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Abstract

We show that every ergodic Davies generator associated to any 2D Kitaev’s quantum double model has a nonvan-

ishing spectral gap in the thermodynamic limit. This validates rigorously the extended belief that those models are

useless as self-correcting quantum memories, even in the non-abelian case. The proof uses recent ideas and results

regarding the characterization of the spectral gap for parent Hamiltonians associated to Projected Entangled Pair

States in terms of a bulk-boundary correspondence.

Contents

1 Introduction 2

2 Quantum spin systems 4

2.1 Notation and elementary properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Spectral gap of local Hamiltonians . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Periodic boundary conditions on a torus . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 PEPS and parent Hamiltonians 13

3.1 Tensor notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 PEPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Parent Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Spectral gap of a parent Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4.1 Boundary states and approximate factorization . . . . . . . . . . . . . . . . . 21

3.4.2 Approximate factorization for locally noninjective PEPS . . . . . . . . . . . . 22

3.4.3 Gauge invariance of the approximate factorization condition . . . . . . . . . . 24

4 PEPS description of the thermofield double 26

4.1 Quantum double models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 PEPO elementary tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.1 Star operator as a PEPO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.2 Plaquette operator as a PEPO . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.3 PEPS tensor on an edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

© The Author(s), 2023. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative

Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in

any medium, provided the original work is properly cited.

https://doi.org/10.1017/fms.2023.98 Published online by Cambridge University Press

doi:10.1017/fms.2023.98
https://orcid.org/0000-0003-1709-1220
https://orcid.org/0000-0003-2990-791X
https://orcid.org/0000-0001-8600-7083
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/fms.2023.98&domain=pdf
https://doi.org/10.1017/fms.2023.98


2 A. Lucia, D. Pérez-García and A. Pérez-Hernández

4.3 Boundary states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.1 Edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.2 Plaquette . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3.3 Rectangular region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.4 Leading term and approximate factorization . . . . . . . . . . . . . . . . . . . 40

4.4 Approximate factorization of the ground state projections . . . . . . . . . . . . . . . . 52

4.5 Parent Hamiltonian of the thermofield double . . . . . . . . . . . . . . . . . . . . . . 56

5 Davies generators for quantum double models 59

5.1 Davies generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Davies generators for the quantum double models . . . . . . . . . . . . . . . . . . . . 62

5.3 Davies generator as a local Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4 Parent Hamiltonian vs. Davies generator . . . . . . . . . . . . . . . . . . . . . . . . . 68

1. Introduction

In the seminal works [2, 15], it is shown that the four-dimensional (4D) toric code is a self-correcting

quantum memory, that is, it allows to keep quantum information protected against thermal errors (for

all temperatures below a threshold) without the need for active error correction, for times that grow

exponentially with the system size N. As interactions become highly nonlocal after mapping the 4D

toric code to a 2D or 3D geometry, it has been a major open question whether similar self-correction

is possible in 2D or 3D, where the information is encoded in the degenerate ground space of a locally

interacting Hamiltonian in a 2D or 3D geometry. We refer to the review [7] for a very detailed discussion

of the many different contributions to the problem that still remains open up to date. Before focusing

on the 2D case, which is the main goal of this work, let us briefly comment that in 3D, this question

motivated the discovery of Haah’s cubic code [5, 19], which was the opening door to a family of new

ultra-exotic quantum phases of matter, currently known as fractons [37].

In 2D, it is a general belief that self-correction is not possible. There is indeed compelling evidence

for that. For instance, Landon-Cardinal and Poulin [30], extending a result of Bravyi and Terhal [6],

showed that commuting frustration-free models in 2D display only a constant energy barrier. That is,

it is possible to implement a sequence of poly(#) local operations that maps one ground state into an

orthogonal one and, at the same time, the energy of all intermediate states is bounded by a constant

independent of N. This seemed to rule out the existence of self-correction in 2D.

However, it was later shown in [8] that having a bounded energy barrier does not exclude self-

correction, since it could happen that the paths implementing changes in the ground space are highly

nontypical, and hence, the system could be entropically protected. Indeed, an example is shown in [8]

where, in a very particular regime of temperatures though, entropic protection occurs.

Therefore, in order to solve the problem in a definite manner, one needs to consider directly the

mixing time of the thermal evolution operator which, in the weak coupling limit, is given by the

Davies master equation [14]. Self-correction will not be possible if the noise operator relaxes fast to

the Gibbs ensemble, where all information is lost. As detailed in [1] or [28] using standard arguments

on Markovian semigroups, the key quantity that controls this relaxation time is the spectral gap of the

Davies Lindbladian generator. Self-correction in 2D would be excluded if one is able to show that such

a gap is uniformly lower bounded independently of the system size. This is precisely the result proven

for the toric code by Alicki et al., already in 2002, in the pioneer work [1]. The result was extended for

the case of all abelian quantum double models by Komar et al. in 2016 [28]. Indeed, up to now, these

were the only cases for which the belief that self-correction does not exist in 2D have been rigorously

proven. In particular, it remained an open question (as highlighted in the review [7]) whether the same

result would hold for the case of non-abelian quantum double models. In this work, we address and solve

this problem, showing that non-abelian quantum double models behave as their abelian counterparts.

The main result of this work is summarized as follow: for any finite group G, we consider Kitaev’s

quantum double Hamiltonian H of group G defined on Z# ×Z# . We consider a thermal bath at inverse

temperature V < ∞, acting independently on each site of Z# × Z# in a translation invariant way,
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described by a Davies semigroup. This is given by a family of single-site jump operators {(U}U and

positive coupling functions 6̂U satisfying detailed balance. The resulting generator L is then given by

L(&) =
∑

4∈Z#×Z#

∑
U,l

6̂U (l)
2

(
(†4,U (l) [&, (4,U (l)] + [(†4,U (l), &] (4,U (l)

)
, (1.1)

where l runs over the Bohr frequencies of H, that is, the differences between eigenvalues of H, and

(4,U (l) are the Fourier coefficients of (U acting on edge e, with respect to the evolution by H. As these

vanish for all values of l outside of a finite set Ω, we can without loss of generality restrict the sum

to l ∈ Ω. See Section 5 for a more complete explanation of the construction. We state and prove the

theorem for the case of a translation invariant Lindbladian for simplicity: with minor adaptations, our

proof could be extended to the non translation-invariant case, as long as it is possible to obtain uniform

estimates on the behavior of the local generators (see Remark 5.14).

Theorem 1.1. Suppose that the jump operators satisfy {(U}′U = C1, where ′ denotes the commutator.

Then the Davies generator L defined above is ergodic, and its spectral gap has a lower bound which is

independent of the system size N. Specifically, there exist positive constants C and _, independent of V

and the system size, such that

gap(L) ≥ 6̂min 4
−� 4V _, 6̂min = min

U
min
l∈Ω

6̂U (l) . (1.2)

The constant _ will depend both on the group G and on the choice of the jump operators {(U}U. Note

that while in principle 6̂min could also scale with V, there are examples where it can be lower bounded

by a strictly positive constant independent of the temperature. The dependence of our bound on V is

worse than the ones obtained in the previous works for the case of an abelian group G [1, 28] (double

exponential instead of exponential): we believe this dependence is an artifact of our proof and therefore

is probably not optimal.

The tools used to address the main theorem are completely different from those used in the abelian

case in [28]. There, following ideas of [38], the authors bound the spectral gap ofL via a quantum version

of the canonical-paths method in classical Markov chains. Instead, we go back to the original idea of

Alicki et al. for the toric code [1]: construct an artificial Hamiltonian from the Davies generator L so that

the spectral gap ofL coincides with the spectral gap above the ground state of that Hamiltonian, and then

use techniques to bound spectral gaps of many body Hamiltonians. This trick has already found other

interesting implications in quantum information, especially in problems related to thermalization, such

as the behavior of random quantum circuits [4] or the convergence of Gibbs sampling protocols [23]. In

particular, we will follow closely the implementation of the idea used in [40], and reason as follows. We

purify the Gibbs state dV and consider the (pure) thermofield double state |d1/2
V

〉 (i.e., the cyclic vector

of the Gelfand-Naimark-Segal (GNS) representation of the algebra of observables with state dV). The

commutativity of the terms in the quantum double Hamiltonian H makes |d1/2
V

〉 a Projected Entangled

Pair State (PEPS). We will show then (see Proposition 5.15) that the gap of L can be lower bounded by

the gap of the parent Hamiltonian of |d1/2
V

〉 in the PEPS formalism.

This opens the door to exploit the extensive knowledge gained in the area of tensor networks during

the last decades. Tensor networks, and in particular PEPS, have revealed themselves as an invaluable

tool to understand, classify, and simulate strongly correlated quantum systems (see, e.g., the reviews

[13, 34, 39]). The key reason is that they approximate well the ground and thermal states of short-range

Hamiltonians and, at the same time, display a local structure that allows to describe and manipulate

them efficiently [13].

