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Abstract

The local volatility model is a well-known extension of the Black–Scholes constant
volatility model, whereby the volatility is dependent on both time and the underlying
asset. This model can be calibrated to provide a perfect fit to a wide range of implied
volatility surfaces. The model is easy to calibrate and still very popular in foreign
exchange option trading. In this paper, we address a question of validation of the local
volatility model. Different stochastic models for the underlying asset can be calibrated
to provide a good fit to the current market data, which should be recalibrated every
trading date. A good fit to the current market data does not imply that the model is
appropriate, and historical backtesting should be performed for validation purposes. We
study delta hedging errors under the local volatility model using historical data from
2005 to 2011 for the AUD/USD implied volatility. We performed backtests for a range
of option maturities and strikes using sticky delta and theoretically correct delta hedging.
The results show that delta hedging errors under the standard Black–Scholes model are
no worse than those of the local volatility model. Moreover, for the case of in- and
at-the-money options, the hedging error for the Black–Scholes model is significantly
better.

2010 Mathematics subject classification: 91G20.

Keywords and phrases: local volatility model, backtesting, model validation, foreign
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1. Introduction

Under the well-known Black–Scholes pricing model [1], the asset price S is modelled
with geometric Brownian motion,

dSt = µSt dt + σSt dWt,

where µ is the drift, σ is the volatility and Wt is a standard Brownian motion. One of
the key assumptions of this model is the no-arbitrage condition, which means that it
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is impossible to make a riskless profit. From this assumption it can be shown that the
fair price of a derivative security with underlying asset S is equal to the mathematical
expectation of the discounted payoff of the derivative. This expectation is computed
with respect to a so-called risk-neutral probability measure. Furthermore, under this
measure the dynamics of the asset price S is given by

dSt = (r − q)St dt + σSt dBt,

where Bt is a standard Brownian motion under the risk-neutral measure, r is the
constant risk-free interest rate and q denotes the constant dividend yield. Given the
price of an European option, strike, maturity and interest rates, the asset price volatility
σ can be computed numerically from the Black–Scholes pricing formula. We say that
σ is the volatility implied by the market price. If the Black–Scholes model was a
perfect representation of the market, then the implied volatility would be equal for all
market-traded options. This is definitely not the case in practice.

The implied volatility is heavily dependent on the strike price and maturity of the
option. The local volatility model is an extension of the Black–Scholes framework
which can account for this dependence, and it does so by making volatility a function
of the current time and current spot price, that is, σ(St, t) (see, for example, the articles
by Derman and Kani [3] and Dupire [4]). Then the risk-neutral process is given by

dSt = (r − q)St dt + σ(St, t)St dWt.

In this paper, we provide results from historical backtesting of delta hedging errors
under the local volatility and Black–Scholes frameworks, using Australian dollar or
US dollar (AUD/USD) data from 2005 to 2011. To our knowledge, there has been no
paper published discussing the results of empirical testing with real financial data. We
note a related paper discussing local volatility in the context of foreign exchange (FX)
markets using stochastic interest rates [2].

2. The Black–Scholes setup

Let V(S , t) denote the discounted price of a contingent claim at time t with
underlying asset price S (t). Also, let r denote the risk-free interest rate, q the dividend
yield and σ the asset price volatility. Within the Black–Scholes framework, V satisfies
the fundamental partial differential equation (PDE)

∂V
∂t

+
1
2
σ2S 2 ∂

2V
∂S 2 + (r − q)S

∂V
∂S
− rV = 0

with known boundary condition V(S (T ), T ) for the case of European options. This
PDE can be obtained by applying a trading strategy, called delta hedging.

For ease of numerical implementation, we transform the above PDE with X = log S .
Routine calculations show that the transformed PDE is

∂V
∂t

+

(
r − q −

1
2
σ2

)
∂V
∂X

+
σ2

2
∂2V
∂X2 − rV = 0. (2.1)

https://doi.org/10.1017/S1446181115000310 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181115000310


[3] Historical backtesting of local volatility model using AUD/USD vanilla options 321

2.1. The Black–Scholes pricing formula Assuming constant interest rates rc,
dividend yields qc and volatility σc, the Black–Scholes formula for the price of an
European call option with strike K and maturity T , at time t = 0, is given by

C(σc,K,T, rc, qc, S0) = e−rcT (S0e(rc−qc)T Φ(d1) − KΦ(d1 − σc
√

T )), (2.2)

where Φ(·) denotes the cumulative distribution function for the standard normal
distribution and

d1 =
ln(S0/K) + (rc − qc + σ2

c/2)T

σc
√

T
.

