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The baryonic spectrum of multiflavor QCD2
in the strong coupling limit

We are now going to compute the baryonic spectrum of QCD2 , for which as
it turns out the bosonic formulation is very convenient. The mesonic spectrum
was found earlier, using large N with quark fields as variables in Chapter 10,
as well as using currents as building blocks in Section 11.3. For the baryon
spectrum, however, the large N limit, in terms of fermionic fields, is not the
natural framework to use since in such a picture the baryon is a bound state of
a large number N of constituents. Instead, it will be shown in this chapter that
the bosonized version of QCD2 in the strong coupling limit provides an effective
description of the baryons.1 We will start by deriving the effective action at
the strong coupling limit. It will be argued that for the purpose of extracting
the low-lying baryons, one can in fact use the product scheme instead of the
U(Nc ×Nc) scheme, with the former being more suitable for our purposes. Once
the effective action is written down we will search for soliton solutions that carry
a baryon number. It will be shown that for a static configuration the effective
action reduces to a sum of sine-Gordon actions. Using the knowledge acquired
on solitons, in Chapter 5, it will be easy to write down the classical baryonic
configuration. We will then semi-classically quantize these solitons. This problem
will be mapped into a quantum mechanical model on a CP (Nf −1) manifold.
The energy and charges of the quantized soliton can be derived and thus the
spectrum of the baryons is determined. We then analyze the quark flavor content
of the baryons and discuss multi-baryon states. Finally, we include meson-baryon
scattering, this time also for the case of any coupling.

13.1 The strong coupling limit

It turns out that the mass term plays an essential role in the determination of
classical soliton solutions in 1+1 space-time dimensions. It is therefore required
to switch on this term before deducing the low energy effective action. As was
explained in Chapter 6, we know how to do this rigorously only in the scheme
of U(NFNC). It will turn out, however, that the product scheme can be used for
the low mass states in the strong coupling limit.

1 The spectrum of baryons of two-dimensional QCD extracted in the strong coupling limit was
derived in [75].
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238The baryonic spectrum of multiflavor QCD2 in the strong coupling limit

Our starting point is the last equation of Chapter 9. In the strong coupling limit
ec

mq
→∞, the fields in h̃ which contribute to H̃ will become infinitely heavy. The

sector g̃l ⊂ SU (NF NC )
SU (NC ) , however, will not acquire mass from the gauge interaction

term. Since we are interested only in the light particles we can, in the strong
coupling limit, ignore the heavy fields, if we first normal order the heavy fields
at the mass scale μ̃ = ec

√
NF√

2π
. Using the relation, for a given operator O,(

μ̃

m̃

)Δ

Nμ̃O = Nm̃ O, (13.1)

to perform the change in the scale of normal ordering, and then substituting
ha

b = δa
b , we get for the low energy effective action,

Seff [u] = S[g̃] + S[l] +
1
2

∫
d2x∂μφ∂μφ

+ cmq μ̃Nμ̃

∫
d2xTr(e−i

√
4 π

N C N F
φ
g̃l + e+i

√
4 π

N C N F
φ
l†g̃†). (13.2)

We can now replace the two mass scales mq and μ̃ by a single scale, by normal
ordering at a certain m so the final form of the effective action becomes,

Seff [u] = S[g̃] + S[l] +
1
2

∫
d2x∂μφ∂μφ

+
m2

NC
Nm

∫
d2xTr(e−i

√
4 π

N C N F
φ
g̃l + e+i

√
4 π

N C N F
φ
l̃†g†), (13.3)

with m given by,

m =

[
NCcmq

(
ec

√
NF√
2π

)ΔC
] 1

1 + Δ C

, (13.4)

here ΔC , the dimension of h̃, is N 2
C −1

NC (NC +NF ) . For the l = 1 sector, defining g
′
=

g̃e−i
√

4 π
N C N F

φ ⊂ U(NF) one gets the effective action,

Seff [g
′
] = NCS[g

′
] + m2Nm

∫
d2xTrF (g

′
+ g

′†). (13.5)

Thus, the low energy effective action in the l = 1 sector coincides with the result
of the “naive” approach of the product scheme.

In the strong coupling limit ec/mq →∞ the low energy effective action reads,2

S[g] = NCS[g] + m2Nm

∫
d2x(Trg + Trg†), (13.6)

with g in U(NF). Note that the analog of our strong coupling to the case of 3+1
space-time, would be that of light current quarks compared to the QCD scale
ΛQC D .

2 From here on we omit the prime from g′ so we denote g ∈ U (NF ).
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13.2 Classical soliton solutions 239

13.2 Classical soliton solutions

We now look for static solutions of the classical action. For a static field config-
uration, the WZ term does not contribute. One way to see this is by noting that
the variation of the WZ term can be written as,

δWZ ∝
∫

d2xεijTr(δg)g†(∂ig)(∂jg
†), (13.7)

and for g that has only spatial dependence δWZ = 0. Without loss of generality
we may take, for the lowest energy, a diagonal g(x),

g(x) =
(

e−i
√

4 π
N C

ϕ1
, . . . , e−i

√
4 π
N C

ϕN F

)
. (13.8)

For this ansatz and with a redefinition of the constant term, the action density
reduces to,

S̃d [g] = −
∫

dx

NF∑
i=1

[
1
2

(
dϕi

dx

)2

− 2m2
(

cos
√

4π

NC
ϕi − 1

)]
. (13.9)

This is a sum of decoupled standard sine-Gordon actions for each ϕi . The
well-known solutions of the associated equations of motion are,

ϕi(x) =

√
4NC

π
arctg

[
e

(
√

8 π
N C

mx)
]

, (13.10)

with the corresponding classical energy,

Ei = 4m

√
2NC

π
, i = 1, . . . , NF . (13.11)

Clearly the minimum energy configuration for this class is when only one of the
ϕi is nonzero, for example,

g◦(x) = Diag
(

1, 1, . . . , e−i
√

4 π
N C

ϕ(x)
)

(13.12)

Conserved charges, corresponding to the vector current, can be computed using
the definition,

QA [g(x)] =
1
2

∫
dxTr(J0T

A ), (13.13)

where 1
2 TA are the SU(NF) generators and the U(1) baryon number is generated

by the unit matrix. This follows from Jμ = JA
μ TA , and in the fermionic basis

JA
μ = ψ̄γμ

1
2 TAψ.

In particular, for eqn. (13.10), we get charges different from zero only for QB

and QY corresponding to baryon number and “hypercharge”, respectively,

Q◦
B = NC , Q◦

Y = −1
2

√
2(NF − 1)

NF
NC , (13.14)
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240The baryonic spectrum of multiflavor QCD2 in the strong coupling limit

these charges are determined solely by the boundary values of ϕ(x), which are,√
4π

NC
ϕ(∞) = 2π,

√
4π

NC
ϕ(−∞) = 0. (13.15)

Under a general UV (NF) global transformation g◦(x)→ g̃◦(x) = Ag◦(x)A−1

the energy of the soliton is obviously unchanged, but charges other than QB and
QY will be turned on. Let us introduce a parametrization of A that will be useful
later,

A =

⎛⎜⎜⎜⎜⎜⎜⎝

z1

Aij

...