Such a local structure manifests itself in a bulk-boundary correspondence that was first uncovered in

[12], where one can associate to each patch of the 2D PEPS a 1D mixed state that lives on the boundary

of the patch. It is conjectured in [12], and verified numerically for some examples, that the gap of the

parent Hamiltonian in the bulk corresponds to a form of locality in the associated boundary state.
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This bulk-boundary correspondence was made rigorous for the first time in [25] (see also the

subsequent contribution [35]). In particular, it is shown in [25] that if the boundary state displays a

locality property called approximate factorization, then the bulk parent Hamiltonian has a nonvanishing

spectral gap in the thermodynamic limit. Roughly speaking, approximate factorization can be defined

as follows. Consider a 1D chain of N sites that we divide in three regions: left (L), middle (M), and right

(R). A mixed state d!"' is said to approximately factorize if it can be written as

d!"' ≈ (Ω!" ⊗ 1')(1! ⊗ Δ"') ,

where, for a particular notion of distance, the error in the approximation decays fast with the size of M.

It is one of the main contributions of [25, 35] to show that Gibbs states of 1D Hamiltonians with

sufficiently fast decaying interactions fulfill the approximate factorization property. Indeed, this idea has

been used in [29] to give algorithms that provide efficiently Matrix Product Operator (MPO) descriptions

of 1D Gibbs states.

We will precisely show (Theorem 4.2) that the boundary states associated to the thermofield double

PEPS |d1/2
V

〉 approximately factorize. In order to finish the proof of our main theorem, we will also

need to extend the validity of the results in [25] beyond the cases considered there (injective and MPO-

injective PEPS), so that it applies to |d1/2
V

〉. Indeed, it has been a technical challenge in the paper to

deal with a PEPS which is neither injective nor MPO-injective, the classes for which essentially all the

analytical results for PEPS have been proven [13].

Let us finish this Introduction by commenting that the results presented in this work can be seen as

a clear illustration of the power of the bulk-boundary correspondence in PEPS, and in particular, the

power of the ideas and techniques developed in [25].

We are very confident that the result presented here can be extended, using similar techniques, to

cover all possible 2D models that are renormalization fixed points, like string net models [31]. The

reason is that all those models have shown to be very naturally described and analyzed in the language

of PEPS [13]. We leave such extension for future work.

This paper is structured as follow. In Section 2, we recall some elementary properties of a quantum

spin system, and explain the strategy we will use to estimate spectral gaps of 2D quantum Hamiltonians.

Moreover, we will explain under which assumptions we can estimate the spectral gap of a model on

a 2D torus with the spectral gap of the same model with open boundary conditions. In Section 3,

we give a general introduction to the tensor networks and PEPS formalism, and explain the graphical

notation we will use to represent tensors. We will then recall the results from [25] that connect the quasi-

factorization property with the spectral gap of a parent Hamiltonian of a PEPS, and present the necessary

modifications of these results that we will need in this paper. In Section 4, we introduce the Quantum

Double Models, and present the PEPS representation of the thermofield double state |d1/2
V

〉. From this

construction, we will compute the corresponding boundary state, prove the approximate factorization

condition, construct a parent Hamiltonian and estimate its spectral gap. In Section 5, we recall the

definition and elementary properties of Davies generators. We will then show that we can lower bound

the spectral gap of an ergodic Davies generator by the spectral gap of a parent Hamiltonian for |d1/2
V

〉,
which will imply our main result.

2. Quantum spin systems

In this section, we are presenting some of the concepts and auxiliary results that we will use for the

main result of the paper. Since we expect that they are useful in other contexts, we decided to present

them in a more general setting.

2.1. Notation and elementary properties

We use Dirac’s bra-ket notation. Vectors in a Hilbert space H will be represented as “kets” |q〉, and

the scalar product between |q〉 and |k〉 is written as 〈q|k〉 (which is antilinear in the first argument).
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The linear functional |k〉 ↦→ 〈q|k〉 is then denoted as a “bra” 〈q|. Rank-one linear maps will be written

as |k〉〈q|.
Let us consider an arbitrary set Λ, and associate to every site G ∈ Λ a finite-dimensional Hilbert

space HG ≡ C3 for a prefixed 3 ∈ N. As usual, for a finite subset - ⊂ Λ, we define the corresponding

space of states H- := ⊗G∈-HG and the space of bounded linear operators (observables) B- := B(H- )
endowed with the usual operator norm. We denote by 1- ∈ B- the identity. We identify for - ⊂ - ′ ⊂ Λ

observablesB- ↩→ B- ′ via the isometric embedding& ↦→ &⊗1- ′\- . Given an operator Q, the minimal

region - ⊂ Λ, such that & ∈ B- is called the support of Q. Let us observe that if & ∈ B- is a self-

adjoint element, then& ⊗1- ′\- and Q have the same eigenvalues _, and the corresponding eigenspaces

are related via +_ ↦→ +_ ⊗ H- ′\- . In particular, ker (& ⊗ 1- ′\- ) = ker (&) ⊗ H- ′⊗- . We define the

spectral gap of such Q, denoted gap(&), as the difference of the two lowest (unequal) eigenvalues of Q.

If Q has only one eigenvalue, we set gap(&) = 0.

A local Hamiltonian is defined in terms of a family of local interactions, that is, a map Φ that

associates to each finite subset / ⊂ Λ a self-adjoint observable Φ/ = Φ
†
/
∈ B/ . For each finite - ⊂ Λ,

the corresponding Hamiltonian is the self-adjoint operator �- ∈ B- given by

�- =

∑
/ ⊂-

Φ/ .

Next, let us introduce some further conditions on the type of interactions we are going to deal with.

First, we are going to assume the lowest eigenvalue of Φ/ is zero for each Z. This means that Φ/ ≥ 0,

and thus �- ≥ 0, for each finite subset - ⊂ Λ. In general, from an arbitrary local interaction Φ/ ,

we can always construct a new interaction satisfying this property by shifting each local term Φ/ to

Φ/ − 2/1/ , where 2/ is the lowest eigenvalue of Φ/ . As a consequence, each local Hamiltonian �- is

shifted to �- − (∑/ ⊂- 2/ )1- , and its eigenvalues _ are then shifted to _ − (∑/ ⊂- 2/ ), although the

corresponding eigenspaces and the spectral gap are preserved. It should be mentioned that this shifting

procedure introduces an energy constraint that can significantly impact certain physical properties of

the original system. However, since our sole focus is on studying the spectral gap properties in relation

to the orthogonal projectors onto the ground spaces, this argument appears reasonable for reducing the

overall problem to this particular setting.

On the other hand, we are also going to assume that the local interactionΦ is frustration-free, namely,

that for every finite subset - ⊂ Λ, it holds that

,- :=
⋂
/ ⊂-

ker(Φ/ ) ≠ {0} .

Let %- ∈ B- be the orthogonal projector onto,- . As a consequence of

〈q|�- |q〉 =
∑
/ ⊂-

〈q|Φ/ |q〉 ≥ 0 , (2.1)

we immediately get that ker (�- ) = ,- , and that the frustration-free condition is equivalent to each

�- having zero as the lowest eigenvalue. In this case,,- is the ground space of �- , %- is the ground

state projector, and the spectral gap of �- , in case the latter is nonzero, can be described as the largest

positive constant satisfying that for every |q〉 ∈ H-

〈q|%⊥
- |q〉 · gap(�- ) ≤ 〈q|�- |q〉 , (2.2)

where %⊥
-

:= 1- − %- .

We conclude by remarking that for every - ⊂ . ⊂ Λ, we have,. ⊂ ,- , where we are identifying

,- ≡ H. \- ⊗,- , and therefore %. %- = %. .
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2.2. Spectral gap of local Hamiltonians

We will now recall a recursive strategy to obtain lower bounds to the spectral gap of frustration-free

Hamiltonians described in [24], which we will also slightly improve over the original formulation. The

main tool will be the following lemma, which is an improved version of [24, Lemma 14] in which the

constant (1 − 22) has been improved to (1 − 2). The argument here is different and inspired by [26,

Lemma 14.4].

Lemma 2.1. Let *,+,, be subspaces of a finite-dimensional Hilbert space H with corresponding

orthogonal projectors Π* ,Π+ ,Π, , and assume that, ⊂ * ∩+ . Then,

Π
⊥
* + Π

⊥
+ ≥ (1 − 2) Π⊥

, , where 2 := ‖Π*Π+ − Π, ‖ .

Moreover, 2 ∈ [0, 1] always holds, and 2 ∈ [0, 1) if and only if* ∩+ = , .

Proof. Let us start by observing that, since, ⊂ *, it holds that Π,Π* = Π*Π, = Π, , and similarly

for V. Thus, the constant c can be rewritten as

2 = ‖(Π* − Π, ) (Π+ − Π, )‖
= ‖Π⊥

, Π* Π+ Π
⊥
, ‖

= sup { |〈0 |Π⊥
, Π* Π+ Π

⊥
, |1〉| : ‖0‖ ≤ 1, ‖1‖ ≤ 1〉}

= sup { |〈0 |Π* Π+ |1〉| : 0, 1 ∈ ,⊥, ‖0‖ ≤ 1, ‖1‖ ≤ 1〉}
= sup { |〈0 |1〉| : 0 ∈ * ∩,⊥, 1 ∈ + ∩,⊥, ‖0‖ ≤ 1, ‖1‖ ≤ 1〉}.

