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Abstract. On P3, we show that mathematical instantons in characteristic two are unobstructed. We
produce upper bounds for the dimension of the moduli space of stable rank two bundles onP3 in
characteristic two. In cases where there is a phenomenon of good reduction modulo two, these give
similar results in characteristic zero. We also give an example of a nonreduced component of the
moduli space in characteristic two.
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Introduction

The study of mathematical instantons on projective three space has been pursued
partly because of the Atiyah–Ward–Drinfeld–Manin theorem which showed that
the solutions of the self-dual Yang–Mills equations onS4 could be described in
algebraic terms as particular cases of mathematical instanton bundles onP3

C. As a
consequence, many workers have studied these bundles (and their generalizations
to P2n+1) over the complex numbers and are still studying issues like the smooth-
ness and irreducibility of the moduli spaces of these bundles. In this paper, we
would like to discuss mathematical instanton bundles onP3 defined over fields of
any characteristic. The question of whether such bundles are unobstructed is still
unknown in general, though it has been verified in some special cases. In [N-T],
unobstructedness is proved for all mathematical instantons with a section in degree
one. In [R-2], it is proved for those with a jumping line of maximal order.

Over a field of characteristic two, we will find (Theorem 2.4) that the unob-
structedness of all mathematical instantons onP3 is extremely easy to see. In fact,
these are the only unobstructed stable rank two bundles onP3 (with c1 = 0) in this
characteristic. We also find a simple example (2.6) of a nonreduced component of
the moduli space in characteristic two. We expect that most components will have
this property of nonreducedness.

As a consequence, we show that in characteristic zero, a mathematical instanton
is unobstructed if some pull-back of it by an automorphism ofP3 reduces modulo
2 to a mathematical instanton (Theorem 3.2). However, this result does not answer
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the problem for all mathematical instantons in characteristic zero. In fact, there
are examples, in characteristic zero, of such bundles for which no pull-back by an
automorphism ofP3 reduces modulo two to a mathematical instanton (Example
3.7).

These computations in characteristic two also allow us to bound the dimension
of each component of the moduli space of stable rank two bundles onP3. The
bound has ordern2 wheren is the normalized second Chern class (Corollary 2.8).
Once again this bound has a consequence in characteristic zero. Specifically, if
N is a component of the moduli space which contains one bundle that reduces to
a stable or semi-stable bundle in characteristic two, then the dimension ofN is
bounded above by a bound of the ordern2 (Theorem 3.8).

The first section contains a review of facts about bundles onP3 in any charac-
teristic, and includes a definition of mathematical instantons (1.5). In Section two,
some calculations in characteristic two are made. These arise from the relationship
between the second symmetric power in characteristic two and Frobenius pull-
backs. I would like to thank V. Mehta for pointing out to me this relationship. In
the last section, applications to characteristic zero are made.

1. We first review some elementary facts about vector bundles over a projective
space defined over an arbitrary fieldk. Many of the results in the literature are dis-
cussed for an algebraically closed field, and in the case of mathematical instanton
bundles, even over the complex numbers. We observe that most of these conditions
can be relaxed.

ConsiderPnk , projectiven-space defined over a fieldk. Let k̄ be the algebraic
closure ofk. The notion of a (geometric) vector bundle overPnk and the notion of a
locally free sheaf onPnk are equivalent ([H-1], II, 5.18). LetE be a vector bundle
of rankr defined onPnk . Let Ē = E ⊗k k̄ be its pull-back toPn

k̄
.

1.1. The square

Pn
k̄

- Pnk

Speck̄
?

- Speck
?

is Cartesian withk→ k̄ faithfully flat. Hence

Hi(Pn
k̄
, Ē) = Hi(Pnk ,E)⊗k k̄

and

Hi(Pn
k̄
, Ē) = 0⇔ Hi(Pnk,E) = 0.

1.2. The integersci(E) can be defined asci(Ē). However since Pic(Pnk)∼= Z, there
is an isomorphism∧rE ∼= OPnk (c1) which is defined overk.
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1.3. Horrock’s Theorem states thatE is isomorphic overk to a sum of line bundles if
and only ifHi∗(P

n
k,E) = 0 for all i between 1 andn−1. This is valid over any field.

For example, consider the proof given in [O-S-S], which uses the complex numbers
as the base field. Upon reading the proof, we see only one place where the argument
does not work for arbitraryk. This is in the proof of Grothendieck’s theorem, an
auxiliary result needed in the proof. In this part, a sections ∈ H 0(P1

k,E(k0))

is chosen, wherek0 is the least integer for which a nonzero sections can be
chosen and the claim is made that this section is nowhere vanishing. For us, in our
context wherek is arbitrary, this should mean thats has no zeros over̄k. Indeed
this is true, for if s has a zero inP1

k̄
, we would conclude thats comes from a

section ofH 0(P1
k̄
,E(k0−1)). But thenH 0(P1

k,E(k0−1)) itself is nonzero by (1.1)
contradicting our choices. Thus we still get

0→ OP1
k

s- E(k0)→ F → 0,

whereF is a bundle onP1
k, and the proof in [O-S-S] continues without change.