For the case where interest rates, dividend yields and volatility are time dependent,
the Black–Scholes formula can be applied with the following substitutions [13]:

rc =
1
T

∫ T

0
r(u) du, qc =

1
T

∫ T

0
q(u) du, σ2

c =
1
T

∫ T

0
σ2(u) du, (2.3)

where r(t), q(t) and σ(t) are called the instantaneous interest rate, instantaneous
dividend yield and instantaneous volatility, respectively. The interpretation is that in a
small interval of time [t, t + ∆t], the amount of interest accrued (owed) is r(t)∆t. Note
that instantaneous r(t), q(t) and σ(t) are not observable in the market: instead, we
observe the market interest rate yields and implied volatilities for different maturities
corresponding to integral quantities in (2.3); see Sections 5.3 and 5.4 for more
discussion on this point and for how to input the correct values from market data.

3. Local volatility

The local volatility model extends the Black–Scholes framework by making
volatility a function of current asset price and time. In addition, we introduce time
dependence for the interest rate and dividend yield. This leads to the following
modification of equation (2.1):

∂V
∂t

+

(
r(t) − q(t) −

1
2

[σ(eXt , t)]2
)
∂V
∂X

+
1
2

[σ(eXt , t)]2 ∂
2V
∂X2 − r(t)V = 0, (3.1)

where the local volatility

σ(K,T ) =

√
2θT (∂θ/∂T ) + θ2 + 2[r(T ) − q(T )]KθT (∂θ/∂K)

[1 + d1K
√

T (∂θ/∂K)]2 + K2θT [(∂2θ/∂K2) − d1(∂θ/∂K)2
√

T ]
, (3.2)

d1 =
ln(S0/K) +

∫ T
0 [r(t) − q(t)] dt + θ2T/2

θ
√

T
.

Here, we define θ(K,T ) = C−1(V), where V = C(θ, ·) is given by the Black–Scholes
formula (2.2), that is, θ is the market implied volatility for a vanilla option with strike
K and maturity T . Equation (3.2) is called the Dupire formula [4] (see the technical
report by Shevchenko [11, p. 49] for a proof of the formula in this particular form).
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Table 1. An example of AUD/USD market implied volatilities on 12 April 2005. The spot price for that
day was S0 = 0.7735.

Maturity/∆ 10∆Put 25∆Put ATM 25∆Call 10∆Call

1 week 9.963% 9.088% 8.450% 8.213% 8.338%
1 month 10.913% 10.038% 9.400% 9.163% 9.288%
2 months 11.363% 10.488% 9.850% 9.613% 9.738%
3 months 11.713% 10.838% 10.200% 9.963% 10.138%
6 months 12.155% 11.280% 10.630% 10.430% 10.605%

1 year 12.400% 11.525% 10.850% 10.675% 10.850%
2 years 12.157% 11.350% 10.750% 10.650% 10.844%
3 years 12.013% 11.250% 10.700% 10.650% 10.888%
4 years 11.966% 11.225% 10.700% 10.675% 10.935%
5 years 11.819% 11.100% 10.600% 10.600% 10.881%

The functions r(t) and q(t) are the instantaneous rates; see Section 5.3 on how to
determine these functions from market data. To compute local volatility, we require
an implied volatility surface that can be interpolated from market data. There is no
universal way to perform this interpolation. We now describe a simple method that
yields good results for FX data.

3.1. Interpolating market implied volatility To compute the local volatility
function (3.2), we need partial derivatives of the implied volatility surface θ(K, T ). In
practice, we only have a finite number of market data points, typically five values for
a given maturity and about 10 maturities (see Table 1). We need some interpolating
procedure for θ. This is an ill-posed problem, and there are a number of ways to
interpolate these data points (see, for instance, the articles by Feil et al. [5] and
White [12]). We use natural cubic splines to interpolate across strikes and maturities.
This of course is not the only way to perform such an interpolation but it results in a
very good fit, as seen in Table 2.

3.2. Our method to compute local volatility Suppose that we have market data
for N different maturities, and that options are available for each maturity M. Let K(i)

j

and θ(i)
j denote the strike and implied volatility of the jth vanilla option with maturity

Ti, respectively.

(1) Interpolation across strikes: For each market maturity Ti (i ∈ {1, . . . , N}), fit a
natural cubic spline yi through

(K(i)
1 , θ

(i)
1 ), (K(i)

2 , θ
(i)
2 ), . . . , (K(i)

M , θ
(i)
M ).

Note that y′i(K) = (∂θ/∂K)|(K,Ti) and y′′i (K) = (∂2θ/∂K2)|(K,Ti).
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Table 2. Average of absolute calibration errors from historical data (%). The value 0.005% appears
repeatedly, but this is due to rounding of the results to three decimal places.