...
z(NF −1)

Y1 . . . . . . Y(NF −1) zNF

⎞⎟⎟⎟⎟⎟⎟⎠ . (13.16)

Now,

g̃◦ = 1 + (e−i
√

4 π
N C

ϕ − 1)z, (13.17)

where (z)αβ = zαz∗β , and from unitarity
∑NF

α=i zαz∗α = 1. The charges with g̃◦(x)
are,

(Q̃◦)A =
1
2
NCTr(TAz). (13.18)

Only the baryon number is unchanged. The discussion of the possible U(NF)
representations cannot be done yet, since we are dealing so far with a classical
system. We will return to the question of possible representations after quantizing
the system.

13.3 Semi-classical quantization and the baryons

The next step in the semi-classical analysis is to consider configurations of the
form,

g(x, t) = A(t)g◦(x)A−1(t), A(t) ∈ U(NF), (13.19)

and to derive the effective action for A(t).3 Quantization of this action cor-
responds to doing the functional integral over g(x, t) of the above form. The
effective action for A(t) is derived by substituting g(x, t) = A(t)g◦(x)A−1(t) in
the original action. Here we use the following property of the WZ action,

S
[
AgB−1] = S

[
AB−1]+ S

[
g, Ãμ

]
, (13.20)

3 The semi-classical quantization makes use of the Polyakov–Wiegmann formula [179].
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13.3 Semi-classical quantization and the baryons 241

where S[g] is the WZW action and S[g,Ã] is given by (9.25), respectively, with
the gauge field Ãμ given as,

iÃ+ = A−1∂+A, iÃ− = B−1∂−B; A,B ∈ U(NF). (13.21)

Using the above formula for A = B, noting that S(1) = 0, and taking A = A(t),

∂+A = ∂−A =
Ȧ√
2
, (13.22)

we get,

S̃
[
A(t)g◦(x)A−1(t)

]
− S̃[g◦] =

NC

8π

∫
d2xTr

{
[A−1Ȧ, g◦][A−1Ȧ, g†◦]

}
+

NC

2π

∫
d2xTr

{
(A−1Ȧ)(g†◦∂1g◦)

}
. (13.23)

This action is invariant under global U(NF) transformations A→ UA, where
U ∈ G = U(NF). This corresponds to the invariance of the original action under
g → UgU−1 . On top of this it is also invariant under the local changes A(t)→
A(t)V (t), where V (t) ∈ H = SU(NF − 1)× UB (1)× UY (1), with the last two
U(1) factors corresponding to baryon number and hypercharge, respectively. This
subgroup H of G is nothing but the invariance group of g◦(x). In terms of g◦(x)
and A(t) the charges associated with the global U(NF) symmetry, eqn. (13.13),
have the form,

QB = i
NC

8π

∫
dxTr

{
TB A

((
g†◦∂1g◦ − g◦∂1g

†
◦
)

+
[
g◦,
[
A−1Ȧ, g†◦

]])
A−1

}
.

(13.24)
The effective action, eqn. (13.23), is an action for the coordinates describing the
coset space,

G/H = SU(NF)× UB (1)/SU(NF − 1)× UY (1)× UB (1)
= SU(NF)/SU(NF − 1)× UY (1) = CPN · (13.25)

To see this explicitly we define the Lie algebra valued variables qA through
A−1Ȧ = i

∑
TA q̇A . In terms of these variables (13.23) takes the form (the part

that depends on qA ),

Sq =
∫

dt

⎡⎣ 1
2M

2(NF −1)∑
A=1

(q̇A )2 −NC

√
2(NF − 1)

NF
q̇Y

⎤⎦
1

2M
=

NC

2π

∫ ∞

−∞
(1− cos

√
4π

NC
ϕ)dx =

√
2

m
(
NC

π
)3/2 . (13.26)

The sum is over those qA which correspond to the G/H generators and qY

is associated with the hypercharge generator. Although the qA seem to be a
“natural” choice of variables for the action (13.23), which depends only on the
combination A−1Ȧ, they are not a convenient choice of variables. The reason for
that is the explicit dependence of the charges (13.24) on A−1(t) and A(t) as well
as on A−1Ȧ(t).
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242The baryonic spectrum of multiflavor QCD2 in the strong coupling limit

Instead we found that a convenient parametrization is that of (13.16). One
can rewrite the action (13.23), as well as the charges (13.24), in terms of the
z1 ,. . . ,zNF variables, which however are subject to the constraint

∑NF
α=1 zαz∗α = 1.

Thus,

S̃
[
A(t)g◦A−1(t)

]
− S̃[g◦] = S[zα (t), ϕ(x)], (13.27)

where,

S [zα (t), ϕ(x)] = NC
2π

∫
d2x{(1− cos

√
4π
NC

ϕ)[ż∗α żα

−(z∗γ żγ )(ż∗β zβ )]− i
√

4π
NC

ϕ′z∗α żα}. (13.28)

We can do the integral over x and rewrite (13.28) as,

S[zα (t)] =
1

2M

∫
dt[ż∗α żα − (z∗γ żγ )(ż∗β zβ )]− i

NC

2

∫
dt(z∗α żα − ż∗αzα ), (13.29)

where 1/M is defined in eqn. (13.26). The first term in (13.29) is the usual
CP(NF −1) quantum mechanical action, while the second term is a modification
due to the WZ term.

Similarly we express the U(NF) charges in terms of the z variables, using
eqn. (13.24),

QC =
1
2
TC

βαQαβ

Qαβ = NCzαz∗β +
i

2M
[zαz∗β (z∗γ żγ − ż∗γ zγ ) + zα ż∗β − z∗β żα ]. (13.30)

Of course the symmetries of S[z] are the global U(NF) group under which,

zα → z′α = Uαβ zβ , U ∈ U(NF), (13.31)

and a local U(1) subgroup of H under which,

zα → z′α = eiδ(t)zα . (13.32)

As a consequence of the gauge invariance one can rewrite the action in a covariant
form,

S[zα ] =
1

2M

∫
dtTr(Dz)†Dz + iNC

∫
dtTrż†z, (13.33)

where,

(Dz)α = żα + zα (ż�
β zβ ). (13.34)

Constructing Noether charges of the U(NF) global invariance of (13.31) out of
the action (13.33 leads to expressions identical with (13.30)). Note that in eqn.
(13.34) we can view ż�

β zβ = ia(t) as a composite U(1) gauge potential.
Now let us count the degrees of freedom. The local U(1) symmetry allows

us to take one of the zs to be real, and the constraint
∑

α zαz∗α = 1 removes
one more degree of freedom, so altogether we are left with 2NF − 2 = 2(NF − 1)
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13.3 Semi-classical quantization and the baryons 243

physical degrees of freedom. This is exactly the dimension of the coset space
SU (NF )

SU (NF −1)×U (1) . The corresponding phase space should have a real dimension
of 4(NF − 1). Naively, however, we have a phase space of 4NF dimensions and,
therefore, we expect four constraints.