1.4. Therefore the results of [B-H] and [R-1] on the construction of monads for a
bundleE of rank two onP3

k are valid in any characteristic. LetE have first Chern
classc1. Then there is an isomorphismE∨ ∼= E(−c1)which is defined overk.M =
H 1∗ (P

3
k,E) is a finite length module overS = k[X0, X1, X2, X3] . LetL0→ M be

a surjective homomorphism whereL0 is a sum of graded twists ofS, picking out a
set of minimal generators ofM. Then there is a monad

0→ L̃∨0 (c1)
β- L̃1

α- L̃0→ 0,

whereL1 is also a sum of twists ofS and α, β are matrices of homogeneous
polynomials inS. Furthermore, there is an isomorphismH :L1

∼= L∨1 (c1) with
H a matrix of homogeneous polynomials inS such thatHβ = α∨. This gives an
isomorphism between the monad and the dual monad which lifts the isomorphism
betweenE∨ andE(−c1). If Hom(L0, L1) = 0, then thisH is unique and can be
chosen so thatH∨ = −H .

The result in [R-1] says that we may takeα as a minimal presentation of the
S-moduleM. Furthermore, ifL2 → L1 → L0 → M → 0 is part of a minimal
resolution forM, then the mapL∨0 (c1)

β- L1 will be a direct-summand of the
mapL2→ L1 [H-R, 3.2].

1.5. We give the definition of a mathematical instanton of rank two onP3
k. The

general definition due to Okonek and Spindler [O-S] of a mathematical instanton
onP2n+1 has conditions on natural cohomology and trivial splittings on the general
line. We will relax this part of their definition for our case of rank two onP3.

DEFINITION. An indecomposable rank two bundleE on P3
k with c1 = 0, c2 = n

is called a mathematical instanton ifH 1(P3
k,E(−2)) = 0.
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Recall that for a rank two bundle withc1 = 0 in characteristic zero, the con-
dition that it splits trivially on the general line is equivalent to the condition of
semi-stability. Likewise, natural cohomology in the range−3 to 0 also implies
stability (if H 1(E) 6= 0.) We will not assumea priori such conditions. However,
stability will follow below. In arbitrary characteristic, we do not know if the split-
ting type of a bundle as defined above can be non-trivial on the general line. The
following theorem is well known. We include a proof because, for example, the
proof in [B-H] uses trivial splitting on the general line and the corresponding proof
in [O-S] uses their condition of natural cohomology.

THEOREM.LetE be a mathematical instanton onP3
k with c1 = 0, c2 = n. Then

(a) H 1(P3
k,E(−k)) = 0 for k > 2.

(b) M = H 1∗ (P
3
k,E) has all its minimal generators in degree−1.

(c) H 0(P3
k,E) = 0 (henceE is stable).

(d) n = h1(P3
k,E(−1)) > 0.

(e) E is the homology of a minimal monad

0→ nOP3
k
(−1)

β- (2n+ 2)OP3
k

α- nOP3
k
(+1)→ 0.

(f) Conversely, any bundle which is the homology of such a monad as in(e) is a
mathematical instanton bundle withc1 = 0, c2 = n.

Proof. Since most of the statements are about dimensions of cohomology, by
(1.1) we will assume thatk is algebraically closed so that geometric construc-
tions work as usual. To prove (a), we will show that ifc1(E) = 0 or −1 and
H 1(P3

k,E(−m)) = 0 for somem > 0, thenH 1(P3
k,E(−k)) = 0 for all k > m. For

supposeH 1(P3
k,E(−k)) 6= 0 with k > m and letk be the least such. LetH be a

general hyperplane inP3
k, and consider

0→ E(−k) H- E(−k + 1)→ EH (−k + 1)→ 0. (∗)
ThenEH(−k + 1) clearly gets at least one global sectiont . Consider

0→ E(−k + 1)
H- E(−k + 2)→ EH (−k + 2)→ 0.

SinceH 1(E(−k + 1)) = 0, the multiples oft in H 0(EH (−k + 2)) arise from
sections ofE(−k+2). SoE(−k+2) has at least three global sections. The sections
of E in degrees less than or equal to 0 (if they exist) are all multiples of a single
sections and this sections is the unique section in degrees6 0 whose zero-scheme
has codimension two. Since−k + 2 6 0, there is a single section, says, of E(−l)
for somel > 0. This induces a nonzero sections′ of EH(−l). If H is chosen
generally, the zero-scheme ofs′ in H has codimension two. Hence all sections
of EH in degrees6 0 must be multiples ofs′. It is evident from the long exact
sequence of cohomology of(∗) that the sectiont of EH(−k + 1) is not a multiple
of s′. This is a contradiction. Hence the result is proved.
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To prove (b), we study the minimal monad ofE . The monad will be 0→ L̃∨0 →
L̃1 → L̃0 → 0 as before. IfM has any generators in degrees 0 or 1 etc., it
means thatL0 has summands likeS(0) or S(−1) etc. By the minimality of the
monad,L1 must have summands likeS(−1) or S(−2) etc. ButL∨1 ∼= L1, henceL1

has summands likeS(1) or S(2) etc. Such summands must map to zero inL0 by
degree considerations and minimality. However, the mapL1 → L0 is a minimal
presentation ofM, hence no summands can map to zero. Hence all generators of
M are in degree−1.

To prove (c), we now know thatL0 is a sum ofS(1)’s. HenceL1 cannot have
any summands likeS(1) or S(2), etc. SinceL1 is selfdual,L1 can contain only
S(0)’s. Hence the minimal resolution ofM which looks like→ L2 → L1 →
L0 → M → 0 must haveL2 without anyS(0) or S(1), etc. NowL2 = L∨0 ⊕ L′2
and there is a surjection of̃L′2 → E which induces a surjection of global sections
in all twists. This shows thatE has no sections in degree6 0.