Maturity/∆ 10∆Put 25∆Put ATM 25∆Call 10∆Call

1 week 0.005 0.005 0.005 0.005 0.005
1 month 0.005 0.005 0.005 0.005 0.005
2 months 0.005 0.005 0.005 0.005 0.005
3 months 0.005 0.005 0.005 0.005 0.005
6 months 0.005 0.005 0.005 0.005 0.005

1 year 0.005 0.005 0.005 0.005 0.005
2 years 0.005 0.005 0.005 0.005 0.005
3 years 0.005 0.005 0.005 0.005 0.005
4 years 0.005 0.005 0.005 0.005 0.005
5 years 0.005 0.005 0.005 0.005 0.006

(2) Interpolation across maturities: To find ∂θ/∂K at any given (K, T ), fit another
natural cubic spline z through

(T1, y′1(K)), (T2, y′2(K)), . . . (TN , y′N(K));

then ∂θ/∂K = z(T ).
(3) Similarly, to find ∂2θ/∂K2 at any given (K, T ), fit another natural cubic spline w

through
(T1, y′′1 (K)), (T2, y′′2 (K)), . . . (TN , y′′N(K));

then ∂2θ/∂K2 = w(T ).
(4) To find θ and ∂θ/∂T at (K,T ), fit a natural cubic spline u through

(T1, y1(K)), (T2, y2(K)), . . . (TN , yN(K));

then θ(K,T ) = u(T ) and ∂θ/∂T = u′(T ).
(5) Substitute the above calculated θ, ∂θ/∂T , ∂θ/∂K and ∂2θ/∂K2 into (3.2) and

compute [σ(K,T )]2. If [σ(K,T )]2 < 0; then we overwrite σ(K,T ) = 0.

Note that this method can obtain a value for local volatility for any (K, T ) pair
beyond the market range (for T smaller than the first market maturity, larger than the
last market maturity etc.), by linear extrapolation of the natural cubic splines. For
example, if we have a natural cubic spline y(x) fitted to data points x1, x2, . . . , xn, then
our function including extrapolation is given by

y∗(x) =


y′(x1)(x − x1) + y(x1) if x < x1,
y(x) if x1 ≤ x ≤ xn,
y′(xn)(x − xn) + y(xn) if x > xn.
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4. Pricing by using Crank–Nicolson method

Once we have a computable local volatility function, we can use the finite-difference
method to solve the PDE (3.1). Suppose that we would like to price a European
call option with strike K and maturity T years. We approximate the PDE (3.1) with
boundary conditions V(S (T ),T ) = (S (T ) − K)+.

4.1. Mesh properties First we need a mesh of (price, time) pairs. Suppose that we
have N different time points and M different prices in the mesh. Furthermore, assume
that the mesh is rectangular and uniformly spaced with boundaries of:

• 0 and T for the time axis;
• S0 exp{−D} and S0 exp{D} for the price axis, where D = γθ̄

√
T and θ̄ is the

average of the at-the-money implied volatilities. We set γ = 7, which we
determined experimentally as a value that resulted in an overall small numerical
error for the Crank–Nicolson method. This value corresponds to a very small
probability for the price to move beyond S0eD.

In addition, we scale the number of time points by T . Setting N = 500T + 500 gives
sufficiently good results. Define ∆t = T/N and ∆x = 2D/M. Then the time interval
[0,T ] is discretized by

t0 = 0, t1 = ∆t, t2 = 2∆t, . . . , tN = T.

Then the price interval [S0e−D, S0eD] is discretized by si = S0e−D+i(∆x) for i =

0, 1, . . . , M. This definition allows mesh points to coincide with the spot price. This is
done for the convenience of the backtesting procedure to calculate difference vanillas
using the same mesh. Next, the PDE (3.1) contains partial derivatives with respect to
the logarithm of price. Let xi = ln si; then

xi+1 − xi = ln si+1 − ln si = ln
(S0 exp{−D + (i + 1)∆x}

S0 exp{−D + i∆x}

)
= ∆x,

so the price points are indeed uniformly spaced in terms of log-prices.

4.2. The finite-difference scheme Let i ∈ {1, . . . , N}, ν(t, x) = r(t) − q(t) −
[σ(ex, t)]2/2 and V i

j = V(s j, ti). The Crank–Nicolson scheme is given by

ai−1
j V i−1

j − bi−1
j V i−1

j+1 − ci−1
j V i−1

j−1 = di
jV

i
j + bi

jV
i
j+1 + ci

jV
i
j−1,

where

ai
j =

r(ti)
2

+
1
∆t

+
σ2(ti, s j)
2(∆x)2 , bi

j =
σ2(ti, s j)
4(∆x)2 +

ν(ti, s j)
4∆x

,

ci
j =

σ2(ti, s j)
4(∆x)2 −

ν(ti, s j)
4∆x

, di
j =

1
∆t
−

r(ti)
2
−
σ2(ti, s j)
2(∆x)2 .

For boundary conditions, we use the facts that

lim
S→0

∂V
∂S

= e0 =

0 if V is a call option,
−1 if V is a put option,
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and

lim
S→∞

∂V
∂S

= e∞ =

1 if V is a call option,
0 if V is a put option.