There are several methods of quantizing systems with constraints. Here we
choose to eliminate the redundancy in the z variables and then invoke the canon-
ical quantization procedure.4

But before following these lines let us briefly describe another method, through
the use of Dirac’s brackets. We outline the classical case. The quantum case is
obtained by replacing { , } with i[ , ].

The first step in this prescription is to add to the Lagrangian a term of
the form λ(

∑
α zαz∗α − 1), in which case the conjugate momentum πλ of the

Lagrange multiplier vanishes. By requiring that this condition be preserved in
time one gets the secondary constraint Φ1 = (

∑
α zαz∗α − 1) = 0. Further impos-

ing Φ̇1 = {Φ1 ,H}P = 0, where { }P denotes a Poisson bracket, one finds another
second-class constraint Φ2 = Π · z + z† ·Π†. In addition there is a first-class con-
straint Φ3 = Π · z − z† ·Π†, which corresponds to the local U(1) invariance of the
model. Fixing this symmetry one gets an additional constraint Φ4. For instance
one can choose the unitary gauge Φ4 = zNF − z∗NF

. The next step is to compute
the constraint matrix {Φi ,Φj}P = cij . In the constrained theory, the brack-
ets between F and G are replaced by the Dirac brackets of those operators,
given by

{F,G}D = {F,G}P − {F,Φi}P (c−1
ij ){Φj , G}P , (13.35)

where c−1
ij is the inverse of the constraint matrix. Imposing the constraints as

operator relations it is easy to see that zNF ,ΠNF and their complex conjugates
can be eliminated. The brackets for the rest of the fields coincide with the results
we derive below, when eliminating the constraints explicitly.

We now describe in some detail the quantization of the system using uncon-
strained variables. We want to choose a set of new variables so that the constraint∑NF

α=1 zαz∗α = 1 is automatically fulfilled. There is a standard choice of such vari-
ables, namely (for i = 1, . . . , NF − 1),

zi =
ki√

1 + X
, z∗i =

k∗
i√

1 + X
, zNF =

eiχ

√
1 + X

X =
NF −1∑
i=1

k∗
i ki . (13.36)

The ki, k
∗
i and χ are 2NF − 1 real variables with no constraints on them. The

phase space will now have dimension 2(2NF − 1) and we still have two extra

4 The quantization of the system including its constraint was done in [75]. For an alternative
procedure of quantization in the presence of constraints see [181].
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244The baryonic spectrum of multiflavor QCD2 in the strong coupling limit

constraints. After some straightforward algebra we can write,

S[k, k∗, χ] =
∫

dtL(k, k∗, χ)

L(k, k∗, χ) =
1

2M
k̇∗

i hij k̇j − i
NC

2
k∗

i k̇i − k̇∗
i ki

1 + X

+
1

2M

X

(1 + X)2 χ̇2 + χ̇

{
i

2M

k∗
i k̇i − k̇∗

i ki

(1 + X)2 +
NC

1 + X

}
, (13.37)

where,

hij =
δij

1 + X
−

kik
∗
j

(1 + X)2 . (13.38)

The local U(1) transformations of the z variables transcribe into the transfor-
mations,

δχ = ε(t), δki = iε(t)ki, δk∗
i = −iε(t)k∗

i , (13.39)

and δL = −NC ε̇ just as in terms of the z variables. This local U(1) symmetry
can be made manifest by defining the covariant derivatives,

Dki = k̇i − iχ̇ki Dk∗
i = k̇∗

i + iχ̇k∗
i . (13.40)

The Lagrangian can then be recast in a manifestly gauge-invariant form,

L(k, k∗, x) =
1

2M
Dk∗

i hijDkj − i
NC

2
k∗

i Dki − (Dk∗
i )ki

1 + X
+ NC χ̇. (13.41)

Although one can now fix the gauge, for instance χ̇ = 0, we will continue to work
with (13.41). The conjugate momenta are given by,

πi =
∂L

∂k̇i

=
1

2M
Dk∗

j hji − i
NC

2
k∗

i

1 + X

π∗
i =

∂L

∂k̇∗
i

=
1

2M
hij Dkj + i

NC

2
ki

1 + X

πχ =
∂L

∂χ̇
=

i

2M
(k∗

i hijDkj −Dk∗
i hij kj ) + NC

1
1 + X

. (13.42)

Since hij is invertible we can solve for Dk∗
i , Dki in term of the phase space

variables,

Dk∗
i = 2M

[
πj + i

NC

2
k∗

j

1 + X

]
h−1

j i

Dki = 2Mh−1
ij

[
π∗

j − i
NC

2
kj

1 + X

]
, (13.43)

where,

h−1
ij = (1 + X)(δij + kik

∗
j ). (13.44)

Also,

πχ = i(k∗
i π∗

i − πiki) + NC , (13.45)
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13.3 Semi-classical quantization and the baryons 245

giving the constraint equation,

ψ = πχ − i(k∗
i π∗

i − πiki)−NC = 0. (13.46)

The canonical Hamiltonian is given by,

Hc = πik̇i + π∗
i k̇∗

i + πχχ̇− L

= 2M
[
πi + i

NCk∗
i

2(1 + X)

]
h−1

ij

[
π∗

j − i
NCkj

2(1 + X)

]
+ χ̇[πχ − i(π∗

i k∗
i − πiki)−NC], (13.47)

and this can be further simplified to,

Hc = 2M(1 + X)
[
πiπ

∗
i + (πiki)(π∗

i k∗
i )

− i
NC

2
(πiki − π∗

i k
∗
i ) +

1
4

N 2
CX

(1 + X)

]
+ χ̇ψ. (13.48)

Here Hc is obtained explicitly in terms of the canonical variables ki, k
∗
i , πi , π

∗
i .

The χ̇ψ term indicates that χ̇ also behaves as a Lagrange multiplier since, fol-
lowing the Dirac procedure, we should define,

HT = Hc + λ(t)ψ, (13.49)

where λ is a priori an arbitrary function of t. We could absorb the χ̇ in λ.
Quantization of this Hamiltonian is now essentially straightforward. Let us

first consider the symmetry generators Qαβ , which in terms of the new canonical
variables take the form,

Qij = i(kiπj − π∗
i k∗

j )

Qi,NF = e−iχ

[
NCki

2
− i(π∗

i + kiπjkj )
]

QNF ,i = eiχ

[
NCk∗

i

2
+ i(πi + k∗

j π∗
j k∗

i )
]

= Q∗
i,NF

QNF ,NF = NC − i(πiki − π∗
i k∗

i ). (13.50)

We will now show that the HT can be expressed in terms of the second Casimir
operator of the SU(NF) group.

