ON THE SEMIGROUPS OF FREDHOLM MAPPINGS

SADAYUKI YAMAMURO

(Received 8 September 1969) Communicated by G. B. Preston

Let E_1 and E_2 be real Banach spaces and let $\mathscr{L}(E_1)$ and $\mathscr{L}(E_2)$ be the Banach algebras of all continuous linear mappings on E_1 and E_2 respectively. It is a wellknown result of M. Eidelheit [1] that $\mathscr{L}(E_1)$ that $\mathscr{L}(E_2)$ are isomorphic as rings if and only if E_1 and E_2 are topologically and algebraically isomorphic. It is easy to see that the essential part of his proof is the following fact.

LEMMA. Let E be a real Banach space and $\mathscr{F}(E)$ be the ring of all continuous linear mappings of finite rank of E into itself. Then, for any ring automorphism ϕ of $\mathscr{F}(E)$ such that $\phi(\alpha u) = \alpha \phi(u)$ for every $u \in \mathscr{F}(E)$ and for every real number α , there exists a topological linear isomorphism h of E such that, for every $u \in \mathscr{F}(E)$,

$$\phi(u) = huh^{-1}.$$

Now, let \mathscr{A} be a subset of $\mathscr{L}(E)$ such that

- (1) if $f, g \in \mathcal{A}$, then $fg \in \mathcal{A}$, where (fg)(x) = f(g(x)) for $x \in E$;
- (2) if $f \in \mathscr{A}$ and $u \in \mathscr{F}(E)$, then $f + u \in \mathscr{A}$;
- (3) every topological linear isomorphism belongs to \mathscr{A} .

It is known that the set $\mathscr{F}r(E)$ of all Fredholm linear mappings of E into itself satisfies these conditions. (For example, see [3].) Although it is a semigroup with respect to the composition of mappings, the conditions $f \in \mathscr{F}r(E)$ and $g \in \mathscr{F}r(E)$ do not always imply $f + g \in \mathscr{F}r(E)$.

Let ϕ be an automorphism of the semigroup \mathscr{A} defined above; in other words, ϕ is assumed to be a bijection of \mathscr{A} such that, for $f, g \in \mathscr{A}$,

$$\phi(fg) = \phi(f)\phi(g).$$

We define that an automorphism ϕ is said to be *additive* if $f_i \in A$ $(i = 1, 2, \dots, n)$ and $\sum_{i=1}^n f_i \in \mathcal{A}$ imply

$$\phi(\sum_{i=1}^n f_i) = \sum_{i=1}^n \phi(f_i).$$

Then, we can prove the following theorem, the proof of which can easily be modified to show that two real Banach spaces E_1 and E_2 are topologically and

378

algebraically isomorphic if and only if the semigroups $\mathscr{F}r(E_1)$ and $\mathscr{F}r(E_2)$ are isomorphic by an additive isomorphism.

THEOREM. Let \mathscr{A} be the semigroup defined above. Then, every additive automorphism ϕ is inner; i.e., there exists a topological linear isomorphism h of E such that, for every $f \in \mathscr{A}$,

$$\phi(f) = hfh^{-1}.$$

PROOF. (i) $\phi(\alpha) = \alpha$ for any non-zero real number α when it is regarded as a topological linear isomorphism: $x \to \alpha x$. (The zero mapping is not assumed to be in \mathscr{A} .)

In fact, for any $u \in \mathscr{F}(E)$, since $1+u \in \mathscr{A}$, there exists $f \in \mathscr{A}$ such that $\phi(f) = 1+u$. Then,

$$\phi(\alpha) + \phi(\alpha)u = \phi(\alpha)(1+u) = \phi(\alpha)\phi(f) = \phi(\alpha f)$$
$$= \phi(f\alpha) = \phi(f)\phi(\alpha) = \phi(\alpha) + u\phi(\alpha).$$