This leads to the following equations:

V i
0 − V i

1 = e0(s0 − s1), V i
M − V i

M−1 = e∞(sM − sM−1).

To initiate the scheme, we set for all j = {0, . . . ,M}

VN
j =

(s j − K)+ if we are pricing a call option,
(K − s j)+ if we are pricing a put option.

We then repeatedly solve the system until we obtain (V0
1 ,V

0
2 , . . . ,V

0
M)T (for details,

see, for example, the book by Wilmott [13]). If M is an odd integer, the price of the
option is V0

(M+1)/2. Otherwise, we may fit an interpolating function V̂(s) through

(s1,V0
1 ), (s2,V0

2 ), . . . (sM ,V0
M)

and then the price is V̂(S0). Also note that the delta of the option is V̂ ′(S0); we have
found that a natural cubic spline for V̂ gives good results.

Remark 4.1. This pricing method is very fast if the mesh points of our local volatility
function coincide with the mesh points in our finite-difference scheme. This is how we
implemented our scheme; we first set the mesh points for our finite-difference scheme
and then we pre-compute the local volatility function at these points.

5. Market data layout

In this paper, we work with daily AUD/USD implied volatility data from 22 March
2005 to 15 July 2011. For each trading day, the market data contains a spot price and,
for a range of maturities (1 week, 1 month, 2 months, 3 months, 6 months, 1 year, 2
years, 3 years, 4 years and 5 years), there are:

• implied volatility for at-the-money (ATM) options;
• risk reversal for 10 and 25 delta calls, denoted by RR10∆Call and RR25∆Call,

respectively;
• butterfly for 10 and 25 delta puts, denoted by Fly10∆Put and Fly25∆Put,

respectively;
• zero rates (yields) for the domestic and foreign currencies.

From this data, we need to extract the strike prices and implied volatilities for
traded vanilla options. This is done through the Black–Scholes framework. Taking the
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Black–Scholes price of a call option (2.2) and differentiating, we obtain the call delta

∆call(S0,K,T, γd, γ f , σ) =
∂C(S0,K,T, γd, γ f , σ)

∂S
= e−γ f T Φ(d1), (5.1)

where γd = (1/T )
∫ T

0 f (t) dt and γ f = (1/T )
∫ T

0 q(t) dt denote the domestic and foreign
yields, respectively (this is discussed in detail in Section 5.3). Utilizing put–call parity,
the put delta

∆put(S0,K,T, γd, γ f , σ) = ∆call(S0,K,T, γd, γ f , σ) − e−γ f T . (5.2)

In the following, we use 10∆Put and 25∆Put to denote the volatility σ and strike
price K that give a put delta ∆put of 10% and 25%, respectively. Similarly, 10∆Call and
25∆Call denote the volatility σ and strike price K that give a call delta ∆call of 10%
and 25%, respectively.

5.1. Computing implied volatilities With usual market definitions, we reconstruct
the market implied volatilities by using the following formulae:

σ10∆Put = σATM + Fly10∆ −
1
2 RR10∆, σ25∆Put = σATM + Fly25∆ −

1
2 RR25∆,

σ25∆Call = σATM + Fly25∆ + 1
2 RR25∆, σ10∆Call = σATM + Fly10∆ + 1

2 RR10∆.

5.2. Computing strikes After we determine the implied volatilities, the only
parameter yet to be determined is the strike price. We use the delta formulae of (5.1)
and (5.2) and an implementation of the inverse cumulative distribution function Φ−1

of the standard Normal distribution to determine the strike. For example, to obtain the
strike price for the 10∆Put option, we are looking for the value of K satisfying

∆put(S0,K,T, γd, γ f , σ10∆Put) = 0.1,

which is easy to calculate via the inverse normal distribution function.

5.3. Interest rates On each trading day, we can extract from the market the so-
called zero-coupon interest rates or zero rates for a range of different maturities; we
give an example to explain the meaning of these rates. Suppose we have the following
market interest rate yields, 4.8%, 4.9%, 5% and 5.1% for maturities 1, 2, 3 and 4 years,
respectively. With continuous compounding of interest rates, a one-year investment of
AUD 10 grows to 10 × e0.048×1 = 10.49. A two-year investment of the same amount
grows to 10 × e0.049×2 = 11.03.

We can now interpolate between these data points to obtain what is called a zero
curve. There is no universally accepted way to perform this interpolation. Suppose
that the market rates are given by (T1, γ1), (T2, γ2), . . . , (Tn, γn), where Ti denotes the
ith maturity and γi is its zero rate. We define our zero curve γ(t) to be a function such
that tγ(t) is piecewise linear through the points

(0, γ1), (T1, γ1), (T2, γ2), . . . , (Tn, γn).