The second U(NF) Casimir operator is related to charge matrix elements Qαβ

as,

QAQA =
1
2
Qαβ Qβα . (13.51)

A straightforward substitution gives,
1
2
Qαβ Qβα = (1 + X)[π∗

i πi + πikiπ
∗
j k∗

j

− i
NC

2
(πiki − π∗

i k∗
i )] +

1
2
N 2

C

(
1 +

X

2

)
. (13.52)
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Therefore, the Hamiltonian is,

HT = 2M
[
QAQA − N 2

C

2

]
+ λ(t)ψ. (13.53)

Denoting the SU(NF) second Casimir operator by C2 , and using QAQA = C2 +
1

2NF
(QB )2 we get (also applying the constraint ψ = 0),

HT = 2M
[
C2 −N 2

C
(NF − 1)

2NF

]
. (13.54)

The fact that HT is, up to a constant, the second Casimir operator, is another
way to show that the charges Qαβ are conserved. These conserved charges will
generate symmetry transformations via,

δki = i[Tr(εQ), ki ], δk∗
i = i[Tr(εQ), k∗

i )]

δχ = i[Tr(εQ), χ], (13.55)

and similar equations for the momenta πi, π
∗
i , πχ . Here εij = 1

2 εATA
ij is the matrix

of parameters. The transformation laws are derived using the constraint equation
ψ = 0 after performing the commutator calculations. Notice that Qij and QNF ,NF

are linear in coordinates and momenta and therefore the SU(NF − 1)× UY (1)
transformations they generate are linear. The QNF ,i and Qi,NF charges, on the
other hand, have cubic terms as well (quadratic in coordinates), so that the coset-
space transformations of SU (NF )

SU (NF −1)×U (1) are non-linear. This is a well-known
property of CPn models. Substitution of Qαβ in eqn (13.55) gives,

δkl = i[εjikiδj l + eiχεiNF δil − e−iχεNF ikikl − εNF NF kl ], (13.56)

where we use [k, π] = i.
Inversely, starting with these transformation laws it is easy to verify the invari-

ance of the action. The standard Noether procedure then gives the charges Qαβ

in terms of the coordinates and velocities, which (not suprisingly) coincide with
those given in eqn. (13.50). One could also deduce these transformation laws by
making the change of variables zα , z∗α → ki, k

∗
i , χ in (13.30) directly.

One can verify that,
[QA,QB ] = ifABC QC , (13.57)

where fABC are the structure constants of the U(NF) group.
Do we have further restrictions on the physical states? We shall see now that

in fact we do have. Remember that our Lagrangian (13.41) includes an auxiliary
gauge field A◦ ≡ χ̇ and thus has to obey the associated Gauss law,

∂L

∂A◦
=

∂L

∂χ̇
= πχ = NC − i(πiki − π∗

i k∗
i ) = 0. (13.58)

Since πχ is a linear combination of QB and QY , and the first is constrained to
be QB = NC, the QY is restricted as well. More specifically, QY = Q̄Y , with,

Q̄Y =
1
2

√
2

(NF − 1)NF
NC . (13.59)

https://doi.org/10.1017/9781009401654.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401654.014


13.4 The baryonic spectrum 247

13.4 The baryonic spectrum

The masses of the baryons (13.11) and (13.54), and the two constraints on the
multiplets of the physical states, namely QB = NC and that the multiplets con-
tain QY = Q̄Y = 1

2

√
2

(NF −1)NF
NC, are the main results of the last section. All

states of the multiplet with QY 	= Q̄Y will be generated from the state QY = Q̄Y

by SU(NF) transformations as in (13.19). Using the above constraints we can
investigate now what possible representations will appear in the low energy
baryon sector. Considering states with quarks only (no anti-quarks), the require-
ment of QB = NC implies that only representations described by Young tableaux
with NC boxes appear. The extra constraint QY = Q̄Y implies that all NC quarks
are from SU(NF − 1), not involving the NFth. These are automatically obeyed
in the totally symmetric representation of NC boxes. In fact, this is the only
representation possible for flavor space, since the states have to be constructed
out of the components of one complex vector z as

∏NF
i=1 zni

i with
∑

i ni = NC.
See also more detailed discussion in the next section. For another way of deriving
this result see Section 13.7.

Thus for NC = 3, NF = 3 we get only 10 of SU(3). This is understandable,
since there is no physical spin in two dimensions.

What about the masses of the baryons? The total mass of a baryons is given
by the sum of (13.11) and (13.54), namely,

E = 4m

√
2NC

π
+ m
√

2

√(
π

NC

)3 [
C2 −N 2

C
(NF − 1)

2NF

]
. (13.60)

For large NC, the classical term behaves like NC, while the quantum correction
like 1. This will be worked out in Section 13.7.

That the total mass goes like NC for large NC, and that the quantum fluctu-
ations are 1

NC
of the classical result, is in accord with general considerations.

13.5 Quark flavor content of the baryons

A measure of the quark content of a given flavor qi in a baryon state |B〉 is given
by5

〈q̄iqi〉B =
∫

dx 〈gii〉B −
∫

dx 〈gii〉0 (13.61)

=
∫

dxz∗i zi

〈[
e−i

√
4 π
N C

φc − 1
]〉

B

(13.62)

= const. 〈z∗i zi〉B . (13.63)

In order to make contact with the real world, we take here NC = 3 and NF = 3,
getting the baryons in the 10 representation of flavor. Similarly, for SUF(2) there

5 Quark solitons as constituents of hadrons were discussed in [86]. Following that, the flavor
content of the baryons was discussed in [97].
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is only the isospin 3
2 representation. This is what we would expect from näıve

quark model considerations. The total wave function must be antisymmetric.
Baryon is a color singlet, so the wave function is antisymmetric in color and
it must be symmetric in all other degrees of freedom. There is no spin, so the
baryon must be in a totally symmetric representation of the flavor group, a 10
for three flavors. Therefore, strictly speaking there is no state analogous to the
proton. On the other hand, there is a state which is the analog of the Δ+, namely
the charge 1 state in the 10 representation, z2

1 z2 .
The 10 is the lowest baryon multiplet in QCD2 . In the following we shall be

dealing with the relative weight of a given flavor in some baryon state. Thus,
〈q̄q〉B will henceforth stand for the ratio,

〈q̄q〉B〈
ūu + d̄d + s̄s

〉
B

. (13.64)

For Δ+ ∼ z2
1 z2 we obtain

〈s̄s〉Δ+ =

∫
(d2z1)(d2z2)|z3 |2(z2

1 z2)(z2
1 z2)∗∫

(d2z1)(d2z2)(z2
1 z2)(z2

1 z2)∗
=

1
6
, (13.65)

as well as,

〈ūu〉Δ+ =
1
2
,

〈
d̄d
〉

Δ+ =
1
3
. (13.66)

In evaluating the integral in the numerator in eqn. (13.65) we have used |z3 |2 =
1− |z1 |2 − |z2 |2 , which follows from the unitarity of the matrix A in (13.19).
Similarly, for Δ++ ∼ z3

1 we have,

〈ūu〉Δ+ + =
2
3
,

〈
d̄d
〉

Δ+ + =
1
6

, 〈s̄s〉Δ+ + =
1
6
. (13.67)

In the constituent quark picture Δ++ contains just three u quarks. Both the
d-quark and the s-quark content of the Δ++ come only from virtual quark
pairs. Therefore in the SU(3)-symmetric case 〈s̄s〉Δ+ + =

〈
d̄d
〉

Δ+ + , and 〈s̄s〉Δ+ =
〈s̄s〉Δ+ + , as expected.