(2.3)

From here, it immediately follows that 2 ∈ [0, 1]. Moreover, since H is finite-dimensional, the set over

which the supremum is taken is compact, meaning that the supremum is always attained. Therefore,

2 = 1 if and only if there exists 0 ∈ * ∩,⊥ and 1 ∈ + ∩,⊥, such that |〈0 |1〉| = ‖0‖‖1‖. As the

Cauchy–Schwarz inequality is only saturated by vectors which are proportional to each other, 2 = 1 is

equivalent to the fact that there exists an 0 ∈ (* ∩+ ∩,⊥) \ {0}, or equivalently, that, ( * ∩+ . The

first observation also implies that Π* = Π, +Π⊥
,

Π* Π⊥
,

and Π+ = Π, +Π⊥
,

Π+ Π⊥
,

, and therefore

Π
⊥
* + Π

⊥
+ = 2Π⊥

, − Π
⊥
, (Π* + Π+ )Π⊥

, .

This allows us to reformulate the original inequality we aim to prove as

Π
⊥
* + Π

⊥
+ ≥ (1 − 2) Π⊥

, ⇔ (1 + 2)Π⊥
, ≥ Π

⊥
, (Π* + Π+ )Π⊥

, . (2.4)

Let |G〉 be a norm-one eigenvector of Π⊥
,

(Π* + Π+ )Π⊥
,

with corresponding eigenvalue _ > 0. Note

that Π⊥
,
|G〉 = |G〉 necessarily, since eigenvectors with different eigenvalues are orthogonal, and W is

contained in the kernel. Thus, to show that the right-hand side inequality of (2.4) holds, it is enough to

check that _ ≤ 1 + 2 necessarily. For that, let us write

Π* |G〉 = _* |G* 〉 for some |G* 〉 ∈ * ∩,⊥ , 〈G* |G* 〉 = 1 , _* ≥ 0 ,

Π+ |G〉 = _+ |G+ 〉 for some |G+ 〉 ∈ + ∩,⊥ , 〈G+ |G+ 〉 = 1 , _+ ≥ 0 .

On the one hand, we have

_ = 〈G |Π* + Π+ |G〉 = 〈G |Π* |G〉 + 〈G |Π+ |G〉
= 〈G |Π2

* |G〉 + 〈G |Π2
+ |G〉

= _2
* + _2

+ ,
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and, on the other hand

_2
= 〈G | (Π* + Π+ ) (Π* + Π+ ) |G〉
= _2

* + _2
+ + 〈G |Π*Π+ |G〉 + 〈G |Π+Π* |G〉

= _2
* + _2

+ + 2_* _+ Re〈G* |G+ 〉 .

Combining both equalities we get, denoting 2G := | Re〈G* |G+ 〉|,

(1 + 2G)_ − _2
= 2G

(
_2
* + _2

+

)
− 2_*_+ Re〈G* |G+ 〉

≥ 2G (_2
* + _2

+ − 2_*_+ ) = 2G (_* − _+ )2 ≥ 0 .

Since _ > 0, we conclude that

_ ≤ 1 + 2G ≤ 1 + 2,

where the last inequality follows from (2.3). This concludes the argument. �

This lemma has important implications for frustration-free local Hamiltonians, when applied to

the ground state subspaces ,- and their associated orthogonal projections %- . The frustration-free

condition yields that, for -,. ⊂ Λ, the ground state subspaces satisfy ,-∪. ⊂ ,- ∩ ,. . As a

consequence of Lemma 2.1,

‖%-∪. − %-%. ‖ = ‖(%-∪. − %- ) (%-∪. − %. )‖ ∈ [0, 1] .

Moreover, ,-∪. = ,- ∩,. if and only if ‖%-∪. − %-%. ‖ ∈ [0, 1). This happens whenever Λ is a

metric space, Φ has finite range A > 0, namely, that Φ- = 0 if the diameter of X is larger than r, and the

distance 3 (- \ .,. \ -) is greater than r, since in this case, every subset / ⊂ - ∪ . with Φ/ ≠ 0 is

either contained in X or Y, so that

,-∪. =

⋂
/ ⊂-∪.

kerΦ/ =

⋂
/ ⊂-

kerΦ- ∩
⋂
/ ⊂.

kerΦ/ = ,- ∩,. .

Definition 2.2 (Spectral gap). For each finite subset. ⊂ Λ, let us denote by gap(�. ), or simply gap(. ),
the spectral gap of �. , namely, the difference between the two lowest unequal eigenvalues of �. . If it

has only one eigenvalue, then we define gap(. ) = 0. Given a family F of finite subsets of Λ, we say

that the system of Hamiltonians (�. ). ∈F is gapped whenever

gap(F) := inf {gap(. ) : . ∈ F } > 0 .

Otherwise, it is said to be gapless.

The following result allows to relate the gap of two families. It adapts a result from [24, Section 4.2].

Theorem 2.3. Let F and F ′ be two families of finite subsets of Λ. Suppose that there are B ∈ N and

X ∈ [0, 1] satisfying the following property: for each. ∈ F ′\F , there exist (�8 , �8)B8=1
pairs of elements

in F , such that:

(i) . = �8 ∪ �8 for each 8 = 1, . . . , B,

(ii) (�8 ∩ �8) ∩ (� 9 ∩ � 9 ) = ∅ whenever 8 ≠ 9 ,

(iii) ‖%�8
%�8

− %. ‖ ≤ X for every 8 = 1, . . . , B.

Then,

gap(F ′) ≥ 1 − X
1 + 1

B

gap(F) ≥
(if X<1)

exp

[
− X

1 − X − 1

B

]
gap(F) .
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Proof of Theorem 2.3. Let . ∈ F ′ \ F , and let (�8 , �8)B8=1
be the family of pairs satisfying (8)–(888)

provided by the hypothesis. To prove the first inequality, we can assume that X < 1 and gap(F) > 0,

since otherwise, the inequality is obvious. Applying Lemma 2.1, and using (2.2), we can estimate

〈G |%⊥
. |G〉 =

1

B

B∑
8=1

〈G |%⊥
. |G〉 ≤ 1

B

B∑
8=1

1

1 − X
(
〈G |%⊥

�8
|G〉 + 〈G |%⊥

�8
|G〉

)

≤ 1

1 − X
1

B

B∑
8=1

1

gap(F)
(
〈G |��8

|G〉 + 〈G |��8
|G〉

)

≤ 1

1 − X
1

gap(F)
1

B

B∑
8=1

〈G |�. + ��8∩�8
|G〉

≤ 1

1 − X
1

gap(F) 〈G |�. + 1

B

B∑
8=1

��8∩�8
|G〉

≤ 1

1 − X
1

gap(F)

(
1 + 1

B

)
〈G |�. |G〉 .

Notice that in the third line, we have used that ��8
+ ��8

≤ �. + ��8∩�8
, which holds since all the

local interactions are positive semidefinite. Therefore, again by (2.2), it holds that

gap(. ) ≥ 1 − X
1 + 1

B

gap(F) whenever . ∈ F ′ \ F .

On the other hand, if . ∈ F ′ ∩ F , then gap(. ) ≥ gap(F) by definition. Hence, we conclude the that

the first inequality holds. To obtain the second inequality, we simply use twice that (1 + G)−1 ≥ 4−G for

every G ≥ 0. �

In the next section, we will apply Theorem 2.3 in order to bound the spectral gap of a quantum spin

Hamiltonian on an arbitrarily large torus (with periodic boundary conditions) in terms of the spectral gap

of the same model on a finite family of rectangles with open boundary conditions. This is reminiscent to

the bounds on the spectral gap based on the local gap thresholds [3, 18, 20, 21, 27]. The reason for which

we are following a different approach is that the constants appearing in the spectral gap thresholds are

highly dependent on the specific shape and range of the interactions of the Hamiltonian, and in our case,

we will have to consider V-dependent interaction length. Therefore, it will be unfeasible to verify the

local gap threshold conditions for our models. The connection between the control of quantities of the

type ‖%-∪. − %-%. ‖ and spectral gap estimates originated in the seminal work on finitely correlated

states [16], later extended to more general spin models [32]. The main difference between that approach

and the one of [24], which we are following here, is due to the way in which we are growing the lattice:

while the methods of [16, 32] consider a single increasing sequence of regions, Theorem 2.3 permits

more rich families of subsets, thus allowing us to keep the shape of their intersections more well-behaved

(i.e., they will always be rectangles or cylinders).

2.3. Periodic boundary conditions on a torus

To describe the periodic boundary conditions case, we have to introduce further notation. For each

natural N, let us denote by S# the quotient R/∼, where we relate G ∼ G + # for every G ∈ R. Note that

we can identify S# ≡ [0, #).
We will take as Λ# , the set where the spins of the system are located, the set of midpoints of the

edges E# of the square lattice on the torus S# × S# (as this is the setting in which the quantum double

models are defined). We will identify each point of Λ# with the corresponding edge from E# , so that

we will indistinctly use Λ# or E# (see Figure 1).
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Figure 1. The square lattice on the torus (left), and the quantum spin system with spins on the midpoints

of the edges (right). The marks on the borders of both squares represent the pairwise identification of

edges, a standard depiction of the torus in topology. A similar notation will be used for the cylinder,

where only one pair of edges is identified.