Now we will need to have the instantaneous interest rates for various calculations,
such as the Dupire formula (3.2). That is, we need to find the function r(s) such that
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γ(t) = (1/t)
∫ t

0 r(s) ds. Since we assumed that tγ(t) is piecewise linear, it implies that
r(s) is piecewise constant on the same intervals that tγ(t) is piecewise linear.

By the construction, γ(t) = γ1 for t ∈ [0,T1], which implies that r(t) = γ(t) on [0,T1].
Next, let t ∈ (Ti,Ti+1] and consider

γ(Ti+1)Ti+1 − γ(Ti)Ti = γi+1Ti+1 − γiTi =

∫ Ti+1

Ti

r(s) ds = (Ti+1 − Ti)r(t),

which yields

r(t) =
γi+1Ti+1 − γiTi

Ti+1 − Ti
for t ∈ (Ti,Ti+1].

In summary, the instantaneous interest rate is given by

r(t) =


γ1 for t ∈ [0,T1],

γi+1Ti+1 − γiTi

Ti+1 − Ti
for t ∈ (Ti,Ti+1], i = 1, . . . , n − 1.

(5.3)

5.4. Term structure of volatility for Black–Scholes To best compare the
performance of Black–Scholes with local volatility, we need to have time-dependent
volatilities for the Black–Scholes model. Under this condition, the market implied
volatilities allow us to construct the term structure of volatility. Suppose that at-
the-money implied volatilities are (T1, σ1), (T2, σ2), . . . , (Tn, σn). Then, similar to
the instantaneous interest rate of the previous section, we define the instantaneous
volatility σ : [0,Tn]→ R+ by

σ(t) =


σ1 for t ∈ [0,T1],√
σ2

i+1Ti+1 − σ
2
i Ti

Ti+1 − Ti
for t ∈ (Ti,Ti+1], i = 1, . . . , n − 1.

From this, define σavg : [0, Tn]→ R+ by σavg(t) =

√
(1/t)

∫ t
0 σ

2(s) ds. Then it is easy
to check that σ2

i = σ2
avg(Ti) for all i = 1, . . . , n.

6. Calibrating the model

We performed verification of local volatility model calibration procedures as
follows.

(1) Obtain current market data and construct the local volatility surface as outlined
in Section 3.2.

(2) For each market traded option V:

(a) obtain V’s strike price and maturity. Then apply the pricing methodology
in Section 4 to obtain a price;
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(b) using the Black–Scholes formula (2.2), compute the implied volatility
from the obtained price and compare with the market implied volatility
of V . Ideally, the computed implied volatility should be the same as
the market volatility but because of numerical errors we have a slight
difference (see Section 7). We adjusted our procedures to obtain an
absolute difference less than 0.5%.

Table 2 shows the average absolute difference for calibration errors for our
implementation over each day of historical AUD/USD foreign exchange data.

7. Implementation

All our implementations were written in C++. Numerical errors from our
implementation come from using a finite number of mesh points in the finite-difference
method (Section 4.1) as well as from finite boundaries for the mesh.

Note that the pricing method for the local volatility model requires solving
tridiagonal systems of equations for finding the natural cubic spline and for the finite-
difference method. There exists an algorithm to solve the system in linear time (see the
book by Press et al. [9, Section 2.4]).

8. Delta hedging

Let V denote the price of an option. The delta of the option is defined as ∆ = ∂V/∂S .
Delta is a measure of the sensitivity of the option price to changes in the value of the
underlying asset. Under the Black–Scholes framework, ∆ can be computed explicitly.

Suppose that we have a portfolio of options with stocks as underlying assets. Delta
hedging is a strategy to reduce the risk of the portfolio to changes in price of the
underlying assets. To hedge a short position of one call option we need to take a long
position of ∆ shares of the underlying asset. Because a change in share price leads to
a change in delta, we must rebalance our long position to maintain the hedge. This
means that if the current ∆ changes to ∆′, we must buy or sell to have ∆′ shares. Under
the Black–Scholes framework, the rebalancing must be performed continuously in
time to obtain a riskless portfolio.

8.1. The delta hedging procedure Suppose that we are selling a European call
option with expiry at time T , and that we wish to rebalance at N evenly spaced points
in time. Let δt = T/N. Let t0 = 0, t1 = δt, . . . , tN = T . For i ∈ {1, . . . , N}, let Si and ∆i
denote the share price and delta of the call option at time ti, respectively. Also, let the
price of a call option at time t0 be C. We note that calculation of C and ∆i depends on
the model we use for the asset price. Let r(t) and q(t) denote the instantaneous interest
rate and instantaneous dividend yield at time t, respectively. These rates are computed
by the formulae in Section 5.3. Then the delta hedging procedure is performed as
follows.