(d) is merely a Riemann–Roch computation now.n > 0 because, for example,
if n = 0, then we getM = 0 by (b). Hence, by Serre duality,H 2∗ (E) = 0 as well.
SoE is decomposable by Horrock’s theorem. Thereforen > 0.

Of course, by now (e) has been demonstrated. (f) is quite obvious from the
display of the monad. 2
1.6. The coarse moduli schemeMP3

k
(c1, c2) of stable rank 2 bundles onP3

k with
Chern classesc1, c2 exists and is ak-scheme ([M], Theorem 5.6). The fact that
this moduli scheme is quasi-projective has been proved by Maruyama and also
discussed in [H-2]. This scheme behaves well under base change ([M], Remark
5.9) so that for example if̄k is the algebraic closure ofk, thenMP3

k̄

(c1, c2) ∼=
MP3

k
(c1, c2) ×Speck Speck̄. If E is a bundle onP3

k giving a k-valued point on

MP3
k
(c1, c2), then Ē = E ⊗k k̄ on P3

k̄
gives a geometric point. The Zariski tan-

gent space at this geometric point is given byH 1(P3
k̄
,Hom(Ē , Ē)) and ifH 2(P3

k̄
,

Hom(Ē , Ē)) = 0, the moduli space is smooth at this point, with dimension equal
to h1(P3

k̄
,Hom(Ē, Ē)). In this case, we shall say thatE is unobstructed. Of course,

the dimensions of these vector spaces can be computed usingE overk.

1.7. The spectrum of a semi-stable rank two bundle onP3
k has been defined in char-

acteristic zero in [B-E] and in arbitrary characteristic in [H-3]. Since the spectrum
determines and is determined by dimensions ofh1(P3

k,E(l)), we do not need to
assume thatk is algebraically closed. Let us recall the spectrum as found in [H-3].
Let E be a semi-stable rank two bundle onP3

k with c1 = 0 or −1 andc2 = n.
There is a unique set ofn integersk1, k2, . . . kn called the spectrum ofE with the
following properties: letH denote the sheaf⊕OP1(ki) on P1.

(a) h1(P3
k,E(l)) = h0(P1,H(l + 1)) for l 6 −1.

(b) {−ki} = {ki} if c1 = 0 and
{−ki} = {ki + 1} if c1 = −1.
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(c) The spectrum is connected, except possibly for a gap at 0. IfE is stable, then
the spectrum is connected.

(d) An integerl may appear more than once in the spectrum. Ifl 6 −2 and l
appears exactly once in the spectrum, then any smaller integer can occur at
most once in the spectrum. IfE is stable andc1 = 0, we can say the same for
l 6 −1.

Property (d) was proved in [H-3 Prop. 5.1] using a characteristic zero hypo-
theses. However, this hypotheses was really needed only to prove a stronger state-
ment about unstable planes and as was pointed out in [H-R], for the proof of (d),
characteristic zero is not required.

1.8. Whenc1 = 0, the condition thatH 1(P3
k,E(−2)) = 0 is equivalent to the

condition that the spectrum ofE (with c2 = n) consists ofn zeroes. Likewise, let
E be a rank two bundle withc1 = −1, c2 = n and withH 1(P3

k,E(−2)) = 0. In
our proof of Theorem 1.5, we showed thatH 1(P3

k,E(−k)) = 0 for all k > 2. It is
easy to prove by the same techniques that, in the minimal monad forE , the termL1

has onlyS(0)’s andS(−1)’s, henceL2 can contain only termsS(a) with a 6 −1.
Therefore,E is stable.E has spectrum consisting ofn2 0’s andn2 −1’s.

2. Letπ :X→ Y be a morphism of schemes defined over a fieldk of characteristic
p different from zero. We can define Frobenius automorphismsF of X and Y
induced by the Frobenius homomorphisma 7→ ap on affine rings. Then the square

X
F - X

Y

π

?
F - Y

π

?

commutes.

LEMMA 2.1. Let F :Pnk → Pnk be the Frobenius morphism in characteristicp.
Then (i)F∗[OPnk (l)] ∼= ⊕i>− l

p
aiOPnk (−i) whereai is the number of monomials

X
b0
0 X

b1
1 . . . X

bn
n of degreel + pi with each exponentbj < p. (ii) When k has

characteristic two,

F∗[OPnk (l)] ∼=
⊕

n+1−l
2 >i>− l

2

(
n+ 1

l + 2i

)
OPnk (−i).

Proof.For 16 i 6 n− 1,

Hi(Pnk , F∗[OPnk (l)] ⊗OPnk (m)) = Hi(Pnk,OPnk (l)⊗ F ∗[OPnk (m)])
= Hi(Pnk,OPnk (l + pm)) = 0
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for all m. Hence by Horrock’s theorem, the bundleF∗[OPnk (l)] is a sum of line
bundles. The number of summands in this bundle of the formOPnk (−i) can be
computed by finding the dimension ofH 1(Pnk, F∗[OPnk (l)] ⊗ �1

Pnk
(i)) which is just

h1(Pnk , F
∗[�1

Pnk
](l + pi)). We have the sequence

0 → F ∗[�1
Pnk
](l + pi)

→ (n+ 1)OPnk (l + p(i − 1))
[Xp0 ,...,X

p
n ]- OPnk (l + pi)→ 0.