Figure 2. Examples of rectangles as a subset of the square lattice Λ# ≡ E# . Above, two examples of

proper rectangles, whereas below, two examples of cylinders. In each case, we present two pictures: on

the right, we highlight the spins belonging to the region, while on the left, we highlight the edges. We

will use this latter representation in the forthcoming pictures.

Let us recall the notion of a (closed) interval in S# . Given G, H ∈ S# , we denote by 3+(G, H) the

unique 0 ≤ 2 < # , such that G+2 ∼ H. Then, we define the interval [0, 1] as the set {G ∈ S# : 3+(0, G) ≤
3+(0, 1)}. We are only going to consider intervals with integer endpoints, that is, 0, 1 ∈ Z# . A proper

rectangle R in R2 or S# × S# is a Cartesian product of intervals R = [01, 11] × [02, 12] (with integer

endpoints). Its number of plaquettes per row is then 3+(01, 11) and per column is 3+(02, 12). Shortly,

we say that R has dimensions 3+(01, 11) and 3+(02, 12). A cylinder is a Cartesian product of the form

S# × [0, 1] or [0, 1] × S# . We will refer simply as rectangles to proper rectangles, cylinders, and the

whole torus S# × S# . In an abuse of notation, we will identify R with R ∩ Λ and often write R ⊂ Λ

and HR to denote the associated Hilbert space (see Figure 2).

We are going to define, for every #, A ∈ N with # ≥ A ≥ 2, the following sets of rectangular regions

in E# :

⊲ F# is the set of all rectangular regions having at least two plaquettes per row and per column.

⊲ F C>ADB
#

is the family consisting of only one element, the whole torus.

⊲ F
2H;8=

#
is the family of all cylinders having at least two plaquettes per row and per column.

⊲ FA42C
# ,A

is the family of all proper rectangles having at least two and at most r plaquettes per row and

per column.

Martingale condition on local projectors

For each - ∈ F# , let Π- be an orthogonal projector onto a subspace of H- , such that (Π- )- satisfies

the frustration-free condition: Π-Π. = Π.Π- = Π. for every pair of rectangular regions - ⊂ . .

Notice that the family of projectors (%- )- associated to a frustration-free Hamiltonian, as it was defined

in Section 2.1, satisfies this condition.
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Definition 2.4 (Martingale condition). We say that (Π- )- as above satisfies the martingale condition

if there is a nonincreasing function X : (0,∞) −→ [0, 1], such that limℓ→∞ X(ℓ) = 0, called the decay

function, satisfying for each # ≥ 2 the following properties:

(i) For every proper rectangle R split along the rows (respectively, columns) into three disjoint parts

R = ��� as in the next picture

� � �

ℓ

� � �

(2.5)

so that R1 = �� and R2 = �� are proper rectangles and R1 ∩R1 = � is a rectangle containing

at least ℓ plaquettes along the splitting direction, it holds that

‖Π��� − Π��Π�� ‖ ≤ X(ℓ) .

(ii) For every cylinder R split along the wrapping direction into four disjoint parts R = ����′ as in

the next picture

� � � �′ �

ℓ

� �

ℓ

�′

(2.6)

so that R1 = �′�� and R2 = ���′ are proper rectangles, and B and �′ are rectangles containing

at least ℓ plaquettes along the wrapping direction, it holds that

‖Π����′ − Π�′��Π���′ ‖ ≤ X(ℓ) .

(iii) For every torus split along any of the two wrapping directions into four disjoint parts E# = ����′

as in the next picture

(2.7)

so that R1 = �′�� and R2 = ���′ are cylinders whose intersection consists of two cylinders B

and �′ containing at least ℓ plaquettes along the splitting direction, it holds that

‖Π����′ − Π�′��Π���′ ‖ ≤ X(ℓ) .

Estimating the gap from below

Let us fix a local interaction Φ on the torus E# defining a frustration-free Hamiltonian. For each

rectangular region - ⊂ E# , let us denote by %- the orthogonal projector onto the ground space of �- .

Let us, moreover, assume that the family of projectors (%- )- satisfies the martingale condition for a

decay function X(ℓ) as in Definition 2.4.

Theorem 2.5. If X(⌊#/2 − 1⌋) < 1/2, then

gap(F C>ADB
# ) ≥ 1

4
gap(F 2H;8=

#
) ≥ 1

16
gap(FA42C

# ,# ) .
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Proof. Let us first compare gap(F C>ADB
#

) and gap(F 2H;8=

#
). We consider a decomposition of the torus

Λ# into four regions �, �, �, �′ as in (2.8), so that C1 := �′�� and C2 := ���′ are cylinders having

dimensions # − 1 and N belonging to F
2H;8=

#
and whose intersection consists of two cylinders B and

�′, each having N plaquettes per column and at least ⌊#/2 − 1⌋ plaquettes per row.

. (2.8)

Applying the martingale condition from Definition 2.4 (iii), we deduce that

‖%C1
%C2

− %Λ#
‖ ≤ X(⌊#/2 − 1⌋) < 1

2
, (2.9)

and so, by Theorem 2.3 with B = 1 and X = 1/2, we can estimate

gap(F C>ADB
# ) ≥ 1

4
gap(F 2H;8=

#
) .

Next, we compare F
2H;8=

#
and FA42C

# ,#
. Given a cylinder C ∈ F

2H;8=

#
, we can split it along the wrapping

direction into four regions �, �, �, �′ as in (2.10), so that R1 := �′�� and R2 := ���′ are proper

rectangles having N plaquettes along the splitting direction, belonging to FA42C
#

, and whose intersection

consists of two proper rectangles B and �′ having at least ⌊#/2 − 1⌋ plaquettes along the splitting

direction.

. (2.10)

Thus, applying the martingale condition from Definition 2.4(ii), we deduce that

‖%R1
%R2

− %C ‖ ≤ X(⌊#/2 − 1⌋) < 1

2
,

and so, by Theorem 2.3 with B = 1 and X = 1/2, we can estimate

gap(F 2H;8=

#
) ≥ 1

4
gap(FA42C

# ,# ) . (2.11)

Combining (2.9) and (2.11), we conclude the result. �

Theorem 2.6. For fixed integers # ≥ A ≥ 16, let us denote X: := X(⌊ A
4
(
√

9/8 ):⌋ ) and B: := ⌊(
√

4/3 ):⌋
for each integer : ≥ 0. Then, we can estimate from below

gap(FA42C
# ,# ) ≥

( ∞∏
:=0

1 − X:
1 + 1

B:

)
gap(FA42C

# ,A ) .

Notice that the infinite product that appears in the previous expression is convergent to a positive value

whenever the decay function X(ℓ) decays polynomially fast, namely, X(ℓ) = $ (ℓ−U) for some U > 0.
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Proof. The idea of the proof is inspired by [9]. Fix #, A as above, for each : ≥ 0, let G: be the family

of all proper rectangles in FA42C
# ,#

of dimensions a and b satisfying

0, 1 ≥ 2 and 0 · 1 ≤ A (3/2): .

Observe that G: ⊂ G:+1 for every : ≥ 0 and that G: = FA42C
# ,#

for k large enough. Next, let . ∈ G:+1 \G:

of dimensions a and b. Then

A (3/2): < 0 · 1 ≤ A (3/2):+1 .

We can assume without loss of generality that 0 ≤ 1, so using the previous inequalities, we can estimate

from below (recall that A ≥ 16)

4 ≤
√
A (

√
3/2 ): ≤ 1 . (2.12)

Let us define

B: := ⌊(
√

4/3 ):⌋ and ℓ: := ⌊1/(4B: )⌋ .

Observe that by (2.12)

ℓ: ≥
⌊
1

4B:

⌋
≥

⌊√
A

4
(
√

3/2 ): (
√

3/4 ):
⌋
=

⌊√
A

4
(
√

9/8 ):
⌋
≥ 1 , (2.13)

and for every 9 = 0, . . . , B: − 1

(2 9 + 1)ℓ: ≤ 2B:ℓ: − ℓ: ≤ 1

4
− 1 . (2.14)

Next, let us identify our rectangle Y with [0, 1] × [0, 0], and consider the subrectangles (see Figure 3)

� 9 := [0, ⌈1/3⌉ + (2 9 + 1)ℓ: ] × [0, 0] , � 9 := [⌈1/3⌉ + 2 9ℓ: , 1 ] × [0, 0] .