From eqn. (13.67) one can also read the results for Ω− ∼ z3
3 , by replacing

u↔ s. In the general case of NF flavors and NC colors, one obtains,

〈(q̄q)sea〉B =
1

NC + NF
, (13.68)

where (q̄q)sea refers to the non-valence quarks in the baryon B. Moreover, one can
also compute flavor content of valence quarks. Consider a baryon B containing
k quarks of flavor v. The v-flavor content of such a baryon is,

〈v̄v〉B =
k + 1

NC + NF
. (13.69)
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This implies an “equipartition” for valence and sea, each with a content of
1/(NC + NF). It also follows that the total sea content of NF flavors is,

NF∑
q=1

〈(q̄q)sea〉B =
NF

NC + NF
, (13.70)

which goes to zero for fixed NF and NC →∞, as expected.
It is interesting to compare these results with the Skyrme model in 3+1 dimen-

sions. For the proton,

〈ūu〉3+1
p =

2
5
,

〈
d̄d
〉3+1

p
=

11
30

, 〈s̄s〉3+1
p =

7
30

, (13.71)

and for the Δ,

〈s̄s〉3+1
Δ =

7
24

, 〈s̄s〉3+1
Ω− =

5
12

. (13.72)

The qualitative picture is similar, although the s̄s content in the non-strange
baryons is lower in 1 + 1 dimensions. One may speculate that in 1 + 1 dimensions
the effects of loops are smaller than in 3 + 1 dimensions, since the theory is super-
renormalizable and there are only longitudinal gluons. In the SUF(3)-symmetric
limit the strange quark content of baryons with zero net strangeness is significant,
albeit smaller than that of either of the other two flavors. The situation obviously
is reversed for Ω−.

In the real world the current mass of the strange quark is much larger than
the current masses of u and d quarks. It is natural to expect that this will
have the effect of decreasing the strange quark content from its value in the
SUF(3) symmetry limit. We do not know the exact extent of this effect, but
it is likely that the strange content decreases by a factor which is less than
two. This estimate is based on both explicit model calculations and what we
know from PCAC, namely that the analogous quark bilinear expectation val-
ues in the vacuum are not dramatically different from their SU(3) symmetric
values,

0.5 ≤ 〈s̄s〉0〈ūu〉0
≤ 1. (13.73)

13.6 Multibaryons

Let us now explore the possibility of having multi-baryons states.6 The pro-
cedure follows similar lines to that of the baryonic spectrum, namely, we look
for classical solution of the equation of motions with baryon number kNC, and
then we semiclassically quantize this. The ansatz for the classical solution of the

6 Multibaryonic states were studied in [102] and [103].
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low-lying k-baryon state is taken now to be,

g0(k) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

(NF −k)︷ ︸︸ ︷
1

. . .
k︷ ︸︸ ︷

exp[−i( 4π
NC

)
1
2 ϕc ]

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (13.74)

For the semi-classical quantization we generalize the parametrization given in
(13.16) to,

A =

⎛⎝Aij ziα

⎞⎠ , (13.75)

where i represents the rows (1, . . . , NF) and α the columns (NF − k + 1, . . . , NF).
The effective action in its covariant form (13.33) becomes,

S[zα ] =
1

2M

∫
dtTr(Dz)†Dz + iNC

∫
dtTrż†z, (13.76)

where now, instead of (13.34),

(Dz)iα = żiα + ziβ (ż�
jβ zjα )eDz. (13.77)

Using the same steps as those which led to (13.54) one finds now the
Hamiltonian,

H = 2M
[
C2(NF) − N 2

C

2NF
k(NF − k)

]
+ kEc, (13.78)

with Ec the classical contribution for one baryon, the first term in (13.60).

13.7 States, wave functions and binding energies

It was shown in [102] that the allowed k-baryon states contain (kNC) boxes in
the Young tableaux representation of the flavour group SU(NF). Let us recall
that this result followed from the constraint implied by the local invariance,

ziα → eiδ(t) ziα . (13.79)

Performing a variation corresponding to this invariance we find that the action
S changes by

ΔS = (kNC)
∫

δ̇ dt. (13.80)

This means that the Nz number is equal to (kNC). Thus for any wave function,
written as a polynomial in z and z� , the number of zs minus the number of z�s
must equal (kNC). Note that for k = 1 the transformation (13.79) represents also
the N th

F flavor number. Thus (13.80) entails that the representation contains a
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state with NC boxes of the NF flavor, and therefore must be the totally symmetric
representation.

Now, the effective action (13.76) is invariant under a larger group of local
transformations. In fact, we have extra (k2 − 1) generators, which correspond to
SU(k) under which (13.76) is locally invariant. This can be exhibited by defining
“local gauge potentials”,

Ãβα (t) = −(z†ż)βα , (13.81)

so that,

Dz = ż + z Ã. (13.82)

Under the local gauge transformation corresponding to Λ(t), Ã transforms as,

Ã(t) → eiΛÃe−iΛ + (∂teiΛ) e−iΛ , (13.83)

which implies,

(Dz)iα → (Dz)iβ (e−iΛ)βα , (13.84)

and so ΔS = 0. If we perform the U(1) transformation (13.79) we obtain a con-
tribution (13.80) from the Wess–Zumino term, which implies Nz = (kNC). But
due to the larger local symmetry we have more restrictions; they imply that the
allowed states have to be singlets under the above mentioned SU(k) symmetry.
This is analogous to the confinement property of QCD, which tells that, due to
the non-abelian gauge invariance, the physical states have to be color singlets.
Here we have an analogous singlet structure of the SU(k) in the flavor space.
Taking a wave function that has zs only (analogous to quarks only for QCD), it
must be of the form,

ψk (z) =
NC∏
i=1

(
εα1 ...αk

zi1 α1 ...zik αk

)
, (13.85)

for a given set of 1 ≤ i1 , ..ik ≤ NF.
The most general state will then be of the form,

ψ̃(z, z�) = ψk (z)[
∏
{i,j}

(z�
iαzjα )ni j ], (13.86)

and the products are over given sets of indices.
Using the explicit formula from [103], we obtain the mass of the state repre-

sented by (13.85),

E[ψk ] = Mk(NF − k)NC + kEc. (13.87)
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To obtain binding energies, consider our k-baryon as built from constituents
kr , such that k =

∑
r kr . Then,

B[k|kr ] = −(MNC)
[
k2 −

∑
i k2

i

]
= −(2MNC)

∑
r>s krks. (13.88)

When all kr = 1, the sum gives us 1
2 k(k − 1), i.e. the number of one-baryon pairs

in the k-baryon state. Note that the binding energy is always negative, thus the
k-baryon is stable. The maximal binding corresponds to the case when all kr = 1.