(1) At t0, we short one call for C cash, and go long ∆0 shares. The cash position at
this time is P0 = C − ∆0S0.
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(2) At t1, we perform our first rebalancing. At this point of time, we need to
have long ∆1 shares, which results in a cash flow of (∆0 − ∆1)S1. To see why,
suppose that ∆0 < ∆1. We need to buy (∆1 − ∆0) shares, which has a cash flow
of −(∆1 − ∆0)S1 = (∆0 − ∆1)S1. On the other hand, if ∆1 < ∆0, we need to sell
∆0 − ∆1 shares, which has a cash flow of (∆0 − ∆1)S1.

(3) Next, note that interest charged (or accrued) on the cash position of C − ∆0S0

between times t0 and t1 is (er(t0)δt − 1)P0. Similarly, the continuous dividend
yield paid/received over this time period is (eq(t0)δt − 1)∆0S0.

(4) After rebalancing at t1, our cash position is

P1 = er(t0)δtP0 + (eq(t0)δt − 1)∆0S0 + (∆0 − ∆1)S1.

(5) At t2, we need to be long ∆2 shares, which results in a cash flow of (∆1 − ∆2)S2.
Again taking into account interest and dividend yield, our cash position at this
time is

P2 = er(t1)δtP1 + (eq(t1)δt − 1)∆1S1 + (∆1 − ∆2)S2.

(6) In general, the cash position at time ti, i ∈ {1, . . . ,N − 1}, is

Pi = er(ti−1)δtPi−1 + (eq(ti−1)δt − 1)∆i−1S i−1 + (∆i−1 − ∆i)Si.

(7) After rebalancing at time tN−1, we have a cash position of PN−1 and a long
position of ∆N−1 shares.

(8) At maturity tN = T , we will sell our long position of shares. We still earn or pay
interest and dividend over the period [tN−1, tN]. The final cash position is then

PN = er(tN−1)δtPN−1 + (eq(tN−1)δt − 1)∆N−1S N−1 + ∆N−1S N .

The hedging error is then defined as PN − (S T − K)+.

8.2. Simulated delta hedging Under the Black–Scholes model, the asset price S
follows geometric Brownian motion, where it is possible to have time-dependent drift
and volatility, µt and σt, respectively. To simulate S , we use the scheme (see the book
by Glasserman [7])

S (tn+1) = S (tn) exp{(µ − 1
2σ

2)δt + σtn

√
δtZn},

where Zn are independent and identically distributed normal random variables with
mean 0 and variance 1. Using this scheme to generate a trajectory of the price process
S , we may then perform delta hedging.

Under the local volatility model, we simulate the asset price process S by

S (tn+1) = S (tn) exp{(µ − 1
2σ

2)δt + σ(S (tn), tn)
√
δtZn}.

We performed simulated delta hedging under both the Black–Scholes and local
volatility models and observed that hedging errors converged to zero as the time step
decreases to zero.
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9. Historical delta hedging

In this section, we apply the delta hedging procedure with real daily AUD/USD
implied volatility data as described in Section 5. For a given call option with maturity
of T years, we set N to be the number of trading days between the day the option is
written and the day of maturity. So, as in Section 8.1, we define δt = T/N and ti = iδt
for i = 0, . . . ,N. Then ti represents the start of the (i + 1)th trading day.

The instantaneous interest rates r(t) and q(t) represent the domestic USD and
foreign AUD rates, respectively. The procedure for the historical backtest is the same
as that described in Section 8.1. However, we must be careful with the interest rates,
since for each trading day a new sequence of market zero rates is quoted. To be
precise, the quantity r(ti) that is needed in the delta hedging procedure is obtained
by taking the domestic zero rate for the nearest quoted maturity T1 from the market
data corresponding to trading day ti (note the form of equation (5.3)).

The only points where the Black–Scholes and local volatility methods differ is the
calculation of delta ∆i on each trading day.

9.1. Backtesting under the Black–Scholes framework For each trading day ti,
define

γ(i)
d =

1
T − iδt

∫ T−iδt

0
r(t) dt, γ(i)

f =
1

T − iδt

∫ T−iδt

0
q(t) dt,

σ(i)
avg =

√
1

T − iδt

∫ T−iδt

0
σ2(t) dt,

where these quantities are obtained from the market data at time ti. We note that the
money implied volatilities are used.

At time t0, we compute the initial call option price C(S0,K,T, γ
(0)
d , γ(0)

f , σ
(0)
avg) by the

Black–Scholes formula (2.2) and initial delta ∆call(S0,K,T,γ
(0)
d ,γ(0)

f ,σ
(0)
avg) given by equation

(5.1). To obtain the cash position Pi at time ti, we need the value of delta ∆i at this
time, which is computed as

∆i = ∆call(Si,K,T−iδt,γ(i)
d ,γ

(i)
f ,σ

(i)
avg).

Note that we also used interpolated implied volatilities for each trading day instead
of σ(i)

avg, and this gives us mostly indistinguishable results. Results for each method are
shown in Tables 3 and 4.

