rings of N and N#M
when M is a 2n-manifold with an n-torus action satisfying certain cohomological hypothe-
ses. In Section 2 we develop our construction in this generality, in Section 3 we verify the
cohomological hypotheses in the case M = S2a × S2b, thereby proving Theorem 1.1 and in
Section 4 we explain the analogous result in the case M = CP

2.
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Example 1.3. Composing with the inclusion i : N → BDiff+(N, �) of the fibre of the
universal bundle gives a ring homomorphism

R∗(N#S2k × S2k, �) −→ H∗(N; Q)

κpI 	−→ 0

κepI 	−→ 2pI(TN)

c 	−→ c(TN).

So if pI(TN) 
= 0 ∈ H∗(N; Q), then κepI 
= 0 ∈ R∗(N#S2k × S2k, �).

Example 1.4. Writing W 4k
g = #gS2k × S2k , one consequence of Theorem 1.1 is that

the sequence of Krull dimensions KdimR∗(W 4k
g , �) is non-decreasing with g. The mor-

phism R∗(W 4k
g ) → R∗(W 4k

g , �) is injective by the Becker–Gottlieb transfer [3]: if π : E → B

denotes the universal W 4k
g -bundle, then the composition trf∗π ◦ π∗ is multiplication by the

Euler characteristic χ(W 4k
g ) = 2 + 2g 
= 0 and so π∗ is injective. By [14, Theorem A (ii)],

the morphism R∗(W 4k
g ) → R∗(W 4k

g , �) is in addition finite, so it follows that these rings

have the same Krull dimensions and so the sequence KdimR∗(W 4k
g ) is also non-decreasing

with g.
This is in distinction with the manifolds W 4k+2

g = #gS2k+1 × S2k+1, as in [6] it

was shown that the sequence KdimR∗(W 4k+2
g ) is 2k + 1, 0, 2k, 2k, 2k, . . . for g =

0, 1, 2, 3, 4, . . ..

Example 1.5. We have R∗(S4k) = Q[κep1 , κep2 , . . . , κep2k ] (see [6, Section 5.3]), so
by [14, Theorem A (ii)] the ring R∗(S4k, �) also has Krull dimension 2k. Thus,
KdimR∗(W 4k

g ) ≥ 2k for all g ≥ 0.

Example 1.6. In [14, Corollary 4.18], it was shown that KdimR∗(S2 × S2) is either 3
or 4, so it follows that KdimR∗(W 4

g ) ≥ 3 for all g ≥ 1.

Example 1.7. In [7, Proposition 1], it was shown that for the K3 manifold K one has
κLi+1 
= 0 ∈ R∗(K) for 1 ≤ i ≤ 8. As χ(K) = 24 
= 0, the map R∗(K) → R∗(K, �) is injec-
tive by the Becker–Gottlieb transfer as in Example 1.4, so κLi+1 
= 0 ∈ R∗(K, �) and hence
κLi+1 
= 0 ∈ R∗(K#gS2 × S2) for all g ≥ 0 and 1 ≤ i ≤ 8.

2. The general construction.

2.1. Parametrised connect sum. Let (M, m0) and (N, n0) be d-dimensional con-
nected manifolds with marked points, and choose charts ϕM : Rd → M and ϕN : Rd → N
around these marked points.

Definition 2.1. Let Diff+(M, ϕM ) denote the group of diffeomorphisms f : M → M
for which there exists an A ∈ SO(d) such that f ◦ ϕM = ϕM ◦ A, equipped with the C∞-
topology. Define Diff+(N, ϕN ) in the same way.

More generally, for a subset X ⊂ M \ ϕM (Rd) let Diff+(M, ϕM , X ) denote the sub-
group which fixes X pointwise.

These are just slightly unusual models for the group of diffeomorphisms fixing a point,
as follows.
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LEMMA 2.2. The inclusion Diff+(M, ϕM) → Diff+(M, m0) is a weak homotopy equiv-
alence. Similarly for Diff+(N, ϕN ) and Diff+(M, ϕM , X ).

Proof sketch. Combine the facts (i) that the inclusion SO(d) → GL+
d (R) into the space

of invertible matrices with positive determinant is an equivalence and (ii) that the space of
Riemannian metrics on M is contractible.