Note also that in the NC → ∞ limit, the binding tends to a finite value, since
then,

lim
NC →∞

(2MNC) = (Cmec)
1
2

(
2NF

π

) 1
4

π
3
2 . (13.89)

Let us take as an example an analog of a deutron, namely a di-baryon k = 2.
Then for NC = 3, NF = 2 we find that its representation is a flavor singlet (this
is the limiting case of k = NF). The ratio of the binding to twice the baryon
mass is given by,

ε2 =
1

1 + 24
π2

= 0.29. (13.90)

For k = 2, NC = 3 and NF = 3 we find that the di-baryon is represented by, 10
and the ratio is given by,

ε3 =
1

2 + 24
π2

= 0.23. (13.91)

For general NF we obtain,

εF =
1

(NF − 1) + 24
π2

=
1

NF + 1.43
. (13.92)

Finally, let us make the following comment. The ratio of the quantum fluctu-
ations term to the classical term, in the expression for the mass, eqn. (13.87), is
given by,

(Quantum corrections)
(Classical term)

=
(

π2

8

)
NF − k

NC
. (13.93)

Thus, we do not expect our approximations to hold in the region NF ≥ (NC + 1).
We expect it to start for NC ≥ NF, and to be good in the region NC � NF.

13.8 Meson-baryon scattering

So far we have analyzed, using semiclassical quantization of the bosonized theory
in the strong coupling limit, the spectrum of the baryons and their flavor content.
Applying the same technique one can also study the scattering processes of
mesons from baryons. The idea is to introduce perturbations around the classical
soliton solutions and to compute the forward phase shifts. We start with the
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computation in the strong coupling limit [98] and then we discuss the general
case of any coupling [87].

Our starting point is the soliton solution that describes the static classical
baryon gc(x) = exp[−iΦc(x)] where,

Φc(x) =

⎛⎜⎜⎜⎜⎜⎜⎝

φc(x)
0

.

.

.

0

⎞⎟⎟⎟⎟⎟⎟⎠ , (13.94)

and,

φc(x) = 4arctg (eμx) , μ = m

√
8π

NC
. (13.95)

Note that we have shifted the non-trivial phase factor to the upper left-hand
corner, whereas in (13.77) it was put in the lower right-hand one.

We introduce a fluctuation around it of the form,

g = exp {−i [Φc(x) + δφ(x, t)]} (13.96)

g ≈ e−iΦ c (x) − i

∫ 1

0
dτ e−iτ Φ c (x)δφ(x, t)e−i(1−τ )Φ c (x) . (13.97)

Actually, to avoid integrals as in eqn. (13.97), which yield rather complicated
expressions for fluctuations, we will adopt a different expansion, namely,

g = e−iΦ c (x) e−iδ̃φ(x,t) ,

≈ e−iΦ c (x) − ie−iΦ c (x) δ̃φ(x, t),
(13.98)

where we have denoted by δ̃φ the new variation, different from the δφ of eqn.
(13.97), but still a fluctuation about the classical solution. Now,

Nc

4π
∂+

[
e−iΦ c (x)

(
∂−δ̃φ(x, t)

)
eiΦ c (x)

]
+m2

[
e−iΦ c (x) δ̃φ(x, t) + δ̃φ(x, t)eiΦ c (x)

]
= 0. (13.99)

Obviously the two expressions coincide in the abelian case. In fact, the relation
between δφ and δ̃φ is

δ̃φ(x, t) =
∫ 1

0
dτ eiτ Φ c (x) δφ(x, t) e−iτ Φ c (x) . (13.100)

Physical quantities should obviously come out to be the same for both types of
fluctuation.
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13.8.1 Abelian case

We start with the abelian fluctuation δφ that commutes with Φc . Denote this
case by δφab , where the subscript “ab” stands for “abelian.”

Then the fluctuation reads

δg = −iδφab(x)e−iφc (x) , (13.101)

where,

δφab + μ2(cos φc)δφab = 0, (13.102)

and,

cos φc =
[
1− 2

cosh2 μx

]
. (13.103)

This equation of motion can be derived from the following effective action,

Leff =
1
2

(∂μδφab)2 − 1
2
V (x) (δφab)2 (13.104)

V (x) = μ2 cos φc(x) = μ2
[
1− 2

cosh2 μx

]
. (13.105)

For a solution with an harmonic time dependence of the form,

δφab(x, t) = e−iω tχab(x), (13.106)

the spatial part has to solve,

−ω2χab − χ′′
ab + V (x)χab = 0. (13.107)

Note that asymptotically the potential approaches x→ ±∞, the potential
→ μ2 , and so asymptotically,

χ′′
ab(±∞) + ω2 χab(±∞) = μ2 χab(±∞). (13.108)

For asymptotic behavior of the form,

χab(x) −→
|x|→∞

eikx , (13.109)

with,

ω2 = k2 + μ2 , (13.110)

the two asymptotic solutions are,

χab(x) ∼ A(ω) sin kx + B(ω) cos kx, (13.111)

and the S-matrix is,

Sforward =
1
2
(B − iA) (13.112)

Sbackward =
1
2
(B + iA), (13.113)

for an incoming wave eikx from x = −∞.
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Fig. 13.1. The phase shift δ = 2ctg−1 (k/μ), eqn. (13.117), as a function of the
normalized momentum k/μ, for the potential (13.105), governing the small
fluctuations around the soliton in the abelian case. The phase shift is smooth
and monotonically decreasing with momentum, indicating that no resonance
is present. Note logarithmic momentum scale.

We can now proceed to derive the scattering matrix, using the standard
procedure. The solution for x→∞ contains only the transmitted wave,
ψ(x→∞) ∼ eikx .7

It turns out that for the particular potential (13.105) there is no reflection at
all, i.e. the wave function for x→ −∞ contains only the incoming wave,

ψ(x→ −∞) ∼ eikx−δ =
(
−1 + ik/μ

1− ik/μ

)
eikx . (13.114)

Thus,

1
T

= −1 + ik/μ

1− ik/μ
(13.115)

T = −1− ik/μ

1 + ik/μ
= eiδ (13.116)

ctg
1
2
δ =

k

μ
. (13.117)

As shown in Fig. 13.1, δ varies smoothly and decreases monotonically from δ = π

at k = 0 to δ = 0 at k =∞, indicating that there is no resonance.
The no-reflection potential we found is a special case of a well-known class of

reflectionless in quantum mechanics.

7 We take the convention where the scattering phase is taken to be zero at x → ∞ and is
therefore extracted from the wave function at x → −∞.
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13.8.2 The non-abelian case

We got a no-reflection potential in the previous section, in the case of one flavor.
We want to examine now the non-abelian case.

Following eqn. (13.99), we get,

δ̃φ− i (∂+Φc)
(
∂−δ̃φ

)
+ i
(
∂−δ̃φ

)
(∂+Φc) +

1
2
μ2
[
δ̃φe−iΦ c (x) + eiΦ c (x) δ̃φ

]
= 0.

