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Let E, and E, be real Banach spaces and let #(E,) and #(E,) be the Banach
algebras of all continuous linear mappings on E; and E, respectively. It is a well-
known result of M. Eidelheit [1] that #(E,) that £(F,) are isomorphic as rings
if and only if E; ahd E, are topologically and algebraically isomorphic. It is easy
to see that the essential part of his proof is the following fact.

LEMMA. Let E be a real Banach space and & (E) be the ring of all continuous
linear mappings of finite rank of E into itself. Then, for any ring automorphism
¢ of F(E) such that ¢(ou) = ad(u) for every ue F(E) and for every real
number «, there exists a topological linear isomorphism h of E such that, for every
ue F(E),

d(u) = huh™"'.

Now, let <7 be a subset of .#(E) such that

(1) iff, g€ A, then fg € L, where (fg)(x) = f(g(x)) for x € E;

(2) if fe o and ue F(E), then f+ue

(3) every topological linear isomorphism belongs to <.

It is known that the set #r(E’) of all Fredholm linear mappings of E into
itself satisfies these conditions. (For example, see [3].) Although it is a semigroup
with respect to the composition of mappings, the conditions fe %#r(E) and
g € Fr(E) do not always imply f+g € Fr(E).

Let ¢ be an automorphism of the semigroup .2/ defined above; in other words,
¢ is assumed to be a bijection of .o such that, for f, g € o,

$(f9) = ¢(/)d(9)-
We define that an automorphism ¢ is said to be additive if f;e A (i = 1,2, -, n)
and ?_, f; € & imply

HYS) = T8

Then, we can prove the following theorem, the proof of which can easily
be modified to show that two real Banach spaces E, and E, are topologically and
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algebraically isomorphic if and only if the semigroups Fr(E,) and Fr(E,) are iso-
morphic by an additive isomorphism.

THEOREM. Let o/ be the semigroup defined above. Then, every additive auto-
morphism ¢ is inner; i.e., there exists a topological linear isomorphism h of E such
that, for every fe o,

@ B(f) = Wi,

ProoF. (i) ¢(x) = o for any non-zero real number « when it is regarded as a
topological linear isomorphism: x — ax. (The zero mapping is not assumed to be
in 27.)

In fact, for any ue F(F), since 1+ue .o/, there exists fe.o/ such that
¢(f) = 1+u. Then,

(1) +d(0u = p(a)(1 +u) = (2)p(f) = d(af)
= ¢(f2) = ¢(/)(a) = p(2)+ud(x).
Hence, ¢(oc) commutes with every element of % ( E). Particularly, for the one-
dimensional mapping ¢ ® a defined by
(a ® a)(x) = <x, a)a,

where a € E, G e E (the conjugate space of E) and {x, a) is the value of a at x,
we have

d(x)(a ® a) = (a ® a)p(x),

or, assuming that {a, @) = 1,

d(x)(@) = {p(a)(a), a>a
for any non-zero real number «. Put
M) = {p(x)(a), @>.
Then, if «ff # 0, we have
Mo+ B) = (@) +A(B) and A(af) = A(2)A(B),

from which it follows that i(a) = o for any non-zero real number «. Since
a could be any non-zero element, we have ¢(a) = o for any non-zero real
number o.

(ii) If we put Y(u) = ¢(1+u)—1 for ue F(E), then y(ou) = oy(u) for
any u € # (E) and any real number a.
Since ¥(0) = 0, we can assume that « # 0. Then,

Y(oaw) = p(1+ou)—1 = dp(afa™! +u))—1
d()p(a ' +u)—aa™! = afp(a +u)—a']
= a(u),

It
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because from the additivity of ¢ it follows that, for any fe o7,
o(f+u)—d(f) = p(1+u)—-1.

(iil) v is additive and multiplicative.
This also follows from the corresponding properties of ¢.

(iv) If u is one-dimensional, then y(u) is also one-dimensional.

As Eidelheit [1, Lemma 2] has pointed out, u € £ (E) is one-dimensional if
and only if to any v € #(E) corresponds a number « such that (uv)* = auv.
Now, taking an arbitrary v € & (E) and, since 1 +v e &, taking fe/ such that
¢(f) = 1+v, we have

Yo = Y()p(f)—v(u) = ¢(1+u)p(f)—d(f)—p(1+u)+1
= ¢(f+uf)—¢(f)— (1 +u)+1
= Y(uf) =y (u) = Y(u(f-1)).
Since u(f—1)e F(E), (u(f—1))* = ou(f—1) for some a. Hence,

(@) = Y((u(f=1))*) = Y(au(f~1))
= af(u(f—1)) = ap(u)o.
(V) ¥ is an automorphism of the ring F (E).

By (iii) and (iv), we have that y maps % (E) into itself. Therefore, we have
only to show that it is onto. For any v e #(E) we take f'e &7 such that ¢(f) =
1+v. Then, foru = f—1,

d(l+u)—1 =ve F(E).

Therefore, by the same method as above, we can show that v e #(E), and it is
obvious that v = ¥(u).

(vi) Thus, by the Lemma, there exists a topological linear isomorphism 4
such that, for every u € # (E),

Y(u) = huh™.
Hence, for any fe &7 and for any u e # (E),
P W) = ¢(f(1+u))=d(f) = ¢(f +Su)— (/)
= Y(fu) = hfuh™" = hfh™"Y(u),
from which (4) follows.