Taking the derivative at the marked point m0 = ϕM (0) gives a homomorphism

Dm0 : Diff+(M, ϕM , X ) −→ SO(d),

and similarly with n0 = ϕN (0) gives

Dn0 : Diff+(N, ϕN ) −→ SO(d).

Let r : SO(d) → SO(d) be given by conjugating by a reflection: the induced map Br :
BSO(d) → BSO(d) corresponds to reversing orientation. For compactness we write Dm0 :=
r ◦ Dm0 . Using these maps we can form a homotopy pullback square

G BDiff+(M, ϕM , X )

BDiff+(N, ϕN ) BSO(d).

fM

fN Dm0

Dn0

(1)

The space G (for “glue”) is equipped with the following data:

(1) an oriented orthogonal vector bundle V → G,
(2) a smooth oriented N-bundle πN : EN → G with an orientation-preserving embed-

ding sN : V → EN ,
(3) a smooth oriented M-bundle πM : EM → G with an orientation-reversing embedding

sM : V → EM and a disjoint embedding G × X → EM .

Furthermore, G is the universal example of a space equipped with this data. For a
characteristic class

c ∈ H∗(BSO(d); Q)

we write c = c(V) ∈ H∗(G; Q) for its pullback to G. We also write q : S(R ⊕ V) → G for
the associated d-dimensional sphere bundle.

PROPOSITION 2.3.

(i) There is a smooth oriented M#N-bundle πM#N : EM#N → G which is equipped with
an embedding G × X → EM#N over G.

(ii) There is a bundle of oriented cobordisms over G

W : EM � EN � EM#N � S(R ⊕ V),

which is equipped with

a. an embedding G × [0, 1] × X → W over G, extending the embeddings of G × X
into EM and EM#N ,

b. a d-dimensional oriented vector bundle which restricts to the vertical tangent
bundle over the boundary.
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We write

fM#N : G −→ BDiff+(M#N, X )

for the map which classifies the oriented M#N-bundle given by Proposition 2.3 (i).

Proof of Proposition 2.3. We form EM#N by gluing together

EM \ int(D(V)), D1 × S(V), and EN \ int(D(V))

along the natural identifications

∂(EN \ int(D(V))) ∼= {−1} × S(V) and ∂(EM \ int(D(V))) ∼= {+1} × S(V),

with smooth structure induced by the evident radial collar of D(V) ⊂ V . We have
G × X ⊂ EM \ int(D(V)) ⊂ EM#N , and EM#N admits a unique orientation compatible with
those of EN \ int(D(V)) and EM \ int(D(V)). This establishes (i).

To produce the cobordism data, we first make a local construction. Let us write U for
the inner product space Rd with an orientation det(U) ∈ �dU . Consider the elementary
cobordism W ′

loc between S0 × D(U) and D1 × S(U), realised SO(U)-equivariantly by a
codimension zero submanifold with corners

W ′
loc ⊂ R × U

equipped with the Morse function f (z, u) = |u|2 − z2 and the orientation ∂
∂z ∧ det(U).

Remove the unit disc around (0, 0) from W ′
loc to obtain Wloc as shown in Figure 1, whose

new boundary component is S(U ⊕ R). We consider Wloc as a SO(U)-equivariant oriented
cobordism of manifolds with boundary

Wloc : S0 × D(U)�D1 × S(U) � S(R ⊕ U).

As usual, we equip the boundary components of an oriented cobordism with the induced
orientation on outgoing boundaries and the opposite of the induced orientation on
incoming boundaries. (The induced orientation is that which agrees with prepending the
outwards-pointing normal vector.) Thus, in this case, the orientation on {−1} × D(U)

agrees with that inherited from U , that on {+1} × D(U) is the opposite of that inherited
from U , and that on S(R ⊕ U) is the opposite of that induced from D(R ⊕ U).

The kernel of the differential Df defines a SO(U)-equivariant d-dimensional oriented
subbundle τ of TW ′

loc on the complement of the point (0, 0), restricting to the oriented
tangent bundles of {−1} × D(U) and D1 × S(U), and the oppositely oriented tangent
bundle over {+1} × D(U), respectively, as these are level sets of f . The bundle τ restricts
to an oriented vector bundle of the same name on Wloc, and hence to an oriented vector
bundle on S(U ⊕ R), which we now identify.