(13.118)
The equation for δ̃φij with i, j 	= 1 is as for the free case,

δ̃φij + μ2 δ̃φij = 0 , i and j 	= 1, (13.119)

whereas the i = 1, j = 1 matrix element is as in the abelian case,

δ̃φ11 + μ2 (cos φc(x)) δ̃φ11 = 0. (13.120)

with no reflection and no resonance.
So in order to proceed beyond these results, we need to consider δ̃φ1j , j 	= 1,

or δ̃φi1 , i 	= 1. As δ̃φ is Hermitian, it is sufficient to discuss one of the above.
Thus we take,

δ̃φ1j = e−iω tuj (x) j 	= 1, (13.121)

resulting in,

u′′
j (x)− iφ′

c(x)u′
j (x) +

[
ω2 + ωφ′

c(x)− 1
2 μ2
(
1 + eiφc (x)

)]
uj (x) = 0. (13.122)

Defining,

uj ≡ e
i
2 φc vj , (13.123)

we find,

v′′
j +

[
ω2 + ωφ′

c − 1
2 μ2 (1 + cos φc) + 1

4 (φ′
c)

2
]
vj = 0. (13.124)

Using,

1
2 (φ′

c)
2 = μ2 (1− cos φc) , (13.125)

we get,

v′′
j +

[
ω2 + ωφ′

c − μ2 cos φc

]
vj = 0. (13.126)

This can be rewritten as,

−v′′
j − ω2vj + V (x)vj = 0, (13.127)

where,

V (x) = −ωφ′
c + μ2 cos φc =

= μ2 − 2μ2
[

(ω/μ)
cosh μx

+
1

cosh2 μx

]
, (13.128)
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Fig. 13.2. The normalized potential V (ω/μ; x)/μ2 of eqn. (13.128), for ω/μ =
1.01 (upper), 2 (middle) and 3 (lower).

with ω =
√

k2 + μ2 , as before. Note that the potential depends on the momen-
tum of the incoming particle, as shown in Fig. 13.2.

Next we proceed to solve numerically for the reflection and transmission coef-
ficient. It turns out that for numerical solution of the scattering problem it is
more convenient to take the coefficient of the outgoing wave at x ∼ +∞ to be
1, instead of the T prefactor, and integrate eqn. (13.127) backward, reading off
the T and R amplitudes from the solution at x ∼ −∞.

We thus use,

vj (x) = eikx , x → +∞
vj (x) = 1

T eikx + R
T e−ikx , x → −∞.

(13.129)

Since the potential is symmetric, the symmetric and anti-symmetric scattering
amplitudes don’t mix, yielding two independent phase shifts δS and δA , respec-
tively. This leads to,

T = 1
2

(
eiδS + eiδA

)
R = 1

2

(
eiδS − eiδA

)
.

(13.130)

Defining,

δ± =
1
2

(δS±δA ) , (13.131)

we find that,

T = eiδ+ cos δ−

R = ieiδ+ sin δ−.
(13.132)
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Fig. 13.3. Scattering by the potential eqn. (13.128) as a function of the nor-
malized energy ω/μ. Upper plot: transmission probability |T |2 ; lower plot:
phase of T , δ+ (continuous line). Also shown is the approximate result for δ+
from WKB (dot-dashed line).

Note that R/T is purely imaginary. The transmission and reflections probabilities
are,

|T |2 = cos2 δ−
|R|2 = sin2 δ−.

(13.133)

The numerical results for the transmission probability |T |2 and for the phase of
T , δ+ are presented in Fig. 13.3. For comparison and as an extra check we also
plot the WKB result for δ+. Note that no resonance appears.

Note that the asymptotic value of the phase shift is π. This can also be obtained
from a WKB calculation, which becomes exact at infinite energies.
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13.8 Meson-baryon scattering 259

13.8.3 Extension to arbitrary coupling

To analyze the system at any gauge coupling we go back to bosonized action
prior to the implementation of the strong coupling limit, which we now rewrite
in the form,

Seff [u] = S0 [u] +
e2
c Nf

8π2

∫
d 2xTr

[
∂−1
−
(
u ∂−u†)

c

]2
+ m′2Nm̃

∫
d 2xTr

(
u + u†) .
(13.134)

The strong coupling limit eliminates the second term of (13.134), for arbitrary
coupling,

e2
c Nf

8π2

∫
d 2xTr

[
∂−1
−
(
u ∂−u†)

c

]2
, (13.135)

where
(
u ∂−u†)

c
is the color part of M ≡ u∂−u†, to be computed as,

Mc = Trf M − 1/NcTrf &cM. (13.136)

As already mentioned, this term represents the interactions, as it arises from
integrating out the gauge potentials. However, we will see that, for the physical
situation we discuss, this term does not contribute to meson-baryon scattering
for any coupling. As a result, the latter is described by the effective action S̃eff [u],
whereas in the strong coupling limit it is described by S̃eff [g].

In a similar manner to (13.95) we take u to be of the form,

u = exp(−iΦc) exp(−iδΦ), (13.137)

corresponding to a classical soliton Φc , and a small fluctuation δΦ around it,
representing the meson. The resulting action is then expanded to second order
in δΦ, yielding a linear equation of motion for δΦ in the soliton background. The
latter serves as an external potential in which the meson is propagating.

We start by evaluating,

M ≡ u∂−u† =

= exp(−iΦc) ∂−(exp iΦc) + exp(−iΦc) exp(−iδΦ) [∂− exp(iδΦ)] exp(iΦc),

(13.138)

and obtain the equations of motion for the meson field by varying with respect
to δΦ. The variation of (13.135) with respect to δΦ is proportional to,

δMc

δ(δΦ)
∂−2Mc. (13.139)

To compute its variation with respect to δΦ, we need only the second term M2

of M , as the first term M1 is independent of δΦ.
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260The baryonic spectrum of multiflavor QCD2 in the strong coupling limit

We take for the soliton a diagonal ansatz (13.94) now in the form of a u matrix
rather then a g one,

[exp(−iΦc)]aa′j j ′ = δaa′ δjj ′ exp (−i
√

4πχαj ) :

a = 1, . . . , Nc , (13.140)

j = 1, . . . , Nf ,

so that,

{exp(−iΦc)[exp(−iδΦ) ∂− exp(iδΦ)] exp(iΦc)}aj,a′j ′

= exp(−i
√

4πχaj ) [exp(−iδΦ) ∂− exp(iδΦ)]aj,a′j ′ exp(i
√

4πχa′j ′). (13.141)

The part of M that contributes to the effective action is its color projection
(13.136). We note that Trf &cM2 = 0, and thus,

[(M2)c ]a,a′ =
∑

j

exp(−i
√

4πχaj )[exp(−iδΦ) ∂− exp(iδΦ)]aj,a′j exp(i
√

4πχa′j ).

(13.142)
The mesons δΦ have to be diagonal in color, so,

[(M2)c ]a,a′ =
∑

j

[ exp(−iδΦ) ∂− exp(iδΦ) ]aj,aj δa,a′ . (13.143)

We recall that the flavor structure of the mesons is independent of their color
indices, and restrict our attention to mesons that have no U(1) flavor part. In
this way, we may be sure that classical solutions lead to stable particles, since
their non-vanishing flavor quantum numbers put them in a different sector from
the vacuum. We then have,∑

j

[ exp(−iδΦ) ∂− exp(iδΦ) ]αj,αj = 0, (13.144)

as shown earlier, and the effective meson-baryon action is,

S̃m-b[δΦ] = S0 [u] + m2Nm

∫
d2x
(

Tr u + Tr u†) , (13.145)

with u depending on δΦ for fixed Φc as in (13.137).
Next we would like to evaluate the potential. The equation of motion for δΦ

is obtained from (13.145), by first varying with respect to u and then varying u

with respect to δΦ. To first order in δΦ, we find,

δu = −i[exp(−iΦc)]δΦ. (13.146)