Hence, $\phi(\alpha)$ commutes with every element of $\mathscr{F}(E)$. Particularly, for the onedimensional mapping $a \otimes \overline{a}$ defined by

$$(a \otimes \overline{a})(x) = \langle x, \overline{a} \rangle a,$$

where $a \in E$, $\bar{a} \in \bar{E}$ (the conjugate space of E) and $\langle x, \bar{a} \rangle$ is the value of \bar{a} at x, we have

$$\phi(\alpha)(a\otimes \bar{a})=(a\otimes \bar{a})\phi(\alpha),$$

or, assuming that $\langle a, \bar{a} \rangle = 1$,

$$\phi(\alpha)(a) = \langle \phi(\alpha)(a), \bar{a} \rangle a$$

for any non-zero real number α . Put

$$\lambda(\alpha) = \langle \phi(\alpha)(a), \bar{a} \rangle.$$

Then, if $\alpha\beta \neq 0$, we have

$$\lambda(\alpha + \beta) = \lambda(\alpha) + \lambda(\beta)$$
 and $\lambda(\alpha\beta) = \lambda(\alpha)\lambda(\beta)$,

from which it follows that $\lambda(\alpha) = \alpha$ for any non-zero real number α . Since a could be any non-zero element, we have $\phi(\alpha) = \alpha$ for any non-zero real number α .

(ii) If we put $\psi(u) = \phi(1+u)-1$ for $u \in \mathscr{F}(E)$, then $\psi(\alpha u) = \alpha \psi(u)$ for any $u \in \mathscr{F}(E)$ and any real number α .

Since $\psi(0) = 0$, we can assume that $\alpha \neq 0$. Then,

$$\psi(\alpha u) = \phi(1 + \alpha u) - 1 = \phi(\alpha(\alpha^{-1} + u)) - 1$$

= $\phi(\alpha)\phi(\alpha^{-1} + u) - \alpha\alpha^{-1} = \alpha[\phi(\alpha^{-1} + u) - \alpha^{-1}]$
= $\alpha\psi(u)$,

because from the additivity of ϕ it follows that, for any $f \in \mathscr{A}$,

$$\phi(f+u) - \phi(f) = \phi(1+u) - 1.$$

(iii) ψ is additive and multiplicative.

This also follows from the corresponding properties of ϕ .

(iv) If u is one-dimensional, then $\psi(u)$ is also one-dimensional.

As Eidelheit [1, Lemma 2] has pointed out, $u \in \mathscr{L}(E)$ is one-dimensional if and only if to any $v \in \mathscr{F}(E)$ corresponds a number α such that $(uv)^2 = \alpha uv$. Now, taking an arbitrary $v \in \mathscr{F}(E)$ and, since $1 + v \in \mathscr{A}$, taking $f \in \mathscr{A}$ such that $\phi(f) = 1 + v$, we have

$$\begin{split} \psi(u)v &= \psi(u)\phi(f) - \psi(u) = \phi(1+u)\phi(f) - \phi(f) - \phi(1+u) + 1 \\ &= \phi(f+uf) - \phi(f) - \phi(1+u) + 1 \\ &= \psi(uf) - \psi(u) = \psi(u(f-1)). \end{split}$$

Since $u(f-1) \in \mathscr{F}(E)$, $(u(f-1))^2 = \alpha u(f-1)$ for some α . Hence,

$$\begin{aligned} (\psi(u)v)^2 &= \psi((u(f-1))^2) = \psi(\alpha u(f-1)) \\ &= \alpha \psi(u(f-1)) = \alpha \psi(u)v. \end{aligned}$$

 $(v) \psi$ is an automorphism of the ring $\mathscr{F}(E)$.

By (iii) and (iv), we have that ψ maps $\mathscr{F}(E)$ into itself. Therefore, we have only to show that it is onto. For any $v \in \mathscr{F}(E)$ we take $f \in \mathscr{A}$ such that $\phi(f) = 1 + v$. Then, for u = f - 1,

$$\phi(1+u)-1 = v \in \mathscr{F}(E).$$

Therefore, by the same method as above, we can show that $u \in \mathscr{F}(E)$, and it is obvious that $v = \psi(u)$.

(vi) Thus, by the Lemma, there exists a topological linear isomorphism h such that, for every $u \in \mathscr{F}(E)$,

$$\psi(u) = huh^{-1}.$$

Hence, for any $f \in \mathscr{A}$ and for any $u \in \mathscr{F}(E)$,

$$\phi(f)\psi(u) = \phi(f(1+u)) - \phi(f) = \phi(f+fu) - \phi(f)$$

= $\psi(fu) = hfuh^{-1} = hfh^{-1}\psi(u),$

from which (4) follows.

In order to obtain a non-linear version of this theorem, starting with the semigroup defined above, we consider the set $d^{-1}(\mathcal{A})$ of (non-linear) mappings $f: E \to E$ which satisfy the following two conditions (see [5]):

(5) f is Fréchet-differentiable at every point of E;

380

(6) $f'(x) \in \mathscr{A}$ for every $x \in E$,

where f'(x) denotes the Fréchet-derivative of f at x.