Note that, applying (2.14), we deduce that � 9 is contained in a rectangle of dimensions a and ⌈1/3⌉ +
1/4− 1 ≤ 21/3. Similarly, � 9 is contained in a rectangle of dimensions a and 1 − ⌈1/3⌉ ≤ 21/3. Since

0 ≥ 2, 21/3 ≥ 2, and 0 · (21/3) ≤ A (3/2): , we conclude that � 9 , � 9 ∈ G: by definition. Moreover, the

intersections

� 9 ∩ � 9 = [ ⌈1/3⌉ + 2 9ℓ: , ⌈1/3⌉ + (2 9 + 1)ℓ: ] × [0, 0]

are disjoint, that is � 9 ∩ � 9 ∩ � 9′ ∩ � 9′ = ∅ whenever 9 ≠ 9 ′, and have ℓ: plaquettes per row and a

plaquettes per column. Using the martingale condition from Definition 2.4(i) and (2.13)

‖%� 9
%� 9

− %. ‖ ≤ X(ℓ: ) ≤ X(⌊
√
A

4
(
√

9/8):⌋) .

Applying now Theorem 2.3, we deduce that

gap(G:+1) ≥
1 − X:
1 + 1

B:

gap(G: ) ≥ . . . ≥ ©«
:∏
9=0

1 − X 9
1 + 1

B 9

ª®¬
gap(G0) .

Finally, noticing that G0 ⊂ FA42C
A ,#

, we conclude the result. �
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⌈1/3⌉ ℓ: ℓ: ℓ: ℓ: ℓ: ≥ 1/3

�8
�8

0

Figure 3. Split of the rectangle Y in the proof of Theorem 2.6. The thick subrectangles correspond to

the intersections �8 ∩ �8 , being disjoint and having width equal to ℓ: .

3. PEPS and parent Hamiltonians

In Section 2, we introduced some general results that allow us to estimate the spectral gap of a quantum

spin Hamiltonian. In particular, in order to apply Theorem 2.3, we need to verify condition (888) for a

specific family of local ground state projections. PEPS constitute a class of quantum spin models for

which there exists tools that allow to control the bound in condition (888). In the current section, we will

briefly recall their definition, and how to evaluate condition (888) of Theorem 2.3 in the case of a specific

kind of local Hamiltonian, known as a PEPS parent Hamiltonian.

3.1. Tensor notation

Let us denote [3] := {0, 1, . . . , 3 − 1} for each 3 ∈ N. Recall that a tensor with n indices is simply an

element ) ∈ C[31 ]×...×[3= ] , where each 3 9 ∈ N is called the dimension of the j-th index. We will employ

the usual notation

)U = )U1...U=
, U = (U1, . . . , U=) ∈ [31] × . . . × [3=] .

By definition, a tensor with zero indices will be a scalar ) ∈ C. We can represent tensors in the form of

a ball with a leg for each index:

U1

U2

U3

U4

U5

) = ()U1...U=
).

Let us describe the basic operations that we will perform with tensors. Given a tensor with (at least)

two indices, say U1 and U2 with dimensions 31 and 32, respectively, we can combine them into one

index W of dimension 31 · 32, so that the resulting tensor has one index less. This process can be iterated
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to combine several indices into one index. Graphically, we have the following example:

.

Given two tensors ) = ()U) and ( = ((V) with m and n indices, respectively, we define its tensor

product as the unique tensor with = + < indices given by ) ⊗ ( := ()U · (V). For instance:

U1

U2

U3

()U1U2U2 )

⊗

U4

U5

((U4U5
)

≡

U1

U2

U3

U4

U5

()U1U2U3 · (U4U5
) .

If a tensor ()U) has two indices with the same dimension, say U1 and U2, then we can contract them,

resulting in a tensor with = − 2 indices (U3...U=
=

∑
9 )9 9 U3...U=

. Combining this operation with the

tensor product of tensors, we define the contraction of tensors: given two tensors ()U) and ((V) having

both an index with the same dimension, say U1 and V1, we can contract these indices to generate a new

tensor (∑ 9 )9 U2...U=
· ( 9V2...V< ). Graphically, we have the following example:

.

If two tensors have the same indices with the same dimensions ()U)U and ((U)U, we can define their

tensor sum ) + ( := ()U + (U)U. Given a tensor ()U)U and a scalar _ ∈ C, we define _) := (_)U)U.

If we identify each index j with a Hilbert space C3 9 , we can interpret a tensor T as the coefficients of

a ket |k〉 in the computational basis

|k〉 ∈ ⊗=
9=1C

31 , |k〉 =
∑

U1 ,...,U=

)U1...U=
|U1 . . . U=〉 .

More generally, if we split the set of indices into two subsets A and B called input and output indices,

respectively, we can then associate to T the operator

) : ⊗ 9∈�C
3 9 −→ ⊗ 9∈�C

3 9 ,
∑
U

)U |U�〉〈U� | ,

where |U� 〉 = ⊗ 9∈� |U 9〉 for any subset of indices J. Following the graphical description, we will represent

input (respectively, output) indices with arrows that will point at (away from) the ball. For instance, in
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the case of a tensor with five legs ()U1...U5
), we can consider

U1

U2

U3

U4

U5

∑
U1 ,U2 ,U3 ,U4 ,U5

)U1...U5
|U2U4U5〉〈U1U3 |

.

We will take advantage of these multiple interpretations to find easy descriptions of tensors. For instance,

the tensor T with four indices of dimension two given by )0000 = )1111 = 1, )0110 = )1001 = −1 and

)U1U2U3U4
= 0, otherwise, can be represented as

U1U2

U3 U4

) = / ⊗ / .

Simple descriptions of a tensor can also be obtained by taking linear combinations of tensors having

the same number of indices and the same dimensions. For instance, the tensor T with four indices of

dimension two given by )0000 = )1111 = 1 and )U1U2U3U4
= 0, otherwise, can be represented as

U1U2

U3 U4

) =
1

2
1 ⊗ 1 + 1

2
/ ⊗ / .

Finally, we can also represent the previous tensor as the contraction of two tensors, namely

(3.1)

3.2. PEPS

Let us recall the notation and main concepts for PEPS [10, 11]. Let us consider a finite graph consisting

of a finite set of vertices Λ and a set of edges E. At each vertex G ∈ Λ, consider a tensor in the form of

an operator

+G : (C�)⊗mG −→ C3

+G =
3∑

:=1

�∑
91 , 92 , 93 , 94=1

) :
91 , 92 , 93 , 94

|:〉〈 91 92 93 94 |
:

91

92

93

94

.

Here, C3 is the physical space associated with x and each C� is the virtual space corresponding to an

edge 4 ∈ mG, the set of edges incident to x (in the figure, we have shown the case |mG | = 4).

For a finite region - ⊂ Λ, we can assign the tensors +G to each site G ∈ - and perform contractions

between pairs of sites G, H ∈ - that share an edge e. Specifically, we contract the two virtual indices
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from +G and +H that are associated with the same edge e. The contraction of the PEPS tensors gives a

linear map from the virtual edges m- connecting X with its complement to the bulk physical Hilbert

space, which we denote as

+- : Hm- −→ H- ,

where we can identify Hm- ≡ (C�)⊗m- and H- ≡ (C3)⊗- . The image of +- is the space of physical

states which can be represented by the PEPS with an appropriate choice of boundary condition.

.

The boundary state on region X is defined as

dm- = +
†
-
+- ∈ B(Hm- ). (3.2)

If dm- has full rank, we say that the PEPS is injective on region X. If the PEPS is injective on every

sufficiently large region X, we will simply say that it is injective. We will denote by �m- the orthogonal

projector onto the support of dm- .

If we replace the physical space C3 with a space of operators B(C3), then we talk of Projected

Entangled-Pair Operators (PEPOs) instead. If we fix a basis of matrix units {|8〉〈 9 |}3
8, 9=1

for B(C3)
(although we will find it convenient to sometimes work with different bases), then the single-site tensor

+G takes the form:

+G : (C�)⊗mG −→ B(C3)

+G =
3∑

8, 9=1

|8〉〈 9 | ⊗
�∑

:1 ,:2 ,:3 ,:4=1

)
8, 9

:1 ,:2 ,:3 ,:4
〈:1:2:3:4 |

.

In the formula, we have separated the physical indices, given by the matrix units |8〉〈 9 |, from the virtual

indices. In the figures, we add arrows on the physical indices to indicate which spaces correspond to the

“ket” and “bra” part of |8〉〈 9 |, see, for example, (3.1). A particularly simple case of a PEPO is when the

lattice is simply a 1D ring of n sites, in which case, it is also called an MPO. These will be the building

blocks for our PEPO constructions. An MPO is any operator that can be written as
32∑

81 ,...,8==1

Tr
[
"

(1)
81

· · ·" (=)
8=

]
�
(1)
81

⊗ · · · ⊗ � (=)
8=
,

where, for each site : = 1, . . . , =, we have fixed a basis {� (:)
8

}32

8=1
of B(C3) and a set of 32 matrices

{" (:)
8

}32

8=1
of dimension � ×�. To pass from an MPO to a PEPO representation, it is sufficient to check

that the single site tensor

+: =

32∑
8=1

�
(:)
8

⊗
�∑

U,V=1

(" (:)
8

)U,V 〈U, V |,

where (" (:)
8

)U,V denotes the matrix units of "
(:)
8

, represents the same operator. It will be convenient

to have a “hybrid” representation of a PEPO, in which the virtual level is still represented as a matrix,
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that is by writing

+: =

32∑
8=1

�
(:)
8

⊗ " (:)
8
,

as this allows a more direct calculation of the tensor contractions.