The resulting equation of motion is then,
1
4π

∂+
[
(∂−u)u†]+

(
um2 −m2u†) = 0, (13.147)

where m is the diagonal mass matrix: m = δijmj with (possibly different) entries
mj corresponding to flavors j. We note that there is the possibility of an overall
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13.8 Meson-baryon scattering 261

scale ambiguity in m, since, when the masses are different, there is a question of
which normal-ordering scale to use. The resulting equation of motion for δΦ is,

δΦ− i (∂+Φc) (∂−δΦ) + i (∂−δΦ) (∂+Φc)

+
1
2
[
δΦμ2 exp(−iΦc) + exp(iΦc)μ2δΦ

]
= 0, (13.148)

where μ ≡ m
√

8π.
As discussed before, both Φc and δΦ are diagonal in color. Moreover, Φc is

diagonal in flavor too. So, taking the aajj′ matrix element of the equation of
motion (13.148), we find,

δΦajj ′ − i(∂+Φc)aj (∂−δΦ)ajj ′+i (∂−δΦ)ajj ′(∂+Φc)aj ′

+
1
2
{δΦajj ′μ

2
j ′ [exp(−iΦc)]aj ′ + [exp(iΦc)]ajμ

2
j δΦajj ′} = 0. (13.149)

Examining the classical solutions for the quark solitons inside the baryons, we see
that, for a given color index a, there is only one flavor for which Φc is non-zero.
We can now distinguish three cases:

� The first is when an index a and indices j and j′ are chosen in such a way that
both (Φc)aj and (Φc)aj ′ are zero. In such a case,

δΦajj ′ +
1
2
[μ2

j + μ2
j ′ ]δΦajj ′ = 0, (13.150)

where (Φc)aj = 0 and (Φc)αj ′ = 0.

Thus δΦajj ′ is a free field with squared mass given by the average of m2
j and

m2
j ′ in this case, which we do not discuss further.

� The second case is that of j = j′, with a such that (Φc)aj is a quark soliton
inside the baryon. In this case,

δΦajj + μ2
j cos[(Φc)aj ]δΦajj = 0. (13.151)

� The third case is when j is different from j′, now with one of the Φc being a
soliton and the other vanishing. Taking (Φc)aj to be the soliton, we obtain,

δΦajj ′ − i(∂+Φc)aj (∂−δΦ)ajj ′ +
1
2
{μ2

j ′ + μ2
j [exp(iΦc)]aj}δΦajj ′ = 0,

(13.152)
where j′ 	= j and (Φc)αj ′ = 0.

Next we want to proceed and evaluate the meson-baryon scattering. For that
purpose we need to analyze the equations that determine the static solution
(Φc)aj . First one defines,

(Φc)aj =
√

4π(χc)aj , (13.153)
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where the (χc)aj are canonical fields, whose equations of motion are,

χ′′
αj − 4αc

⎛⎝∑
l

χα −
1

Nc

∑
β l

χβl

⎞⎠− 2
√

4πm2
j sin

√
4πχαj = 0.

Note the extra factor 2 in front of the mass term, as compared with eqn. (22)
of [86], due to an error in this reference.

Choosing the boundary conditions χaj (−∞) = 0, we get as constraints for
χaj (+∞), denoted hereafter simply by χaj ,

1√
π

χαj = nαj integers, (13.154)

and ∑
l

nα = n independent of a. (13.155)

The baryon number8 associated with any given flavor l is given by,

Bl =
∑

a

nα .

Combining the last two equations, we find,

B =
∑

l

Bl = nNc,

for the total baryon number.
We now continue in a similar manner to the discussion in the strong coupling

limit, starting with the first non-trivial case (13.151) identified above. As the
soliton solutions are such that there is a unique correspondence between the
color index a and the flavour index j, we suppress a in what follows. Putting,

δΦjj = e−iωj tuj (x), (13.156)

with,

uj (x) −→
x→∞

eikx , (13.157)

we find,

ω2
j = k2 + μ2

j , (13.158)

and the equation for uj (x) is,

u′′
j (x) + ωj

2uj − μ2
j [cos (Φc)j ]uj = 0. (13.159)

We define the potential Vj for this scattering process via,

u′′
j (x) + ωj

2uj − Vjuj = 0, (13.160)

8 In our normalization, a single quark carries one unit of baryon number.
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and find,

Vj = μ2
j [cos (Φc)j ]. (13.161)

In our normalization the outgoing wave has coefficient 1, which is more conve-
nient for numerical calculations, and the wave for x → −∞ is now,

uj (x) =
1
Tj

eikx +
Rj

Tj
e−ikx , x → −∞, (13.162)

in this case.
In the second non-trivial case (13.152), we put,

δΦjj ′ = e−iωj j ′ tujj ′(x), (13.163)

so that,

u′′
jj ′(x)− i(Φc)′j (x)u′

jj ′(x) + {ω2
jj ′ + ωjj ′(Φc)′j (x)

−1
2
{μ2

j ′ + μ2
j [exp(iΦc)]j}}ujj ′ = 0. (13.164)

To eliminate the first derivative term in u, we substitute,

ujj ′ =
[
exp
(

i

2
Φc

)]
j

vjj ′ . (13.165)

This results in,

v′′
jj ′(x) + {ω2

jj ′ + ωjj ′(Φc)′j (x)− μ2
j [cos(Φc)]j}vjj ′ +

1
2
(μ2

j − μ2
j ′)vjj ′

+
{

1
4
[(Φc)′j (x)]2 − 1

2
μ2

j (1− [cos(Φc)]j )
}

vjj ′

+
i

2
{
(Φc)j

′′(x)− μ2
j [sin(Φc)j ]

}
vjj ′ = 0. (13.166)

We note that the last three lines vanish when all the quark masses are equal, as
then the soliton is a sine-Gordon one. Thus, the scattering would then only be
elastic.

The potential of the scattering is defined here via,

v′′
jj ′(x) + ω2

jj ′vjj ′ − Vjj ′vjj ′ = 0, (13.167)

so that,

Vjj ′ = −ωjj ′(Φc)′j (x) + μ2
j [cos(Φc)]j

−1
2
(μ2

j − μ2
j ′)

−
{

1
4
[(Φc)′j (x)]2 − 1

2
μ2

j (1− [cos(Φc)]j )
}

− i

2
{(Φc)j

′′(x)− μ2
j [sin(Φc)j ]}. (13.168)
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Taking again,

vjj ′(x) −→
x→∞

eikx , (13.169)

we get,

ωjj ′ =
1
2
(μ2

j + μ2
j ′), (13.170)

and the wave for x → −∞ is,

vjj ′(x) =
1

Tjj ′
eikx +

Rjj ′

Tjj ′
e−ikx , x → −∞, (13.171)

in this case.
To summarize we have shown that meson-baryon scattering in QCD2 in the

large-Nc limit is non-trivial for non-zero quark masses, and is described by two
distinct effective potentials when the quark masses are unequal. These effective
potentials are not of the sine-Gordon type found in previous cases, and we expect
the scattering amplitudes also to be non-trivial. Their calculation will require
numerical analysis.
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