At the point (z, u) ∈ S(R ⊕ U), the differential D(z,u)f : R ⊕ U → R is given by inner
product with 2(−z, u), so its kernel is identified with the tangent space T(−z,u)S(R ⊕ U)

though with the opposite orientation. As (z, u) 	→ (−z, u) gives a (orientation-reversing)
diffeomorphism of S(R ⊕ U) commuting with the SO(U)-action, there is SO(U)-
equivariant identification of oriented vector bundles between τ |S(R⊕U) and TS(R ⊕ U).

We implant this local construction as follows. Applying the local construction
fibrewise, the oriented orthogonal vector bundle V → G gives a bundle of cobordisms of
manifolds with boundary

Wloc(V) : S0 × D(V)�D1 × S(V) � S(R ⊕ V)
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Figure 1. The cobordism Wloc.

over G, equipped with a vector bundle τ(V) which agrees with the tangent bundle over the
incoming and outgoing boundaries. We then construct W as

([0, 1] × (EM \ int(D(V)) � EN \ int(D(V)))) ∪[0,1]×S0×S(V) Wloc(V).

This is a bundle of oriented cobordisms EM � EN � EM#N � S(R ⊕ V), and contains
G × [0, 1] × X ⊂ [0, 1] × EM \ int(D(V)). The bundle τ(V) extends to a vector bundle
on W by taking the vertical tangent bundle of EM \ int(D(V)) � EN \ int(D(V)). This
establishes (ii).

From now on let us suppose that d = 2n, so that the available characteristic classes are

H∗(BSO(2n); Q) = Q[p1, p2, . . . , pn−1, e].

As mentioned in the introduction, we use that e2 = pn to write monomials in this ring as
either pI or epI , with I = (i1, i2, . . . , ir) having 1 ≤ ij ≤ n.

LEMMA 2.4. Let V → B be a 2n-dimensional oriented orthogonal vector bundle, and
q : S(R ⊕ V) → B be the associated oriented S2n-bundle. Then

κpI (q) = 0 and κepI (q) = 2pI(V).

Proof. We have TqS(R ⊕ V) ⊕ R ∼= R ⊕ q∗V , and hence the cohomology classes
pi(TqS(R ⊕ V)) = q∗pi(V) are pulled back from the base. Then

∫
q pI(TqS(R ⊕ V)) =∫

q q∗(pI(V)) = 0 by the projection formula (i.e. the fact that fibre integration is a map
of modules over the cohomology of the base), and similarly∫

q
e(TqS(R ⊕ V))pI(TqS(R ⊕ V)) =

∫
q

e(TqS(R ⊕ V))q∗(pI(V))

=
(∫

q
e(TqS(R ⊕ V))

)
pI(V)

= χ(S2n)pI(V) = 2pI(V).

https://doi.org/10.1017/S0017089521000045 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089521000045


TAUTOLOGICAL RINGS AND STABILISATION 237

COROLLARY 2.5. There are identities

κpI (πM#N ) = κpI (πM ) + κpI (πN ),

κepI (πM#N ) = κepI (πM ) + κepI (πN ) − 2pI(V),

in H∗(G; Q).

Proof. Consider the bundle of cobordisms W : EM � EN � EM#N � S(R ⊕ V) con-
structed in Proposition 2.3 (ii), with its oriented 2n-dimensional vector bundle which
restricts to the vertical tangent bundles over the two ends. By Stokes’ theorem, for any
c ∈ H∗(BSO(2n); Q) we, therefore, have∫

πM#N

c(TπM#N EM#N ) +
∫

q
c(TqS(R ⊕ V)) =

∫
πM

c(TπM EM ) +
∫

πN

c(TπN EN ).

The result follows by using Lemma 2.4.

2.2. Torus actions. If the n-torus T acts on the 2n-manifold M fixing m0 ∈ M
and X = m1 ∈ M , then by choosing ϕM to be an equivariant orthogonal chart around m0

(obtained, e.g. by exponentiating with respect to a T-invariant Riemannian metric), we
have homomorphisms

T
φ−→ Diff+(M, ϕM , m1)

Dm0−→ SO(2n).