Obviously, $d^{-1}(\mathscr{A})$ is a semigroup with respect to the composition and $\mathscr{A} \subset d^{-1}(\mathscr{A})$. It is also obvious that $d^{-1}(\mathscr{F}r(E))$ is the set of all non-linear Fredholm mappings in the sense of S. Smale [4].

THEOREM. If ϕ is an additive automorphism of the semigroup $d^{-1}(\mathscr{A})$, there is a unique topological linear isomorphism h of E such that, for every $f \in \mathscr{A}$,

$$\phi(f) = hfh^{-1}.$$

PROOF. (i) $\phi(1) = 1$ and $\phi(2) = 2$.

Since ϕ is onto and $1 \in d^{-1}(\mathscr{A})$, there exists $f \in d^{-1}(\mathscr{A})$ such that $\phi(f) = 1$. Then, for any $x \in E$ we have

$$\phi(1)(x) = \phi(1)(\phi(f)(x)) = (\phi(1)\phi(f))(x) = \phi(f)(x) = x.$$

The additivity of ϕ implies the second equality.

(ii) Let c_x be a constant mapping such that

$$c_x(y) = x$$
 for any $y \in E$.

Then, $1+c_x \in d^{-1}(\mathscr{A})$ and $\phi(1+c_x)-1$ is also constant. Since $c'_x(y) = 0$ for any $y \in E$, it is obvious that

 $1 + c_x \in d^{-1}(\mathscr{A}),$

and

$$(\phi(1+c_x)-1)(y) = \phi(1+c_x)(1+c_y)(0)-y$$

= $\phi(1+c_x)\phi(f)(0)-y$ where $\phi(f) = 1+c_y$
= $\phi(f+c_x)(0)-y$
= $\phi(f)(0)+\phi(1+c_x)(0)-\phi(1)(0)-y$
= $(\phi(1+c_x)-1)(0)$

for any $y \in E$. Hence, $\phi(1+c_x)-1$ is constant.

(iii) There exists a bijection $h: E \to E$ such that for any $x \in E$,

$$\phi(1+c_x)=1+c_{h(x)}.$$

The following method of defining h is due to K. D. Magill, Jr. (see [2] or [6]). Since $\phi(1+c_x)-1$ is a constant mapping and ϕ is injective, there is a unique element y such that

$$\phi(1+c_x)-1 = c_y.$$

We define *h* by

$$y = h(x).$$

Then, h is obviously injective, and, for any $y \in E$, by the same method as in (ii)

we see that $\phi^{-1}(1+c_y)-1$ is a constant mapping which we denote by c_x . Then,

$$c_y = \phi(1+c_x) - 1$$
, or $y = h(x)$.

Therefore, h is a bijection.

(iv) $\phi(f)(0) = 0$ if $f \in \mathscr{A}$. In fact,

$$\phi(f)(0) = \phi(f)(20) = \phi(f)\phi(2)(0) = \phi(f2)(0)$$

= $\phi(2f)(0) = 2\phi(f)(0).$

(v) $\phi(f) = hfh^{-1}$ for any $f \in \mathscr{A}$.

From the additivity of ϕ it follows that, for any $x \in E$ and any $f \in \mathcal{A}$,

 $\phi(f+c_x)=\phi(f)+c_{h(x)}.$

Therefore, replacing x by f(x), we have

$$\phi(f + c_{f(x)}) = \phi(f) + c_{hf(x)}$$

Hence, since $f \in \mathscr{A}$,

$$hf(x) = \phi(f + c_{f(x)})(0) - \phi(f)(0)$$

= $\phi(f(1 + c_x))(0) = \phi(f)\phi(1 + c_x)(0)$
= $\phi(f)(1 + c_{h(x)})(0) = \phi(f)h(x)$

for every $x \in E$.