The lemma follows now from this sequence. 2
PROPOSITION 2.2.Let E be a rank two bundle onPnk with first Chern classc1,
wherek has characteristicp. Let F be the Frobenius mapping onPnk . Then we
have exact sequences

0→ F ∗E → Sp(E)→ Sp−2(E)⊗OPnk (c1)→ 0

and

0→ OPnk → Hom(E,E)→ S2E ⊗OPnk (−c1)→ 0.

Proof. Consider the commuting square (not Cartesian)

P(E) F - P(E)

Pnk

π

?
F - Pnk .

π

?

Let Oπ(1) denote the tautological line quotient bundle onP(E). So we have

0→ ∧2(π∗E)⊗Oπ(−1)→ π∗E → Oπ(1)→ 0.

Since∧2(π∗E) ∼= π∗OPnk (c1), after applyingF ∗ we get

0→ F ∗π∗OPnk (c1)⊗ F ∗Oπ(−1)→ F ∗π∗E → F ∗Oπ(1)→ 0,

hence

0→ π∗OPnk (pc1)⊗Oπ(−p)→ π∗F ∗E → Oπ(p)→ 0.

Applying π∗, we get (sinceπ∗(Oπ(−p)) = 0)

0→ F ∗E → π∗Oπ(p)→ OPnk (pc1)⊗ R1π∗Oπ(−p)→ 0.
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NowR1π∗Oπ (−p) ∼= [π∗Oπ(p − 2)]∨ ⊗ (∧2E)∨ ([H-1], III, 8.4), hence we get

0→ F ∗E → Sp(E)→ [Sp−2E ]∨ ⊗OPnk (pc1− c1)→ 0.

Now in characteristicp, [Sp−2E]∨ ∼= Sp−2(E
∨) ∼= Sp−2(E)⊗OPnk (−(p−2)c1)

hence we end with

0→ F ∗E → Sp(E)→ Sp−2(E)⊗OPnk (c1)→ 0.

For the other part, observe that Hom(E ,E) ∼= E∗ ⊗ E ∼= E ⊗ E ⊗ OPnk (−c1),
hence we have the sequence

0→ OPnk → Hom(E,E)→ S2E ⊗OPnk (−c1)→ 0

(obtained for example by the push down of the tautological sequence onP(E)
tensored byOπ(1)). 2
COROLLARY 2.3.Let E be a rank two bundle onP3

k, wherek has characteristic
two.

(i) Let c1 = 0 and letm > −4.
If m is even, thenh2(P3

k,Hom(E,E)(m)) = h1(P3
k,E(−2− m

2 )) + 6h1(P3
k,

E(−3− m
2 ))+ h1(P3

k,E(−4− m
2 )).

If m is odd, thenh2(P3
k,Hom(E,E)(m)) = 4h1(P3

k,E(−3+m
2 − 1)+ 4h1(P3

k,

E(−3+m
2 − 2)).

(ii) Let c1 = −1 and letm > −4.
If m is even, thenh2(P3

k,Hom(E ,E)(m)) = 4h1(P3
k,E(−2− m

2 )) + 4h1(P3
k,

E(−3− m
2 )).

If m is odd, thenh2(P3
k,Hom(E,E)(m)) = h1(P3

k,E(−m+3
2 ) + 6h1(P3

k,

E(−m+3
2 − 1))+ h1(P3

k,E(−m+3
2 − 2)).

Proof. Whenm > −4,

h2(P3
k,Hom(E,E)(m)) = h2(P3

k, S2E ⊗OP3
k
(m− c1))

= h2(P3
k, F

∗[E ] ⊗OP3
k
(m− c1))

= h1(P3
k, F

∗(E∨)⊗OP3
k
(c1−m− 4))

= h1(P3
k, F

∗(E)⊗OP3
k
(−2c1+ c1 −m− 4))

= h1(P3
k,E ⊗ F∗[OP3

k
(−c1 −m− 4)]).

Now if −c1−m−4= 2t , thenF∗[OP3
k
(−c1−m−4)] = F∗F ∗[OP3

k
(t)] = OP3

k
(t)⊗

F∗[OP3
k
] = OP3

k
(t)⊗[OP3

k
⊕6OP3

k
(−1)⊕OP3

k
(−2)]. If −c1−m−4 = 2t −1, then

F∗[OP3
k
(−c1−m− 4)] = F∗[F ∗[OP3

k
(t)] ⊗OP3

k
(−1)] = OP3

k
(t)⊗F∗[OP3

k
(−1)] =

OP3
k
(t)⊗ [4OP3

k
(−1)⊕ 4OP3

k
(−2)]. 2
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THEOREM 2.4.If k is a field of characteristic two, then a stable rank two bundle
E with c1 = 0 is unobstructed if and only ifE is a mathematical instanton onP3

k.
Proof. h2(P3

k,Hom(E,E)) = h1(E(−2)) + 6h1(E(−3)) + h1(E(−4)) by the
Corollary above. We saw earlier (Theorem 1.5 (a)) thath1(E(−2)) = 0 implies
that the other terms are also zero. 2
THEOREM 2.5.If k is a field of characteristic two, then a stable rank two bundle
E with c1 = −1 is unobstructed if and only ifh1(P3

k,E(−2)) = 0.
Proof. In this case,h2(P3

k,Hom(E ,E)) = 4h1(E(−2)) + 4h1(E(−3)). Again,
if h1(E(−2)) = 0 then so ish1(E(−3)) (see 1.8). 2
With this situation, one expects that the moduli schemes in characteristic two will
be highly singular. Indeed, in the first example of a bundle family not of mathem-
atical instanton type, we find that the moduli scheme has a nonreduced component.
In contrast, at this time, very few examples of singular components of the moduli
scheme are known in characteristic zero ([Ma], [A-O]).