We may then form the following commutative cube, in which the front face is (1), the
map iT : BT → BSO(2n) is B(Dm0 ◦ φ), and the remaining faces are developed by taking
homotopy pullbacks.

GT BDiff+T (M, ϕM , m1)

G BDiff+(M, ϕM , m1)

BDiff+T (N, ϕN ) BT

BDiff+(N, ϕN ) BSO(2n)

iG
iM

fM

Dm0

sφ

DT
n0

iN iT

φ

Dn0

fN

The lift φ determines a section BT → BDiff+T (M, ϕM , m1) and hence, by pullback, a
section sφ : BDiff+T (N, ϕN ) → GT . Furthermore, taking the derivative at m1 gives a map

Dm1 : BDiff+(M, ϕM , m1) −→ BGL+
2n(R) � BSO(2n).

LEMMA 2.6. On tautological classes the composition

ϕ : BDiff+T (N, ϕN )
sφ−→ GT

iG−→ G fM#N−→ BDiff+(M#N, m1)
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satisfies

ϕ∗κpI = (iN )∗(κpI ) + (DT
n0

)∗φ∗(κpI )

ϕ∗κepI = (iN )∗(κepI − 2(Dn0)
∗pI) + (DT

n0
)∗φ∗(κepI )

ϕ∗c = (DT
n0

)∗φ∗(Dm1)
∗c.

Proof. By Corollary 2.5, we have

(fM#N )∗κpI = κpI (πM ) + κpI (πN )

(fM#N )∗κepI = κepI (πM ) + κepI (πN ) − 2pI .

When we pull this back to BDiff+T (N, ϕN ), the classes κc(πN ) can be written as (iN )∗κc,
and the classes pI can be written as (iN )∗(Dn0)

∗pI . The classes κc(πM ) pulled back to
BDiff+T (N, ϕN ) may be written as (DT

n0
)∗φ∗κc.

Finally, Proposition 2.3 (ii) implies that

G BDiff+(M#N, m1)

BDiff+(M, ϕM , m1) BSO(2n)

fM#N

fM Dm1

Dm1

commutes up to homotopy, which with the cube above shows that the composition

BDiff+T (N, ϕN )
sφ−→ GT

iG−→ G fM#N−→ BDiff+(M#N, m1)
Dm1−→ BGL+

2n(R)

agrees with BDiff+T (N, ϕN )
DT

n0→ BT
φ→ BDiff+(M, ϕM , m1)

Dm1→ BGL+
2n(R) up to

homotopy.

To proceed we require Dm0 ◦ φ : T → SO(2n) to be injective, in which case it is the
inclusion of a maximal torus.

LEMMA 2.7. The homomorphism Dm0 ◦ φ is injective if and only if m0 ∈ M is an
isolated fixed point of this torus action.

Proof. If this homomorphism is not injective, then its image is a torus of rank ≤ n − 1,
which may therefore be conjugated into the maximal torus of SO(2n − 1) ≤ SO(2n): in this
case T fixes a tangent vector at m0, and since T acts linearly in a chart around this point it
follows that m0 is not an isolated fixed point.

Conversely, if m0 is not an isolated fixed point, then this torus fixes a non-zero vector
in Tm0 M , so lies in some SO(2n − 1), and hence cannot be injective (by dimension of the
maximal torus of SO(2n − 1)).

Thus if m0 is an isolated fixed point, then the map Dm0 ◦ φ : T → SO(2n) is the inclu-
sion of a maximal torus. We use this in the following way. The homotopy fibre of the map
iN is then SO(2n)/T , which has non-zero Euler characteristic (it is the order of the Weyl
group of SO(2n)), and therefore just as in Example 1.4, the Becker–Gottlieb transfer shows
that the ring homomorphism

(iN )∗ : H∗(BDiff+(N, ϕN ); Q) −→ H∗(BDiff+T (N, ϕN ); Q)

is injective. Thus:
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(1) If for each c ∈ H∗(BSO(2n); Q) we have (DT
n0

