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Let Ex and E2 be real Banach spaces and let ^{E^) and J?(E2) be the Banach
algebras of all continuous linear mappings on E1 and E2 respectively. It is a well-
known result of M. Eidelheit [1] that ^(E^) that J*C(E2) are isomorphic as rings
if and only if E1 and E2 are topologically and algebraically isomorphic. It is easy
to see that the essential part of his proof is the following fact.

LEMMA. Let E be a real Banach space and ^(E) be the ring of all continuous
linear mappings of finite rank of E into itself. Then, for any ring automorphism
4> of ^F{E) such that <j>(xu) = a<f>(u) for every u e JF(E) and for every real
number a, there exists a topological linear isomorphism h of E such that, for every
u e 3F{E\

(j>(u) = huh'1.

Now, let s/ be a subset of ^C(E) such that

(1) iff, g e s4, thenfg e s/, where (fg)(x) = f(g{x))for xeE;

(2) iffe s4 andue &(E), thenf+ue s#;

(3) every topological linear isomorphism belongs to stf.

It is known that the set jFr(£") of all Fredholm linear mappings of E into
itself satisfies these conditions. (For example, see [3].) Although it is a semigroup
with respect to the composition of mappings, the conditions fe cFr(E) and
g e ^Fr(E) do not always imply f+g e ^r(E).

Let cf> be an automorphism of the semigroup s# denned above; in other words,
<f> is assumed to be a bijection of si such that, for fge s/,

We define that an automorphism <j> is said to be additive iff e A (i = 1, 2, • • •, n)
and Y}= I ft e ^ imply

Then, we can prove the following theorem, the proof of which can easily
be modified to show that two real Banach spaces Ev and E2 are topologically and
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algebraically isomorphic if and only if the semigroups ^rr{E1) and &rr(E2) are iso-
morphic by an additive isomorphism.

THEOREM. Let stf be the semigroup defined above. Then, every additive auto-
morphism (f> is inner; i.e., there exists a topological linear isomorphism h of E such
that, for every festf,

(4) 4>{f) = hfh-1.

PROOF, (i) </>(a) = a for any non-zero real number a when it is regarded as a
topological linear isomorphism: x -> ax. (The zero mapping is not assumed to be
in stf.)

In fact, for any ue^{E), since l+ues/, there exists festf such that
</>(/) = i+u. Then,

= 4>(fa) =

Hence, <£(a) commutes with every element of £F(E). Particularly, for the one-
dimensional mapping a ® a denned by

(a <g> a)(x) = <x, a}a,

where a e E, aeE (the conjugate space of E) and <x, a> is the value of a at x,
we have

«/>(a)(a ® a) = (a ® a)tf>(a),

or, assuming that <a, a> = 1,

for any non-zero real number a. Put

X(a) = <</>(a)(a), a}.
Then, if ofj? # 0, we have

and

from which it follows that A(a) = a for any non-zero real number a. Since
a could be any non-zero element, we have 0(a) = a for any non-zero real
number a.

(ii) If we put \jj(u) = (j)(l+u)-l for « £ # ( £ ) , then \p(txu) = a\j/(u) for
any u e ^(E) and any real number a.

Since ij/(0) = 0, we can assume that a # 0. Then,
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because from the additivity of ^ it follows that, for any/e s/,

4>{f+u)-<t><J)=4>{\+u)-\.

(iii) \\i is additive and multiplicative.
This also follows from the corresponding properties of <f>.

(iv) Ifu is one-dimensional, then •/'(w) is also one-dimensional.
As Eidelheit [1, Lemma 2] has pointed out, u e J£{E) is one-dimensional if

and only if to any v e JF(E) corresponds a number a such that (uv)2 = auv.
Now, taking an arbitrary v e <F(E) and, since l+v e stf, taking fesrf such that
</>(/) = 1 + v, we have

= iK«f)-W«) = *(«(/-!))•

Since u(f-1) e ^ ( f ) , («(/-1))2 = a«(/-1) for some a. Hence,

(v) i/' IJ an automorphism of the ring

By (iii) and (iv), we have that \f/ maps £F{E) into itself. Therefore, we have
only to show that it is onto. For any v e ^{E) we t a k e / e stf such that 4>{f) =
l+v. Then, for u = f— 1,

Therefore, by the same method as above, we can show that u e ^(E), and it is
obvious that v — t//(u).

(vi) Thus, by the Lemma, there exists a topological linear isomorphism h
such that, for every u e ^(E),

i//(u) =huh~l.

Hence, for any/e s/ and for any u e

<P(f)Hu) = <K/(i+«))-<£(/) = 4>(f+f»)-Hf)

= <j/(fu) = hfuh'1 = hfh-^(u),

from which (4) follows.