EXAMPLE 2.6. A nonreduced component ofM(0,3) in characteristic two.
Consider stable bundles onP3

k with c1 = 0, c2 = 3 and spectrum−1,0,1. The
monad of such a bundleE (regardless of characteristic) has the form

0→ OP3
k
(−2)

α- OP3
k
(−1)⊕ 2OP3

k
⊕OP3

k
(1)

β- OP3
k
(2)→ 0.

Calling it 0 → A
α- B

β- C → 0, let G be the kernel of the right hand
map.G has a ten dimensional family of sections in degree 2, hence the set of
all such monads is parametrized by a quasi-projective varietyV of dimension
10+ dim Hom(B,C) = 54. This space maps onto the moduli space of all stable
bundles of the type being considered. The group Aut(A)×Aut(B)×Aut(C) acts
onV and the orbit of a monad consists of monads for isomorphic stable bundles.
The subgroupk∗, embedded diagonally, stabilizes a monad. On the other hand,
since Hom(C,B) = Hom(B,A) = 0, results of Barth and Hulek [B-H] tell us that
any automorphism of a bundleE is uniquely lifted to an automorphism of monads.
SinceE is stable, Aut(E ) consists of elements ofk∗, hence the stabilizer of a monad
is exactlyk∗. Thus we get a dimension of 54 less(1+ 32+ 1− 1) or a dimension
of 21 for this component of the moduli space.

The mathematical instantons form smooth components of the moduli space,
of dimension 21, proved above in characteristic two. (See also, for example, [L],
for a proof valid in any characteristic.) There are just two possible spectra for these
Chern classes. Hence, by reasons of dimension, the bundles with spectrum−1,0,1
give a distinct irreducible component of the moduli scheme.

Now these bundlesE (with spectrum−1,0,1) haveh1(P3
k,E(−2)) = 1, Hence,

in characteristic two, by Corollary 2.3,h2(P3
k,Hom(E,E)) = 1. Sinceh1(P3

k,

Hom(E ,E)) − h2(P3
k,Hom(E,E)) = 8c2 − 3 = 21, it follows that the Zariski

tangent space to each such pointE on this component of the moduli scheme is 22-
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dimensional and hence larger than the dimension of the component. Thus we get a
non-reduced component. 2
THEOREM 2.7.LetE be a semistable bundle of rank two withc1 = 0 or −1 and
c2 = n on P3

k, in characteristic2.

(i) If c1 = 0, thenh2(P3
k,Hom(E ,E)) 6 (n− 1)2.

(ii) If c1 = 0 andE is stable, thenh2(P3
k,Hom(E ,E)) 6 (n− 2)2.

(iii) If c1 = −1 (soE is stable), h2(P3
k,Hom(E,E)) 6 (n− 2)2.

Proof. By the earlier discussion, we just need to boundh1(P3
k, (F

∗E)(−c1−4))
above.

First, letc1 = 0. Using Lemma 2.1, we see that

h1(P3
k, (F

∗E)(−4)) = h1(P3
k, F

∗(E(−2)))

= h1(P3
k,E(−2)⊗ F∗(OP3

k
)

= h1(P3
k,E(−2))+ 6h1(P3

k,E(−3))+ h1(P3
k,E(−4)).

Now E has a spectrum ofn integers and let the positive integers in the spectrum
consist ofa1 ones,a2 twos, . . . ,ar r ’s with noai equal to zero by the connectedness
of the spectrum. Let6ai = b. Let K = ⊕i>0aiOP1(i). Thenh1(P3

k,E(−m)) =
h0(P1,K(−m+ 1)) for m > 1.

Hence

h1(P3
k,E(−2)) = a1+ 2a2 + 3a3 · · · + rar ,

6h1(P3
k,E(−3)) = 6(a2 + 2a3 · · · + (r − 1)ar ),

h1(P3
k,E(−4)) = a3+ 2a4 · · · + (r − 2)ar ,

and

h1(P3
k, (F

∗E)(−4)) = a1+ 8(a2+ 2a3 + · · · + (r − 1)ar).

If b is fixed, this sum will be maximized when eachai = 1, giving

h1(P3
k, (F

∗E)(−4)) 6 1+ 4(b − 1)b = (2b − 1)2.

Now whenE is semistable, we know by symmetry of the spectrum thatb 6 n/2.
If in addition E is stable, then the spectrum is connected, henceb 6 (n − 1)/2.
This gives (i) and (ii).