In order to obtain a non-linear version of this theorem, starting with the semi-
group defined above, we consider the set d™' () of (non-linear) mappingsf: E - E
which satisfy the following two conditions (see [5]):

(5) fis Fréchet-differentiable at every point of E;
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(6) f'(x) e A for every x € E,

where f'(x) denotes the Fréchet-derivative of f at x.

Obviously, d~'(.2/) is a semigroup with respect to the composition and
o < d (). It is also obvious that d~'(Fr(E)) is the set of all non-linear
Fredholm mappings in the sense of S. Smale [4].

THEOREM. If ¢ is an additive automorphism of the semigroup d (7)), there
is a unique topological linear isomorphism h of E such that, for every fe o,
o(f) = W'

Proof. (i) ¢(1) = 1 and ¢(2) = 2.
Since ¢ is onto and 1 e d~'(Z), there exists fe d (=) such that ¢(f) = 1.
Then, for any x € E we have

B(1)(x) = ()@ ()(x)) = (F()())(x) = d(f)(x) = x.
The additivity of ¢ implies the second equality.

(ii) Let c, be a constant mapping such that

¢,(y) = xforany y e E.
Then, 1+c,ed™ () and ¢(1+c,)—1 is also constant.
Since ¢, (y) = 0 for any y € E, it is obvious that

I+c,ed (),
and
(¢(1+c)—1)(y) = dp(1+c)(1+¢,)(0)—y
= ¢(1+c)p(f)(0)—y where §(f) = 1+¢,
= ¢(f+c.)0)-y
= ¢(/)0)+¢(1+¢,)(0)—d(1)(0)—y
= (¢(1+¢,)—1)(0)
for any y € E. Hence, ¢(1+¢,)—1 is constant.
(iii) There exists a bijection h : E — E such that for any x € E,

d)(l +Cx) = 1 +Ch(x)'

The following method of defining 4 is due to K. D. Magill, Jr. (see [2] or
[6]). Since ¢(1 +¢,)—1 is a constant mapping and ¢ is injective, there is a unique
element y such that

p(l+c)—1=c¢,.
We define 4 by

y = h(x).

Then, 4 is obviously injective, and, for any y € E, by the same method as in (ii)
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we see that ¢~ '(1+¢,)—1 is a constant mapping which we denote by ¢,. Then,
¢, =¢(l+c,)—1, ory = h(x).
Therefore, % is a bijection.

(iv) (f)0) = 0if fe.
In fact,

P(f)0) = $(£)(20) = $(/)H(2)(0) = $(/2)(0)
= $(2/)(0) = 2¢(1)(0).

(V) ¢(f) = hfh™"* for any fes/.
From the additivity of ¢ it follows that, for any x € E and any f € .7,
P +c) = P(f)+Cnexy -
Therefore, replacing x by f(x), we have

O +cre) = ()4 Chpny-

Hence, since fe o,
hf(x) = d(f +cpx))(0)—B(f)0)
= d)(f(l +cx))(0) = ¢(f)¢(1 +cx)(0)
= (/)1 +6u)0) = ¢(f)A(x)

for every x € E.

(vi) ¢ is an additive automorphism of <.
At first, we shall show that, for x, y € E,

h(x+y) = h(x)+h(p).
To do this, we use the fact that
ch(x) = ¢(1 +Cx)_ 1 = ¢(2+Cx)_2
for every x e E, which follows from (i) and the additivity of ¢. Then,
h(x+y) = ch(x+y)(0) = (¢(2+ Cx+y)— 2)(0)

= ¢(1+c.+1+¢,)0)

= ¢(1+¢,)(0)+(1+¢,)(0)

= h(x)+h(y).

Thus, for fe o, d(f) = hfh~' is additive as well as differentiable, which implies
that
P(f)(ax) = ad(f)(x)

for any x € E and any real number «. Therefore, by the condition (6),

(f) = o(fY(x)e .
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In order to prove that ¢ : &/ — & is onto, we have only to use ¢! instead of ¢.
The rest of the proof is obvious.

(vii) his a topological linear isomorphism.

By the previous theorem, there is a topological linear isomorphism /4, such
that (4) is satisfied. Combining this fact with v), we see that 4 = ah, for some real
number o. Therefore, % is bicontinuous.

We do not know whether or not every additive automorphism ¢ of the semi-
group d (&) is inner. Here, we present some conditions which are equivalent
to that ¢ is inner.

THEOREM. Let ¢ be an additive automorphism of the semigroup d™' (). The
following conditions are equivalent:

(7) ¢ is inner.

@) If fred™ () (n=0,1,2,--) and lim,_,, f,(x) = fo(x) at every x€E,
then limn—'oo ¢(f;|)(0) = ¢(f0)(0)

(9) Iff(0) = 0 and fe d~"(L), then $(£)(0) = 0.

Proor. It is evident that (7) implies (8). Let us assume that ¢ satisfies (8)
and f(0) = O for fe d™'(&Z). Then, the limit

lim & [/(e, )] = £/(0)(x)
exists and ’
e, ' fe,ed () and f/(0)e o = d™I(A).

Therefore, (8) implies that the limit

¢(f'(0))(0) = 1irj10¢(8,7 fe,)(0) = lim ¢, L ¢()0)

exists, hence it follows that ¢(f)(0) = 0.
Finally, if ¢ satisfies (9), since

(f=cry)(0) = 0 and f—c,y ed™ (),
(@) =ar0y))0) = ¢(f—c;0y)(0) = O,
or, ¢(f)(0) = hf(0) for every fe d~' (). Therefore, for every x € E,

() x) = ¢(f(1 +c4-15))(0)
= hf (14 Cp-10)(0) = Afh™ (%),

which implies that ¢ is inner.

we have
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