)∗φ∗(κc) = (iN )∗qc for some (unique)
qc ∈ R∗(N, �), then the function

R∗(M#N) −→ R∗(N, �)

κpI 	−→ κpI + qpI

κepI 	−→ κepI + qepI − 2pI

is a well-defined ring homomorphism.
(2) If in addition for each c ∈ H∗(BSO(2n); Q) we have (DT

n0
)∗φ∗(Dm1)

∗c = (iN )∗rc for
some (unique) rc ∈ R∗(N, �), then the function

R∗(M#N, �) −→ R∗(N, �)

κpI 	−→ κpI + qpI

κepI 	−→ κepI + qepI − 2pI

c 	−→ rc

is a well-defined ring homomorphism.

For these to hold, we must impose conditions on the torus action on M . We do not try
to pursue this in its greatest generality, and instead treat two special cases.

3. Proof of Theorem 1.1: Stabilisation by S2a × S2b. We consider S2k = (R2k)+
with the usual SO(2k)-action, and let the standard maximal torus T = Ta+b = Ta × Tb ≤
SO(2a) × SO(2b) act on M = S2a × S2b. We write ζ for the corresponding oriented
2(a + b)-dimensional representation of T , and ζ̄ for the same representation with opposite
orientation.

LEMMA 3.1. The T-action on S2a × S2b fixes {(0, 0), (0, ∞), (∞, 0), (∞, ∞)}. The
T-representations at these points are all isomorphic to ζ , but as oriented representations
they are isomorphic to the ζ at {(0, 0), (∞, ∞)} and to ζ̄ at {(0, ∞), (∞, 0)}.

Proof. The Tk-action on S2k = (R2k)+ fixes precisely 0 and ∞. The normal represen-
tation at 0 is the standard oriented representation Tk ≤ SO(2k). The orientation-reversing
reflection in the equator interchanges the fixed points 0 and ∞ and commutes with the
Tk-action, so the normal representation at ∞ is the opposite of the standard representation.
Taking products gives the claimed description.

Proof of Theorem 1.1. For m0 = (0, 0) ∈ S2a × S2b with orthogonal chart given by the
product of the two open upper hemispheres, and X = m1 = (0, ∞) ∈ S2a × S2b, there is a
corresponding map

φ : BT −→ BDiff+(S2a × S2b, ϕS2a×S2b , m1).

LEMMA 3.2. This satisfies φ∗κpI = 0 and φ∗κepI = (iT )∗(4pI).

Proof. We will use the localisation theorem in T-equivariant rational cohomology
H∗

T (−), in the following special case; see [1, p. 366] for an exposition.
Let T act on an oriented 2n-manifold M with isolated fixed points {x1, . . . , xr}, and

let ej ∈ H∗
T = H∗

T (pt) denote the Euler class of the oriented T-representation on the tangent
space Txj M . Let S ⊂ H∗

T denote the multiplicative subset of non-zero elements. Then the
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S-localised fibre integration map∫
π

: S−1H∗
T (M) −→ S−1H∗−2n

T

for the bundle π : M ×T ET → {∗} ×T ET = BT may be expressed as

∫
π

t =
r∑

j=1

t|xj

ej
.

As H∗
T is an integral domain this determines the unlocalised fibre integration map.

We apply this to the T-action on S2a × S2b. By Lemma 3.1, tangent representations at
all fixed points are isomorphic to ζ , so have Pontrjagin classes pi(ζ ), but taking orientation
into account the Euler classes of the tangent representations at (0, 0) and (∞, ∞) are e(ζ )

and at (0, ∞) and (∞, 0) are e(ζ̄ ) = −e(ζ ). Thus, we have

φ∗κpI =
∫

π

pI(T(S2a × S2b)) = pI(ζ )

e(ζ )
+ pI(ζ )

e(ζ )
+ pI(ζ )

−e(ζ )
+ pI(ζ )

−e(ζ )
= 0

and similarly

φ∗κepI = e(ζ )pI(ζ )

e(ζ )
+ e(ζ )pI(ζ )

e(ζ )
+ −e(ζ )pI(ζ )

−e(ζ )
+ −e(ζ )pI(ζ )

−e(ζ )

= 4pI(ζ ) = (iT )∗(4pI).