If c1 = −1, we need to bound 4[h1(P3
k,E(−2)) + h1(P3

k,E(−3))] which is
equal to 4[a1 + 3a2 + 5a3 + · · · + (2r − 1)ar ]. For fixedb = 6ai , this sum
is maximized when allai ’s are 1, hence by 4b2. Now b 6 (n/2) − 1 since the
spectrum is connected and symmetric about−1/2. Hence the bound of (iii). 2
COROLLARY 2.8. In characteristic two, the moduli spaces of stable rank two
bundles onP3

k have each component bounded above in dimension: ifn is the
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normalized second Chern class, the dimension is less than or equal ton2+ 4n+ 1
for c1 = 0 and less than or equal ton2+ 4n− 1 for c1 = −1.

Proof: If c1 = 0 (respectively−1), thenh1(Hom(E,E)) − h2(Hom(E ,E))
equals 8n − 3 (respectively 8n − 5), for such a stable bundleE . Now use the last
theorem to boundh1(Hom(E,E)). 2
Remarks2.9. It is quite likely that this upper bound is too coarse. In fact, one
expects that nonreducedness contributes a part to this bound forh1(Hom(E ,E)).
Known examples of large families of stable bundles have dimension much below
this bound. Examples of Ellingsrud and Strømme give components ofM(0,2k−1)
of dimension 3k2+ 4k + 1, while Ein gives examples inM(−1,2k) of dimension
3k2+ 7k + 2 (See [E] for both.k > 2 in these examples.) These dimensions are of
the order3

4n
2.

3. We will try to draw some conclusions about bundles in characteristic zero from
these results in characteristic two. So letE be a rank two bundle onP3

k, defined
over a fieldk of characteristic zero. By the discussion in the first section,E is the
homology of a minimal monad

0→ L̃∨0 (c1)
β- L̃1

α- L̃0→ 0

whereα, β are matrices of homogeneous polynomials inS = k[X0, X1, X2, X3].
Let A ⊂ k be a sub-integral domain ofk whose field of fractions isk. Since the
monad gives an equivalent monad ifα, β are multiplied by nonzero elements ofk,
we may assume thatα, β are matrices of homogeneous polynomials in
A[X0, X1, X2, X3]. We will call this ‘a lift of the monad (and of the bundleE)
to A’. This lift is of course by no means unique. Now letp be a prime ideal ofA
such that the residue fieldk(p) has characteristic two. For a givenA, such an ideal
may not exist inA, but there will always be anA in k for which such an ideal exists.
Then, taking the lifted monad forE , we may reduce it modulo this ideal, that is to
say, we may apply⊗Ak(p). In general, we do not expect this to be a monad over
the fieldk(p); for example, the reducedβ may not be an inclusion of bundles.

DEFINITION 3.1. We will say thatE has a good monad reduction to characteristic
two if there is a minimal monad forE , as described above for some choice ofA

andp, such that the reduction modulop is still a monad over the residue field.

Remarks. Note that in this definition, we are ending up with a bundle in char-
acteristic two which has the same monad type as the bundle we started with. So,
for example, if a mathematical instanton bundle has a good monad reduction to
characteristic two, it’s lift toA specializes to a mathematical instanton bundle in
characteristic two.

We can also assume that(A, p) is a discrete valuation ring. Indeed, by the
‘Lefschetz Principle’, we may assume thatk (the field of definition ofE ) is fi-
nitely generated overQ. If anA has been found ink with a p giving good monad
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reduction, we can replaceA with its integral closureA′ in k and replacep with
an over-idealp′ in A′, since reduction tok(p′) is obtained by base change after
first reducing tok(p). Next, replacingA′ with its localization atp′, we may assume
that (A, p) is a local normal domain with fraction fieldk. The condition of good
reduction modulop and Nakayama’s Lemma tell us that the lift of the monad toA

defines a monad for a vector bundle onP3
A, hence also at each localizationAq of

A. Since 2∈ p, we can choose a height one prime sub-idealq containing 2, getting
a discrete valuation ringAq with the required properties.

THEOREM 3.2.Let E be a mathematical instanton bundle onP3
k, wherek has

characteristic zero.

(1) If E has a good monad reduction to characteristic two, thenE is unobstructed.
(2) Suppose there is an elementϕ ∈ GL(4, k) such thatϕ∗E has a good monad

reduction to characteristic two. ThenE is unobstructed.

Proof. This is a standard upper semi-continuity argument. LetA, p be as in the
definition above. Then since modulop, the lift of the monad gives a monad over the
residue field, there is an open setU in SpecA which containsp, and such that on
P3
U , the lift of the monad is a monad, ie.E lifts to a bundleEU on P3

U . Since at the
primep, the restriction ofEU is a mathematical instanton, hence unobstructed (in
characteristic two), there is a perhaps smaller open setV in U , where we may take
V = SpecAf for somef ∈ A, over whichH 2(P3

V ,Hom(EV ,EV )) = 0, hence
alsoH 2(P3

k,Hom(E ,E)) = 0.
The second result follows sinceE andϕ∗E have appropriate cohomology groups

of the same dimension. 2
EXAMPLE 3.3. OnP3

Q, consider the mathematical instanton bundleE with c1 =
0, c2 = 1 and minimal monad

0→ OP3(−1)
β- 4OP3

α- OP3(1)→ 0,

where

β =


−2X1

X0

−2X3

X2

 , α = [X0 2X1 X2 2X3].

Certainly, this monad (defined overZ) has bad reduction modulo 2. However,E
has an equivalent monad which has good reduction, for we see that there is an
isomorphism of monads overQ given by

0 - OP3(−1)
β - 4OP3

α- OP3(1) - 0

0 - OP3(−1)

2
?