(vi) ϕ is an additive automorphism of \mathscr{A} . At first, we shall show that, for $x, y \in E$,

$$h(x+y) = h(x) + h(y).$$

To do this, we use the fact that

$$c_{h(x)} = \phi(1+c_x) - 1 = \phi(2+c_x) - 2$$

for every $x \in E$, which follows from (i) and the additivity of ϕ . Then,

$$h(x+y) = c_{h(x+y)}(0) = (\phi(2+c_{x+y})-2)(0)$$

= $\phi(1+c_x+1+c_y)(0)$
= $\phi(1+c_x)(0)+\phi(1+c_y)(0)$
= $h(x)+h(y).$

Thus, for $f \in \mathscr{A}$, $\phi(f) = hfh^{-1}$ is additive as well as differentiable, which implies that

$$\phi(f)(\alpha x) = \alpha \phi(f)(x)$$

for any $x \in E$ and any real number α . Therefore, by the condition (6),

$$\phi(f) = \phi(f)'(x) \in \mathscr{A}.$$

382

In order to prove that $\phi : \mathscr{A} \to \mathscr{A}$ is onto, we have only to use ϕ^{-1} instead of ϕ . The rest of the proof is obvious.

(vii) h is a topological linear isomorphism.

By the previous theorem, there is a topological linear isomorphism h_1 such that (4) is satisfied. Combining this fact with v), we see that $h = \alpha h_1$ for some real number α . Therefore, h is bicontinuous.

We do not know whether or not every additive automorphism ϕ of the semigroup $d^{-1}(\mathscr{A})$ is inner. Here, we present some conditions which are equivalent to that ϕ is inner.

THEOREM. Let ϕ be an additive automorphism of the semigroup $d^{-1}(\mathscr{A})$. The following conditions are equivalent:

(7) ϕ is inner.

(8) If $f_n \in d^{-1}(\mathscr{A})$ $(n = 0, 1, 2, \cdots)$ and $\lim_{n \to \infty} f_n(x) = f_0(x)$ at every $x \in E$, then $\lim_{n \to \infty} \phi(f_n)(0) = \phi(f_0)(0)$.

(9) If
$$f(0) = 0$$
 and $f \in d^{-1}(\mathscr{A})$, then $\phi(f)(0) = 0$.

PROOF. It is evident that (7) implies (8). Let us assume that ϕ satisfies (8) and f(0) = 0 for $f \in d^{-1}(\mathscr{A})$. Then, the limit

$$\lim_{\varepsilon_n\to 0}\varepsilon_n^{-1}[f(\varepsilon_n x)] = f'(0)(x)$$

exists and

$$\varepsilon_n^{-1} f \varepsilon_n \in d^{-1}(\mathscr{A}) \text{ and } f'(0) \in \mathscr{A} \subset d^{-1}(\mathscr{A}).$$

Therefore, (8) implies that the limit

$$\phi(f'(0))(0) = \lim_{\varepsilon_n \to 0} \phi(\varepsilon_n^{-1} f \varepsilon_n)(0) = \lim_{\varepsilon_n \to 0} \varepsilon_n^{-1} \phi(f)(0)$$

exists, hence it follows that $\phi(f)(0) = 0$.

Finally, if ϕ satisfies (9), since

$$(f-c_{f(0)})(0) = 0$$
 and $f-c_{f(0)} \in d^{-1}(\mathcal{A})$,

we have

$$(\phi(f) - c_{hf(0)})(0) = \phi(f - c_{f(0)})(0) = 0,$$

or, $\phi(f)(0) = hf(0)$ for every $f \in d^{-1}(\mathscr{A})$. Therefore, for every $x \in E$,

$$\phi(f)(x) = \phi(f(1+c_{h^{-1}(x)}))(0)$$

= $hf(1+c_{h^{-1}(x)})(0) = hfh^{-1}(x),$

which implies that ϕ is inner.

S. Yamamuro

References

- [1] M. Eidelheit, 'On isomorphisms of rings of linear operators', Studia Math. 9 (1940), 97-105.
- [2] K. D. Magill, Jr., 'Automorphisms of the semigroup of all differentiable functions', *Glasgow Math. Journ.* 8 (1967), 63-66.
- [3] R. Palais, Seminar on the Atiyah-Singer index theorem (Ann. of Math. Studies, no. 57, Princeton, 1965).
- [4] S. Smale, 'An infinite dimensional version of Sard's theorem', Amer. Journ. Math. 87 (1965), 861-866.
- [5] S. Yamamuro, 'A note on *d*-ideals in some near-algebras', Journ. Australian Math. Soc. 7 (1967), 129-134.
- [6] S. Yamamuro, 'A note on semigroups of mappings on Banach spaces', Journ. Australian Math. Soc., 9 (1969), 455-464.

Department of Mathematics Institute of Advanced Studies Australian National University