9.2. Backtesting under the local volatility framework Under the local volatility
model, we use the finite-difference scheme of Section 4.2 to compute the initial option
price. Recall from Section 4.2 that the finite-difference scheme results in a sequence
of prices (V(s1, t0),V(s2, t0), . . . ,V(sM , t0)) at time t0, where si denotes the price grid
points of the scheme. Fitting an interpolating function V̂(s) through

(s1,V(s1, t0)), (s2,V(s2, t0)), . . . , (sM ,V(sM , t0)),
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Table 3. Mean and standard deviation of hedging errors for each model under consideration for one week
maturity. Black–Scholes 1 denotes the Black–Scholes backtest using σ(i)

avg defined in Section 9.1 and
Black–Scholes 2 denotes the method using interpolated implied volatilities.

Delta Model Mean Std. dev.

10∆Put Black–Scholes 1 −0.0004 0.0024
10∆Put Black–Scholes 2 −0.0004 0.0025
10∆Put LocalVol TC −0.0001 0.0023
10∆Put LocalVol TI −0.001 0.0129
25∆Put Black–Scholes 1 −0.0004 0.0029
25∆Put Black–Scholes 2 −0.0004 0.0029
25∆Put LocalVol TC −0.0001 0.0028
25∆Put LocalVol TI −0.0009 0.0108
ATM Black–Scholes 1 −0.0 0.0028
ATM Black–Scholes 2 −0.0 0.0028
ATM LocalVol TC −0.0003 0.0028
ATM LocalVol TI −0.0008 0.0078

25∆Call Black–Scholes 1 0.0003 0.0023
25∆Call Black–Scholes 2 0.0002 0.0023
25∆Call LocalVol TC 0.0002 0.0024
25∆Call LocalVol TI −0.0 0.0046
10∆Call Black–Scholes 1 0.0003 0.0016
10∆Call Black–Scholes 2 0.0003 0.0016
10∆Call LocalVol TC 0.0003 0.0016
10∆Call LocalVol TI 0.0003 0.002

the initial price is then given by C = V̂(S0). We also define the time t0 delta of the
option by ∆0 = V̂ ′(S0), the first derivative of V at S0. Next, we describe two methods
of computing the subsequent deltas, ∆1, . . . ,∆N−1. We first introduce some simplifying
notions.

Let i = 1, . . . , N − 1. Suppose that we apply the finite-difference scheme to the
market data at time t−1. After iteratively solving the required system of equations,
we obtain a sequence of time ti−1 call option prices

(V(s1, ti−1),V(s2, ti−1), . . . ,V(sM , ti−1)).

We then define the function V̂(i−1)(s) as the natural cubic spline passing through

(s1,V(s1, ti−1)), (s2,V(s2, ti−1)), . . . , (sM ,V(sM , ti−1)).

9.2.1 Theoretically correct delta. The so-called theoretically correct delta ∆i at
time ti for i = 1, . . . , N − 1 is defined by ∆i = V̂ ′(i−1)(Si), where Si is the spot price at
time ti.
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Table 4. Mean and standard deviation of hedging errors for each model under consideration for one month
maturity.

Delta Model Mean Std. dev.

10∆Put Black–Scholes 1 −0.0012 0.005
10∆Put Black–Scholes 2 −0.0012 0.005
10∆Put LocalVol TC −0.0006 0.004
10∆Put LocalVol TI −0.0063 0.0275
25∆Put Black–Scholes 1 −0.0008 0.0041
25∆Put Black–Scholes 2 −0.0009 0.0042
25∆Put LocalVol TC −0.0005 0.0039
25∆Put LocalVol TI −0.0051 0.0236
ATM Black–Scholes 1 −0.0002 0.0036
ATM Black–Scholes 2 −0.0003 0.0037
ATM LocalVol TC −0.0006 0.0036
ATM LocalVol TI −0.0035 0.0177

25∆Call Black–Scholes 1 0.0003 0.0029
25∆Call Black–Scholes 2 0.0003 0.0029
25∆Call LocalVol TC −0.0001 0.0029
25∆Call LocalVol TI −0.0016 0.0114
10∆Call Black–Scholes 1 0.0005 0.0018
10∆Call Black–Scholes 2 0.0004 0.0018
10∆Call LocalVol TC 0.0003 0.002
10∆Call LocalVol TI −0.0005 0.0061

The idea behind this definition of delta is that if we compute a local volatility
function from current market data with spot price S0, a subsequent change in the spot
price should not alter the local volatility function, that is,

σ(S , t; S0) = σ(S , t; S0 + ∆S ) (9.1)

for some change in spot price ∆S . If the local volatility function fully captured the real
diffusion process of the underlying asset, then (9.1) should prevail. However, there
are claims in the literature that this is contrary to common market behaviour (see, for
example, the article by Hagan et al. [8] and the book by Rebonato [10]).