β ′ - 4OP3

γ

?
α′- OP3(1)

wwwww
- 0,

https://doi.org/10.1023/A:1001701428095 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001701428095


MATHEMATICAL INSTANTONS IN CHARACTERISTIC TWO 181

where

γ =


1 0 0 0

0 2 0 0

0 0 1 0

0 0 0 2

 , β ′ =


−X1

X0

−X3

X2

 , α′ = [X0 X1 X2 X3].

This new monad has good reduction modulo 2, and thusE has a good monad
reduction modulo 2.

EXAMPLE 3.4. Consider the bundleE defined overQ by the monad

0→ OP3(−1)
(−2X1,2X0,−X3,X2)

∨
- 4OP3

(X0,X1,X2,X3)- OP3(1)→ 0.

I claim that thisE does not have a good monad reduction modulo 2.
Proof. Of course, this particular monad is also a lift toZ which does not reduce

well modulo 2. However, it may be that some lift of an equivalent monad may exist,
that reduces well. So suppose thatA is some integral domain betweenZ andQ and
suppose there is a lift toP3

A of a monad forE which reduces well modulo 2. This
lift will have matricesβA andαA. The two monads are equivalent overQ, hence
αA = [X0, X1, X2, X3]ψ for some matrixψ in GL(4,Q). Clearlyψ can be found
with entries inA. Since the right hand maps of both monads are surjective modulo
2, the determinant ofψ is nonzero modulo 2. By localizing at the multiplicative
set obtained from the determinant ofψ , we may assume thatψ is invertible over
A and 2 is still in Spec(A). Then we see thatcβA = ψ−1[−2X1,2X0,−X3, X2]∨
wherec ∈ Q. Write c ase/f , a ratio of integers in lowest terms. If 2 dividese,
then[−2X1,2X0,−X3, X2]∨ is identically zero modulo 2, which is not true. Soe
is invertible at 2. Hence modulo 2,βA = f

e
ψ−1[0,0,−X3, X2]∨. This contradicts

our assumption thatβA modulo 2 is an injection of bundles. 2
EXAMPLE 3.5. In Example (3.3), we could also have proceeded as follows: Con-
sider the automorphism ofP3

Q given byX1→ X0, X1→ X1/2, X2→ X2, X3→
X3/2. If ϕ is this automorphism,ϕ∗E has the monad withβ ′, α′ as described there
(so that in this case,ϕ fixesE ).

EXAMPLE 3.6. LetE be any mathematical instanton bundle withc1 = 0, c2 = 1
defined over a fieldk. ThenE has a minimal monad

0→ OP3(−1)
β- 4OP3

α- OP3(1)→ 0,

where after a change of basis, we may assume thatα = [X0 X1 X2 X3]. Then
the kernel ofα is�1

P3
k

(1) and the mapβ can be understood as picking out a section

of H 0(P3
k,�

1
P3
k

(2)). If V is the vector spaceH 0(P3
k,OP3(1) (defined overk), β can

be viewed as picking an element in∧2V . The fact thatβ is an inclusion of bundles
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means thatβ picks out an indecomposable vector in∧2V (up to scalar multiples).
Now, the action of GL(4, k) on∧2V has one orbit consisting of the indecomposable
vectors. Hence, given anyE , there is an automorphismϕ of P3

k such thatϕ∗E is the
standard bundle with the monad described in (3.3)i.e. with matrixβ ′ =


−X1

X0

−X3

X2


 .

Thus anyE with c1 = 0, c2 = 1 defined over a field of characteristic zero
satisfies the second condition of the Theorem 3.2.

EXAMPLE 3.7. A mathematical instanton which satisfies neither of the assump-
tions of Theorem 3.2.

Let k = Q(
√−3) and letA be the ring of elements integral overZ. The

prime number 2 ofZ is undecomposed inA, hence at the prime 2, the exten-
sion of residue fields has degree 2. Letl, m be the skew lines inP3

k, with ideals
(X0, X1), (X2, X3) respectively. LetP1, P2, P3, P4 be the four points onl with
coordinates(0,0,1,2),(0,0,1,1),(0,0,1,0), (0,0,0, 1) andQ1,Q2,Q3,Q4 the
four points onm with coordinates(1, a,0,0),(1,1,0,0), (1,0,0,0), (0,1, 0,0),
wherea ∈ A is an element which reduces modulo 2 to an elementā which is not
in Z2. The cross-ratio onl of the four points in this order is 2 and that of the four
points onm is a. Recall that the cross-ratio of four distinct points on a line is an
element of the field which is not 0 or 1 and is invariant under automorphisms of
the line.

Now letφ be an automorphism ofP3 defined over an extension fieldk′ of k. Let
l′, P ′i , m′,Q

′
i be the inverse images underφ of l, Pi,m,Qi. The cross-ratio of the

appropriate inverse image points is unchanged from the cross-ratio of the original
points. Furthermore, supposeA′ is a ring ink′ whose field of fractions isk′ and letp
be a prime ideal with residue field of characteristic two. In the light of the remarks
following (3.1), we will assume that(A′, p) is a discrete valuation ring. ThenA′
containsA and we can find equations and coordinates forl′, P ′i , m

′,Q′i defined over
A′. The Hilbert schemes of lines and points inP3

A′ are proper overA′, hence we can
find equations and coordinates which reduce well modulop (more concretely, we
can divide the equations and coordinates by a power of the uniformizing parameter
of p after which good reduction is possible.) Letl′0, m′0 be the reductions ofl′,m′
modulop. On l′0, since the reduced cross-ratio is now zero, the four points are no
longer distinct. On the other hand, the four points onm′ do reduce to distinct points
of m′0 by our choice ofa.