As the oriented tangent representation at m1 ∈ S2a × S2b is isomorphic but with
opposite orientation to that at m0 ∈ S2a × S2b, so that Dm1 � Dm0 , we have

(DT
n0

)∗φ∗(κpI ) = 0

(DT
n0

)∗φ∗(κepI ) = (iN )∗(Dn0)
∗(4pI)

(DT
n0

)∗φ∗(Dm1)
∗(c) = (iN )∗(Dn0)

∗(c).

By the discussion above the formula

R∗(S2a × S2b#N, �) −→ R∗(N, �)

κpI 	−→ κpI

κepI 	−→ κepI + 2pI

c 	−→ c

is then a well-defined ring homomorphism, which is clearly surjective. This proves
Theorem 1.1.

REMARK 3.3. In this argument, we could have chosen the fixed point m1 = (∞, ∞),
whose tangential T-representation is oriented isomorphic with that at m0. This has the
disconcerting effect that the formula

R∗(S2a × S2b#N, �) −→ R∗(N, �)

κpI 	−→ κpI

κepI 	−→ κepI + 2pI

c 	−→ c̄
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also gives a well-defined ring homomorphism, where c 	→ c̄ is the automorphism of
H∗(BSO(2n); Q) induced by conjugation by a reflection.

4. Stabilisation by CP
2. As a further example of the method, consider M = CP

2

with the 2-torus action

S1 × S1 × CP
2 −→ CP

2

(ξ1, ξ2, [z0 : z1 : z2]) 	−→ [z0 : ξ1z1 : ξ2z2].
We let m0 = [1 : 0 : 0] and m1 = [0 : 1 : 0]; the third fixed point is [0 : 0 : 1]. The torus action
gives a map

φ : BT −→ BDiff+(CP
2
, ϕCP2 , m1).

The map Dm0 ◦ φ is induced by the standard inclusion T → SO(4) of a maximal torus. If
we let H∗(BT; Q) = Q[x1, x2], then the representation at m0 has e = x1x2 and p1 = x2

1 +
x2

2. At the other fixed points, we have e = x1(x1 − x2) and p1 = x2
1 + (x2 − x1)

2, and e =
x2(x2 − x1) and p1 = x2

2 + (x1 − x2)
2, so by localisation in equivariant cohomology we may

calculate

φ∗κeapb
1
= (x1x2)

a(x2
1 + x2

2)
b

x1x2
+ (x2

1 − x1x2)
a(x2

1 + (x2 − x1)
2)b

x2
1 − x1x2

+ (x2
2 − x1x2)

a(x2
2 + (x1 − x2)

2)b

x2
2 − x1x2

.

When expanded out this is a polynomial in the xi, and in fact is an even symmetric poly-
nomial in these variables and so can be written in terms of e = x1x2 and p1 = x2

1 + x2
2. Call

the resulting polynomial qa,b(e, p1). The first few are

q0,1 = 3; q1,0 = 3;

q0,2 = 7p1 − 7e; q1,1 = 4p1 − 4e; q2,0 = p1 − e;

q0,3 = 13(p2
1 + e2 − 2ep1); q1,2 = 6(p2

1 + e2 − 2ep1); q2,1 = 2(p2
1 + e2 − 2ep1);

and q3,0 = p2
1 + e2 − 2ep1.

It then follows from our general discussion that the formula

R∗(N4#CP
2
) −→ R∗(N4, �)

κeapb
1
	−→ κeapb

1
+

{
qa,b(e, p1) − 2ea−1pb

1 if a is odd

qa,b(e, p1) if a is even

gives a well-defined ring homomorphism. (This cannot be promoted to a ring homo-
morphism from R∗(N4#CP

2
, �), because the Euler and Pontrjagin classes of the normal

T-representation at [0 : 1 : 0] (or [0 : 0 : 1]) cannot be expressed in terms of those at m0.)

REMARK 4.1. Baraglia [2] has recently determined the tautological rings of CP
2 and

CP
2#CP

2, and more generally given a gauge-theoretic technique for obtaining relations
in tautological rings of definite 4-manifolds. Up to a change of variables, the polynomials
qa,b also arise there.
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