In order to obtain a non-linear version of this theorem, starting with the semi-
group denned above, we consider the set d~l(stf) of {non-linear) mappingsf: E -*• E
which satisfy the following two conditions (see [5]):

(5) fis Frechet-dijferentiable at every point of E;
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(6) f'{x) e stf for every xe E,

where f'(x) denotes the Frechet-derivative of/at x.
Obviously, d'1^) is a semigroup with respect to the composition and

s/ c d~l{stf). It is also obvious that d~1(^Fr(E)) is the set of all non-linear
Fredholm mappings in the sense of S. Smale [4].

THEOREM. If 4> is an additive automorphism of the semigroup d~l(stf), there
is a unique topological linear isomorphism h of E such that, for every fes^,

0(/) = hfh-K

PROOF, (i) 0(1) = 1 and4>{2) = 2.
Since 0 is onto and 1 e d'1^), there exists/e d~l{stf) such that 0(/) = 1.

Then, for any x e E we have

The additivity of 0 implies the second equality,

(ii) Let cx be a constant mapping such that

cx(y) — xf°r any y £ E-

Then, l+cxed~l(jtf) and <j>(\ + cx) — 1 is also constant.
Since c'x(y) = 0 for any y e E, it is obvious that

l+cxed-\s/),
and

= 0(1 +Cx)(j)(f)(O)-y where </,(/) = 1 +cy

= 4>(f+cx)(0)-y

for any y e E. Hence, 0(1 +cx)— 1 is constant.

(iii) There exists a bijection h : E -»• E such that for any xe E,

4>{\+cx)= l+ch(x).

The following method of defining h is due to K. D. Magill, Jr. (see [2] or
[6]). Since 0(1 +cx)— 1 is a constant mapping and 0 is injective, there is a unique
element y such that

0(1+0-1 =cy.
We define h by

y = h(x).

Then, h is obviously injective, and, for any y e E, by the same method as in (ii)
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we see that (f)~l(l+cy)-l is a constant mapping which we denote by cx. Then,

c, =<j>(l+cx)-l,ory =h(x).

Therefore, h is a bijection.

In fact,
= <K/)(20) =

(v) 4>(f) = hfh~x for any festf.

From the additivity of </> it follows that, for any x e £ a n d any/e ^s/,

<f>(f+cx) =

Therefore, replacing x by/(x), we have

<t>(f+cnx)) =
Hence, since fe si,

= <t>(f)4>(i+cx)(o)

+c»w)(0) =4>{f)h(x)
for every x 6 £.

(vi) $ w an additive automorphism of stf.
At first, we shall show that, for x, y e E,

h(x+y) =

To do this, we use the fact that

cHx)=<t>(\+cx)-\ =

for every xe E, which follows from (i) and the additivity of <f>. Then,

h(x+y) = cHx+y)(0)

= h(x)+h(y).

Thus, for /e J^ , </>(/) = hfh~1 is additive as well as differentiate, which implies
that

4>{f){oix) = a<t>(f)(x)

for any xe E and any real number a. Therefore, by the condition (6),

4>{f) = 4>{f)'{x) e s/.
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In order to prove that <j> : s/ -* st is onto, we have only to use (f>~1 instead of 0.
The rest of the proof is obvious.

(vii) h is a topological linear isomorphism.
By the previous theorem, there is a topological linear isomorphism hy such

that (4) is satisfied. Combining this fact with v), we see that h = ah^ for some real
number a. Therefore, h is bicontinuous.

We do not know whether or not every additive automorphism <j) of the semi-
group J - 1 ( J / ) is inner. Here, we present some conditions which are equivalent
to that <t> is inner.

THEOREM. Let cj> be an additive automorphism of the semigroup d~l(stf). The

following conditions are equivalent:

(7) <j> is inner.

(8) If^ed-'is/) (n = 0, 1, 2, • • •) and lim^^fjx) =fo(x) at every x e E,
then limn^x 4>(fn)(0) = <p(fo)(0).

(9) ///(0) = Oandfed'1^), then <j>(f)(O) = 0.

PROOF. It is evident that (7) implies (8). Let us assume that <j> satisfies (8)
and/(0) = 0 f o r / e ^ " 1 ^ ) . Then, the limit

lime"'[/fox)] =/'(<))(*)

exists and

Therefore, (8) implies that the limit

<«/'(0))(0) = lim 0(e;1A)(O) = lim e;1 <K/)(0)
en->0 en-»0

exists, hence it follows that </>(/)(0) = 0.
Finally, if <f> satisfies (9), since

(/-c/ (0))(0) = 0 and/~c / ( 0 ) e d~\s4),
we have

= 0,

or, <j)(f)(O) = hf(0) for every/e d~x{stf). Therefore, for every xeE,

which implies that <j> is inner.
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