Note that we can always represent a PEPO as a PEPS with physical space C3 ⊗ C3 , by choosing an

orthonormal basis of B(C3) in order to identify that space with C3 ⊗ C3 . If we choose the basis given

by matrix units {|8〉〈 9 |}3
8, 9=1

, then this identification can be done as follows. Let |Ψ〉 = (∑3
8=1 |8, 8〉)⊗ |R |

be a maximally entangled state on HR ⊗HR. Each operator & ∈ B(HR) can be represented in “vector

form” by

|&〉 := (& ⊗ 1) |Ψ〉 ∈ HR ⊗ HR .

The map & ↦→ |&〉 is an isometry between B(HR) with the Hilbert-Schmidt scalar product and

HR ⊗ HR. We should mention that, if d ∈ B(HR) is a positive PEPO (in the sense that it is a positive

operator in the range of the map +R for some region R), it is not always true that it admits a local

purification, in the sense that there exists a PEPS on a doubled physical space HR ⊗ HR, such that we

recover d when we trace out one of the copies of HR. On the other hand, in the case when d1/2 is a

PEPO, then |d1/2〉 is a PEPS and a purification of d. Therefore, when studying the case in which dV
is the Gibbs state of a local, commuting Hamiltonian at inverse temperature V, we will write a PEPO

representation for d
1/2
V

(which is proportional to dV/2 up to normalization), and from it, we will obtain

the PEPS representation for the thermofield double state |d1/2
V

〉.
Let us briefly discuss some characteristics that the PEPS description of the thermofield double state

will have. It will be convenient for us to consider a more general definition of PEPS in which the

underlying graph (Λ, �) can be a multigraph. This means that there might be multiple edges joining

the same pair of different vertices of Λ. Of course, we might combine virtual indices joining the same

pair of sites into only one virtual index, adhering to the original definition of PEPS on graphs, as we

represent in the next picture:

.

However, as we will see in Section 4, when finding the PEPS description of the thermofield double state,

it is more natural and useful using the representation with the multigraph, especially when applying

results, such as Theorem 3.5, that require a suitable arrangement of the set of all virtual indices of +-
for a region X into several subsets. In the setting of the quantum double model, recall that Λ# is the set

of edges E# of the squared lattice on the torus. It is important not to confuse this set of edges with the

set of edges �# joining the sites in Λ# and define the PEPS. In this case, every site G ∈ Λ# will be

connected to the other four sites via two edges of �# as in the next picture:

.
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If G is the finite group from which the quantum double model will be constructed, then the individual

tensor +G will have as physical space C |� | , and each virtual space will correspond to C |� |:

+G : (C |� |)⊗8 −→ C |� |

+G ≡
+- ≡ .

3.3. Parent Hamiltonian

A parent Hamiltonian of a PEPS is a local, frustration-free Hamiltonian whose local ground state spaces

,R coincide with the range of +R for all sufficiently large regions R.

There are well-known conditions that can be imposed on the local PEPS tensors +G that ensure that

a parent Hamiltonian exists (in which case, it will not be unique), one of which is injectivity [36], and

which can be generalized to G-injectivity and MPO-injectivity. Since the PEPS we will consider will

not satisfy any of them, we omit further details in this direction, and we will prove directly the existence

of a parent Hamiltonian in Section 4.5.

For a given PEPS, there is a canonical construction of a local and frustration-free Hamiltonian whose

local ground spaces contain the range of +R. For every finite subset X of Λ, let %- : H- −→ H- be

the orthogonal projector onto Im(+- ). Note that if - ⊂ . , then Im(+. ) ⊂ Im(+- ) ⊗ H. \- . Thus, the

projectors satisfy the frustration-free condition %-%. = %. %- = %. , or also, %⊥
-
≥ %⊥

.
.

Next, let us fix a certain family X of subsets of Λ having small range, for example, rectangular

regions in Λ = Z2 of dimensions A × A for a fixed value r. Then, consider the local interaction defined

by the operators %⊥
-

:= 1- − %- , - ∈ X . Note that for each finite region R, the local Hamiltonian

�R =

∑
- ∈X , - ⊂R

%⊥
-

satisfies Im(+') ⊂ ker�', so that the PEPS is in the ground space of this Hamiltonian. For this to

be a parent Hamiltonian, we need a condition ensuring that this is indeed an equality for large enough

regions. We will now show that such condition can be obtained starting from the martingale condition

(see Definition 2.4). As the result is not specific to PEPS, we will state it here in its full generality.

Let us consider the setting of a quantum spin system over a finite set Λ that we presented at the

beginning of Section 2.3. Let us assume that for each finite subset X, we have an orthogonal projector

%- onto a subspace of H- satisfying the frustration-free condition %-%. = %. %- = %. for every pair

of subsets - ⊂ . . In the case of a PEPS, these projections will be the ones onto Im(+- ).

Lemma 3.1. Under the setting just described, fix a family X of finite subsets of Λ, and consider the

local interactions %⊥
-
= 1 − %- , - ∈ X defining for each finite R ⊂ Λ the local Hamiltonian

�R =

∑
- ∈X , - ⊂R

%⊥
- .

If R1,R2 ⊂ Λ satisfy the following properties:

(i) ker(�R8
) = Im(%R8

) for 8 = 1, 2,

(ii) ‖%R1∪R2
− %R1

%R2
‖ < 1,

(iii) for every - ∈ X with - ⊂ R1 ∪R2, we have that - ⊂ R1 or - ⊂ R2,

then ker(�R1∪R2
) = Im(%R1∪R2

).
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Proof. Let us denote R := R1 ∪R2. Applying (888), we get

ker (�R) =
⋂

- ∈X , - ⊂R
ker (%⊥

- )

=

⋂
- ∈X , - ⊂R1

ker (%⊥
- ) ∩

⋂
- ∈X , - ⊂R2

ker (%⊥
- ) = ker(�R1

) ∩ ker(�R2
) .

Combining the previous equality with the frustration-free condition %R%R8
= %R and with (8), we

obtain that

Im(%R) ⊂ ker(�R) = Im(%R1
) ∩ Im(%R2

) .

It remains to prove that this is indeed a chain of equalities, which is a consequence of the last statement

of Lemma 2.1 together with (88). �

Let us now restrict to the case in which Λ is the torus Λ# and the family of projectors %- satisfies

the martingale condition from Definition 2.4 with decay function X(ℓ). Let 3 ≤ A ∈ Nwith # ≥ 2(1+ A)
and such that X(ℓ) < 1/2 for every ℓ ≥ A − 2. Then, let us consider the family X = FA42C

# ,A
of all proper

rectangles in F# having at most r plaquettes per row and per column

a

1

1 ≤ 0, 1 ≤ A ,

and the set of local interactions (%⊥
-
)- ∈X , where %⊥

-
= 1 − %- .

Proposition 3.2. Under the previous hypothesis, for every rectangular region R ∈ F# containing at

least r plaquettes per row and per column, we have that the associated Hamiltonian

�R =

∑
- ∈X ,- ⊂R

%⊥
- satisfies ker(�R) = Im(%R) .

In other words, %R is the orthogonal projector onto the ground state space of �R.

Proof. We are going to prove that every rectangle R having a plaquettes per row and b per column with

0, 1 ≥ A satisfies ker (�R) = Im(%R) arguing by induction on 0 + 1. The first case is 0 + 1 = 2A , for

which we necessarily have 0 = 1 = A and so R ∈ X . In this case, the frustration-free condition of the

projectors and the fact that %⊥
R

is one of the summands of �R immediately yields the equality.

Let us assume that 0 + 1 > 2A and that the claim holds for all rectangular regions R′ with dimensions

0′, 1′ satisfying 0′+1′ < 0+1. We claim that there exist rectangular subregions R1,R2 ⊂ R, such that:

(i) R = R1 ∪R2,

(ii) R 9 has dimensions 0 9 , 1 9 satisfying 0 9 + 1 9 < 0 + 1 for each 9 = 1, 2,

(iii) If - ∈ X is contained in R, then - ⊂ R1 or - ⊂ R2,

(iv) ‖%R1
%R2

− %R‖ < 1.

If this claim holds, then by Lemma 3.1, we immediately conclude that ker(�R) = Im(%R), and so the

proof is finished. Let us the show the validity of the claim, distinguishing three possible cases according

to whether the region R is a proper rectangle, a cylinder, or the whole torus.

Case 1: If R is a proper rectangle, we can assume without loss of generality that 1 > A , where we

recall that b is the number of plaquettes of each row. Then, we split R along the rows into three disjoint
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parts �, �, �, as in the next picture

,

so that R1 = �� and R2 = �� are proper rectangles of dimensions a and 1 − 1, and thus they satisfy

(i)–(ii). They also satisfy (iii), since if - ⊂ R is a rectangle contained neither in R1 nor in R2, it must

have b plaquettes per row, but 1 > A , so X cannot belong to X . Since R1 ∩R2 = � is, again, a rectangle

of dimensions a and 1 − 2, we deduce from the martingale condition that

‖%R1
%R2

− %R1∪R2
‖ ≤ X(1 − 2) < 1 .