9.2.2 Sticky delta. With sticky delta, we assume that a change in the spot price will
not result in a change to the implied volatility and the delta [6]. That is, the market data
implied volatilities (for example, in Table 1), which are expressed in terms of maturity
and delta, do not change when the spot price changes. This leaves the strike price to
be altered. If σ̂ denotes the implied volatility, we can show that

σ̂(K,T ; S0) = σ̂
(
K +

K∆S
S0

,T ; S0 + ∆S
)
.
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(a)

(b)

Figure 1. Delta hedging errors for (10∆Put) calls with one week maturity. LocalVol TC and LocalVol TI
denote results from the theoretically correct and theoretically incorrect (sticky delta) local volatility
models, respectively. (a) Histogram. (b) Hedging error time series.

That is, under sticky delta a shift in the spot price S0 by ∆S leads to a shifting of
the market strike K by K∆S/S0. To compute the quantity ∆i under this assumption at
time ti, first compute the option price at time ti−1, V̂(i−1)(Si). Then take the market data
at time ti−1 and perturb the spot price S i−1 by a small quantity ∆S = (0.001)S i−1 (this
quantity can neither be very small nor very large due to large errors introduced in the
calculation of the derivative. Our chosen value for ∆S is determined from numerical
tests for stability and accuracy). That is, define a new spot price S +

i−1 = S i−1 + ∆S .
Taking S +

i−1 as the new spot price and without modifying the implied volatilities, deltas
and interest rates, recompute the market strike prices as explained in Section 5.2.
Using this modified market data, compute a new option price by finite difference
and interpolate through the ti−1 prices with the function V+

(i−1)(s). Similarly, define
another spot price S −i−1 = S i−1 − ∆S , recompute a new set of strike prices, compute
finite difference and interpolate through the resulting prices with the function V−(i−1)(s).
The central difference sticky delta is then defined as

∆i =
V̂+

(i−1)(Si) − V̂−(i−1)(Si)

2∆S
.

10. Results

Figures 1 to 10 depict histograms of delta hedging errors computed from the
historical data under the frameworks of Black–Scholes and local volatility for different
European calls. Recalling the notation of Section 5, a 10∆Put call option denotes
a European call option with volatility σ and strike price K such that ∆put=0.1. The
10∆Call call option is defined similarly but instead with the condition ∆call=0.1. Within
each histogram LocalVol TC and LocalVol TI denote the theoretically correct delta
and sticky delta approaches, respectively. Sample means and standard deviations for
these hedging errors are summarized in Tables 3 and 4.
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(a)

(b)

Figure 2. Delta hedging errors for (25∆Put) calls with one week maturity. (a) Histogram. (b) Hedging
error time series.

(a)

(b)

Figure 3. Delta hedging errors for ATM calls with one week maturity. (a) Histogram. (b) Hedging error
time series.

We note that for in- and at-the-money options (Figures 1 to 3 for one week maturity
and Figures 6 to 8 for one month maturity), the local volatility model with sticky
delta performs significantly worse than the other two methods. It is only with deep in-
the-money options (Figure 5a) that sticky delta local volatility exhibits hedging errors
better than Black–Scholes.

11. Conclusion

Using delta hedging as the criterion to measure the effectiveness of a market
model, our results show that Black–Scholes is no worse than the local volatility
model. In fact, the Black–Scholes model performs significantly better than sticky
delta local volatility, particularly for in- and at-the-money options. The theoretically
correct delta local volatility model gives hedging errors which are not too far from
those of Black–Scholes, and sticky delta local volatility performs noticeably worse
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(a)

(b)

Figure 4. Delta hedging errors for (25∆Call) calls with one week maturity. (a) Histogram. (b) Hedging
error time series.

(a)

(b)

Figure 5. Delta hedging errors for (10∆Call) calls with one week maturity. (a) Histogram. (b) Hedging
error time series.

(a)

(b)

Figure 6. Delta hedging errors for (10∆Put) calls with one month maturity. (a) Histogram. (b) Hedging
error time series.
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(a)

(b)

Figure 7. Delta hedging errors for (25∆Put) calls with one month maturity. (a) Histogram. (b) Hedging
error time series.

(a)

(b)

Figure 8. Delta hedging errors for ATM calls with one month maturity. (a) Histogram. (b) Hedging error
time series.

(a)
(b)

Figure 9. Delta hedging errors for (25∆Call) calls with one month maturity. (a) Histogram. (b) Hedging
error time series.
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(a)
(b)

Figure 10. Delta hedging errors for (10∆Call) calls with one month maturity. (a) Histogram. (b) Hedging
error time series.

than the other models except for the case of deep out-of-the-money options. Further
avenues of research include performing these empirical tests on other FX pairs and also
incorporating other hedges. Also, the framework can be used to validate or compare
other models, such as stochastic volatility or local stochastic volatility. It will also be
of interest to determine hedging errors for exotic options, such as barrier options.
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