The unionY = P1Q1 ∪ P2Q2 ∪ P3Q3 ∪ P4Q4 is the zero-scheme of a section
s ∈ H 0(P3

k,E(1)) for a mathematical instanton bundleE with c2 = 3, defined over
k. In fact, sinceY does not lie on a quadric,E has a unique section up to scalar
multiples. We will use three facts in the following:
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(i) The linem is a jumping line forE of order 3 since it is a quadri-secant forY .
(Indeed, consider the restriction of the sequence forIY tom: Om(−1)

s- Em→
IY (1) ⊗ Om → 0). Hence the same is true form′ as a jumping line ofE ′ = φ∗E .
Furthermore, ifE ′A′ is a vector bundle onP3

A′, then the specializationm′0 ofm′ after
reducing modulop will be a jumping line forE ′0 of order at least 3.

(ii) Let s be a section in degree one for a mathematical instantonF and letY
be the zero-scheme. SupposeC is a reduced subscheme ofY which lies on a plane.
ThenC is a line. For ifH is the plane so obtained, whens is restricted to a section
of F H , it vanishes along the curveC, hence is divisible by the equation ofC. So
F H(−d) has a section whered is the degree ofC. The result now follows from
the restriction sequence ofF toH .

(iii) A result of Nüßler and Trautmann (true in any characteristic) states that if
F is a mathematical instanton with a sections in degree one and ifm is any line
contained in the support of the zero scheme ofs, thenF m = Om(−1) ⊕ Om(1)
[N-T].

CLAIM. Let k′ be an extension field ofk, and letφ be any automorphism ofP3
k′ .

ThenE ′ = φ∗E does not have a good monad reduction modulo two.
Proof. Assume the contrary. By this assumption, using the same notation as

above, there is a vector bundleE ′A′ on P3
A′ which specializes to a mathematical

instantonE ′0 on P3
k(p). Along with a lift of the monad toA′, we can lift the section

s′ of E ′(1) toA′. Hence the specialization ofs′ will give a sections′0 of E ′0(1)which
defines a codimension two zero-schemeY ′0 in P3

k(p). By our choice of cross-ratios,
the lines inYA′ (the zero-scheme ofs′) cannot specialize to four disjoint lines in
P3
k(p). In fact, we claim thatm′0, the specialization ofm′ is contained inY ′0.

Indeed, the four pointsQ′1,Q
′
2,Q

′
3,Q

′
4 onm′ reduce to four distinct points on

m′0, while the four points onl′ don’t. SinceY ′0 cannot have a component whose
reduced subscheme is planar of degree> 2, in particularY ′0 cannot contain two
distinct lines meeting at a point. So the only conclusion is thatm′0 lies insideY ′0.
But this is a contradiction, since on the one hand the restriction ofE ′0 tom′0 splits
asO(−1)⊕ O(1) using (iii) above and on the other hand asO(−3) ⊕ O(3) since
the limit of a jumping line of order 3 is a jumping line of order at least three (and
hence equal to 3 as the maximal possible order of a jumping line is 3).

Thus the claim. 2
Lastly, we get the following consequence of Corollary 2.8.

THEOREM 3.8.Let k be a field of characteristic zero. SupposeN is a component
of MP3

k
(c1, n) which contains one bundleE which reduces modulo two to a stable

bundle. ThenN has dimension bounded above byn2 + 4n + 1 for c1 = 0 and by
n2+ 4n− 1 for c1 = −1.

Proof. Our definition of good reduction here is more general than the definition
in (3.1). It means merely that there is a vector bundleEA on P3

A such thatEA ⊗A k
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equalsE , and such thatEA ⊗A k(p) is stable. The bounds forh1(Hom(E ,E)) of
(2.8) are valid overk as well, by upper semi-continuity. 2

Remarks3.9. We do not know if there are componentsN which violate the
condition of Theorem 3.8. The condition of degenerating to a stable bundle can be
relaxed to one of degenerating to a semi-stable bundle without any great change in
the dimension bound, since Theorem 2.7 still applies. A remark similar to the above
theorem can be made about mathematical instantons. LetN be a component of the
moduli space of mathematical instantons withc1 = 0, c2 = n in characteristic
zero. Suppose thatN contains one bundleE which has a good monad reduction
modulo two. ThenN is generically smooth of dimension 8n − 3. Of course this is
well known for the usual component of instantons, i.e. the component containing
the bundles corresponding to skew lines. Even in the example we gave in (3.7), if
the example is deformed in moduli by changing the cross-ratio of 2 to a value not
in Z2, we end up with a bundle with good monad reduction. It may well be (as
seems to be generally expected) that there is only one component for this moduli
space, in which case this remark gives nothing new.

References

[A-O] Ancona, V. and Ottaviani, G.: On singularities ofMP3(c1, c2), preprint, (1995), alg-
geom/9502008.

[B-E] Barth, W. and Elencjwag, G.: Concernant la cohomologie des fibrés alǵebriques stables
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