Case 2: If R is a cylinder, we can assume without loss of generality that its border lies on the

horizontal sides, so that it contains N plaquettes per row. We then split R along the rows into four

disjoint regions �, �, �, �′, as in the next picture, where A and C correspond to columns of horizontal

edges, and �, �′ have horizontal dimension greater than ⌊#/2 − 1⌋

.

Taking R1 = �′�� and R2 = ���′, we immediately get that these are proper rectangles satisfying (i)

and (ii). They also satisfy (iii), since ⌊#/2 − 1⌋ ≥ A by the hypothesis. Property (iv) follows from the

martingale condition, since it yields that

‖%�′��%���′ − %����′ ‖ ≤ X(⌊#/2 − 1⌋) < 1 .

Case 3: Assume R is the whole torus Λ# . Then, we can split it into four regions �, �, �, �′, as in

the next picture, where B and �′ have dimensions 0 = # and 1 ≥ ⌊#/2 − 1⌋

.

Taking R1 = �′�� and R2 = ���′ as rectangular subregions, we can argue analogously to the

previous cases to deduce that they satisfy (i)–(iii) and

‖%R1
%R2

− %Λ#
‖ ≤ X(⌊#/2 − 1⌋) < 1 .

This concludes the proof of the claim. �
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Figure 4. An example of three regions A, B, C.

3.4. Spectral gap of a parent Hamiltonian

We will now recall the relationship established in [25] between boundary states and the spectral gap of

a parent Hamiltonian of a PEPS.

3.4.1. Boundary states and approximate factorization

Let us consider three (connected) regions �, �, � ⊂ Λ and assume that B shields A from C, so that

there is no edge joining vertices from A and C (see Figure 4). Let us consider the boundary states

dm��� , dm��, dm�� , and dm�. In the case, where they are all full rank, the approximate factorization

condition is defined as follows.

Definition 3.3 (Approximate factorization for injective PEPS [25]). Let Y > 0. We will say that the

boundary states are Y-approximately factorizable, if we can divide the regions

� � �0 2

I

I

U W

and find invertible matrices Δ0I , Δ I2 , ΩUI , ΩIW with support in the regions indicated by the respective

subindices, such that the boundary observables

fm�� = ΩIWΔ0I fm�� = Δ I2ΩUI

fm��� = Δ I2Δ0I fm� = ΩIWΩUI

approximate the boundary states

‖d1/2
mR
f−1
mRd

1/2
mR

− 1‖ ≤ Y for each R ∈ {���, ��, ��},

‖d−1/2
m�

fm�d
−1/2
m�

− 1‖ ≤ Y.

The approximate factorization of the boundary states implies a small norm of the overlaps of ground

space projections.
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Theorem 3.4 [25, Theorem 10]. If the boundary states are Y-approximately factorizable for some Y ≤ 1,

then

‖%��%�� − %��� ‖ < 8Y .

3.4.2. Approximate factorization for locally noninjective PEPS

In [25], the approximate factorization condition was extended to noninjective PEPS satisfying what

is known as the pulling through condition, which holds in the case of G-injective and MPO-injective

PEPS. Unfortunately, the PEPS representing the thermofield double state |d1/2
V

〉 will neither be injective

nor satisfy such a condition. At the same time, it will turn out to have some stronger property which

will make up for the lack of it: it can be well approximated by a tensor product operator. We will now

present the necessary modifications to the results of [25] required to treat this case.

There are three geometrical cases we need to consider in our decomposition of the torus Z# × Z#
into subregions: two cylinders to cover the torus, two rectangles to cover a cylinder, and two rectangles

to cover a rectangle. The following theorem is an adaptation of [25, Theorem 10] that covers each of

these three cases.

Theorem 3.5. Let �, �, � be three disjoint regions of Λ, such that A and C do not share mutually

contractible boundary indices. Let us, moreover, assume that the (boundary) virtual indices of ���,

��, ��, and B can be arranged into four sets 0, 2, U, W, as in the next picture, so that

� � �

0 2

�

U W

m� \ m� ⊂ 0 , m� \ m� ⊂ 2 , m� ∩ m� ⊂ U , m� ∩ m� ⊂ W

m��� = 02 , m�� = 0W , m�� = U2 , m� = UW .

Let us also assume that the orthogonal projections �mR onto the support of dmR admit a factorization

in terms of projections �0, �2 , �U, �W (subindices indicate their corresponding support), namely

�m��� = �0 ⊗ �2 , �m�� = �0 ⊗ �W , �m�� = �U ⊗ �2 , �m� = �U ⊗ �W ,

and there also exist positive semidefinite operators f0, f2 , fU, fW with full-rank on �U, �0, �W , �2 , such

that

fm��� := f0 ⊗ f2 , fm�� := f0 ⊗ fW , fm�� := fU ⊗ f2 , fm� := fU ⊗ fW

satisfy for some 0 ≤ Y ≤ 1

‖�mR − d1/2
mR
f−1
mRd

1/2
mR

‖ < Y , R ∈ {���, ��, ��} ,

‖�m� − d−1/2
m�

fm�d
−1/2
m�

‖ < Y.

Here, inverses are taken on the corresponding support. Then,

‖%��%�� − %��� ‖ ≤ 8Y .

In case the region R consists of the whole lattice (e.g., torus), then the sets a and c would be empty.

Consequently, f0 and f2 would be simply scalars.
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Proof. Let us define the approximate projections

&R := +Rf
−1
mR+

†
R

, R ∈ {��, ��, ���} .

Note that +Rd
−1/2
R

is a partial isometry from the support of dmR to Im(+R), since

(+Rd−1/2
mR

)†+Rd−1/2
mR

= d
−1/2
mR

+
†
R
+Rd

−1/2
mR

= d
−1/2
mR

dmR d
−1/2
mR

= �mR,

and

+Rd
−1/2
mR

(+Rd−1/2
mR

)† = +Rd−1
mR+

†
R

= %R,

where the last equality is a consequence of the fact that +Rd
−1
mR
+
†
R

is a self-adjoint projection whose

image is exactly Im(+R). As a consequence

‖%R −&R‖ = ‖+Rd−1
mR+

†
R
−+Rf−1

mR+
†
R
‖

= ‖+Rd−1/2
mR

(�mR − d1/2
mR
f−1
mRd

1/2
mR

)d−1/2
mR

+
†
R
‖

= ‖�mR − d1/2
mR
f−1
mRd

1/2
mR

‖ < Y .

(3.3)

We are going to denote by +�→� the tensor obtained from +� by taking all input indices that connect

with B into output indices, so that

+��� = +��+�→� and +�� = +� +�→� .

Analogously, we define +�→� satisfying

+��� = +��+�→� and +�� = +�+�→� .

Then, we can rewrite

&��� = +���f
−1
m���+

†
���

= +���f
−1
0 f−1

2 +
†
���

= +��+�→�f
−1
0 f−1

2 +
†
�→�

+
†
��

= +��f
−1
0 +�→� +

†
�→�

f−1
2 +

†
��

.

At this point, we can use the local structure of the projections to write+�� = +���m�� = +���m���W =

+���W = +��fWf
−1
W . Analogously, +�� = +��fUf

−1
U . Inserting both identities above, we can rewrite

&��� = +��f
−1
0 f−1

W +
†
�→�

fWfU +�→� f
−1
U f−1

2 +
†
��

= +�� f
−1
m�� +

†
�→�

fm� +�→� f
−1
m�� +

†
��

.

Similarly, we handle

&��&�� = +��f
−1
m��+

†
��
+��f

−1
m��+

†
��

= +��f
−1
m��+

†
�→�

+
†
�
+� +�→� f

−1
m��+

†
��

= +��f
−1
m��+

†
�→�

dm� +�→� f
−1
m��+

†
��

.
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To compare the expressions for &��� and &�� &�� , we introduce

Δ�� := +�� f
−1
m�� +

†
�→�

d
1/2
m�
,

Δ�� := +�� f
−1
m�� +

†
�→�

d
1/2
m�
.

It is easy to check that

&��� −&��&�� = Δ��

(
(d−1/2

m�
fm�d

−1/2
m�

− �m� )
)
Δ
†
��

. (3.4)

Since &2
��

= Δ��Δ
†
��

, we can apply (3.3) to estimate

‖Δ�� ‖2
= ‖Δ��Δ

†
��

‖ = ‖&2
�� ‖ ≤ ‖&�� ‖2 ≤ (1 + Y)2 .

Analogously,&2
��

= Δ��Δ
†
��

, and so ‖Δ�� ‖ ≤ 1+ Y. Combining these inequalities with (3.4), we get

‖&��� −&��&�� ‖ ≤ (1 + Y)2 ‖�m� − (d−1/2
m�

fm�d
−1/2
m�

) ‖ ≤ Y(1 + Y)2 . (3.5)

Finally, we combine the previous inequality with (3.3) to conclude

‖%��� − %��%�� ‖ ≤ ‖%��� −&��� ‖ + ‖&��� −&��&�� ‖
+ ‖%��%�� −&��&�� ‖

≤ Y + Y(1 + Y)2 + ‖%�� −&�� ‖ ‖%�� ‖
+ ‖&�� ‖ ‖%�� −&�� ‖

≤ Y + Y(1 + Y)2 + Y + (1 + Y)Y = (Y2 + 3Y + 4)Y ≤ 8Y ,

which gives the result. �

3.4.3. Gauge invariance of the approximate factorization condition

An interesting observation, omitted in [25], is that the property of Y-approximately factorization is

gauge invariant if the transformation does not change the support of the boundary state. Indeed, for

every vertex G ∈ Λ and every edge 4 ∈ � incident to x, let us fix an invertible matrix G (4, G) ∈ C� ⊗C� .

We assume that for every edge e with vertices G, H, we have

G (4, G) = G (4, H)−1 . (3.6)

We will simply write G (4) when the site is clear from the context. Let us assume that we have two PEPS

related via this gauge, namely, for every site G ∈ Λ, we have that the local tensors +̃G and +G are related

via (see Figure 5)

+G = +̃G ◦ GG , where GG :=
⊗
4∈mG

G (4, G) .

For a region R ⊂ Λ, when contracting indices to construct +R, we have, as a consequence of (3.6),

that contracting inner edges of R cancel the gauge matrices. Thus, +̃R and +R are related via (see

Figure 6):

+R = +̃R ◦ GmR with GmR :=
⊗
4∈mR

G (4) . (3.7)
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Figure 5. Tensors with (right) and without (left) gauge.

Figure 6. Tensor network with (right) and without (left) gauge (physical indices are not shown).

The boundary state after the change of gauge is transformed as

dmR = G
†
mR
d̃mRGmR ,

where d̃mR = +̃
†
R
+̃R.

Proposition 3.6. Assume that [�mR,GmR] = 0. Let f̃mR supported on �mR, and define

fmR = G
†
mR

f̃mR GmR.

Then, fmR is also supported on �mR, and it holds that

d1/2
mR
f−1
mRd

1/2
mR

− �m'
 =

d̃1/2
mR
f̃−1
mR d̃

1/2
mR

− �m'
 .

Proof. Since �mR and GmR commute, we have that dmR, d̃mR, fmR, and f̃mR all have the same support,

namely, �mR, and so

f−1
mR = G−1

mR f̃
−1
mR G

†−1

mR
.

Therefore, if %R denotes the orthogonal projection onto Im(+R) = Im(+̃R), then we can write

%R = +R d−1
mR+

†
R

= +̃R d̃ −1
mR +̃

†
R
.

From the definition of f̃mR, we similarly see that

+Rf
−1
mR+

†
R

= +̃R f̃
−1
mR +̃

†
R
.
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The statement then follows from the fact that

,R (d1/2
mR
f−1
mRd

1/2
mR

− �m'),†
R

= +Rf
−1
mR+

†
R
−+Rd−1

mR+R

= +̃Rf̃
−1
mR+̃

†
R
− +̃R d̃−1

mR+̃R

= ,̃R ( d̃1/2
mR
f̃−1
mR d̃

1/2
mR

− �m'),̃†
R
,

where,R = +Rd
−1/2
mR

and ,̃R = +̃R d̃
−1/2
mR

are isometries. �

Corollary 3.7. Let �, �, � be three regions of Λ, as in the definition of approximate factorization

(Definition 3.3), and assume that [�mR, �mR] = 0 for R ∈ {���, ��, ��, �}. If the PEPS generated

by +̃G is Y-approximately factorizable, then so does the PEPS generated by +G .

Proof. Let us assume then that the PEPS with local tensors +̃G is Y-approximately factorizable. Because

of Proposition 3.6, it is sufficient to verify that fmR satisfies the necessary locality properties. If �̃mR and

f̃mR are product operators (as in Theorem 3.5), then so are �mR and fmR, and there is nothing to prove.

Let us now consider the case in which f̃mR is not in a tensor product form (as in Definition 3.3). Let

0, U, I, W, 2 be the regions dividing the boundaries m��� = 0I2, m�� = 0IW, m�� = UI2, m� = UIW,

and let Δ̃0I , Δ̃ I2 , Ω̃UI , Ω̃IW be the corresponding matrices. Note that the gauge matrices GmR can be

rearranged according to the boundary subregions, for example

Gm��� = G0I2 = G0IG2 = G0GI2 .

If we define

Δ0I := G†
0 Δ̃0I G0I , Δ I2 := G†

I2 Δ̃ I2 G2 ,

ΩUI := G†
U Ω̃UIGUI , ΩIW := G†

IW Ω̃IW GW ,
(3.8)

then, we can directly check that fmR satisfies

fm�� := ΩIWΔ0I , fm�� := Δ I2ΩUI ,

fm��� := Δ I2Δ0I , fm� := ΩIWΩUI .

This finishes the proof. �

4. PEPS description of the thermofield double

4.1. Quantum double models

Let us begin by recalling the definition of the quantum double models. They are defined on the lattice

Λ# consisting of midpoints of the edges of the square lattice Z# × Z# (see Section 2.3). Let us denote

by V = V# the set of vertices, and by E = E# the set of edges of Z# × Z# . Each edge is given an

orientation: for simplicity, we will assume that all horizontal edges point to the left, while vertical edges

point downwards.

#

#

.
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Let us fix an arbitrary finite group G, and let ℓ2(�) be the complex finite dimensional Hilbert space

with orthonormal basis given by {|6〉 | 6 ∈ �}. At each edge 4 ∈ E , we have a local Hilbert space H4

and a space of observables B4 defined as

H4 = ℓ2(�) and B4 = B(H4) = M |� | (C).

We will use the alternative notation HΛ = HE and BΛ = BE .

Given 6 ∈ �, we define operators on ℓ2(�) by

!6 :=
∑
ℎ∈�

|6ℎ〉〈ℎ|. (4.1)

Then 6 ↦→ !6 is a representation of the group G, known as the left regular representation.

For each finite group G, the quantum double model onΛ is defined by a Hamiltonian �
syst

Λ
of the form

�
syst

Λ
= −

∑
E vertex

�(E) −
∑

? plaquette

�(?) ;

where the terms �(E) are star operators, supported on the four incident edges of v, which we will denote

as mE, while �(?) are plaquette operators, supported on the four edges forming the plaquette p. Both

terms are projections, and they commute, namely

[�(E), �(E′)] = [�(?), �(?′)] = [�(E), �(?)] = 0

for all vertices E, E′ and plaquettes ?, ?′. We will now explicitly define these terms, and a straightforward

calculation will show that they satisfy these properties.

Let v be a vertex and e an edge incident to v. For each 6 ∈ �, we define the operator )6 (E, 4) acting

on H4 according to the orientation given to e as

)6 (E, 4) =

∑
ℎ∈�

|6ℎ〉〈ℎ |
or

∑
ℎ∈�

���ℎ6−1
〉
〈ℎ |

.

In other words, the operator )6 (E, 4) acts on the basis vector of H4 by taking h into 6ℎ (respectively,

ℎ6−1) if the oriented edge e points away from (respectively, to) v. It is easily checked that

)6 (E, 4) )ℎ (E, 4) = )6ℎ (E, 4) and )6 (E, 4)† = )6−1 (E, 4) (4.2)

for every 6, ℎ ∈ �.

With this definition, the vertex operator �(E) is given by

�(E) =
1

|� |
∑
6∈�

⊗
4∈mE

)6 (E, 4)
.

Using (4.2), it is easy to verify that �(E) is a projection.

The plaquette operator �(?) is defined as follows. Let us enumerate the four edges of p as 41, 42, 43, 44

following counterclockwise order starting from the upper horizontal edge. The plaquette operator on p

acts on ⊗4
9=1

H4 9
and is defined as the orthogonal projection �(?) onto the subspace spanned by basis

vectors of the form |61626364〉 with f? (61)f? (62)f? (63)f? (64) = 1. Here, f? (6) is equal to g if the

orientation of the corresponding edge agrees with the counterclockwise labelling, otherwise, it is equal

to 6−1.
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For the orientation we have previously fixed, we can give an explicit expression in terms of the regular

character 6 ↦→ jA46 (6) = Tr(!6) = |� | X6,1 , namely

�(?) =
1

|� |
∑

61 ,62 ,63 ,64∈�
jA46 (61626

−1
3 6−1

4 )
4⊗
9=1

��6 9 〉〈6 9 �� .

Fixed V < ∞, the associated Gibbs state at inverse temperature V is given by

dV = 4−V�
syst

Λ /Tr(4−V�
syst

Λ ) .

Since the star and plaquette operators commute, we can decompose

4−
V
2
�

syst

Λ =

∏
E vertex

4
V
2
�(E)

∏
? plaquette

4
V
2
� (?) . (4.3)

Using the fact that �(E) and �(?) are projections, we can rewrite the last expression as

4−
V
2
�

syst

Λ =

∏
E vertex

(
Id+(4V/2 − 1) �(E)

) ∏
? plaquette

(
Id+(4V/2 − 1) �(?)

)
.

4.2. PEPO elementary tensors

We will now construct a PEPO representation of the interactions �(E) and �(?) (which will actually

be a MPO representation). From this, we will obtain a very similar PEPO representation for Id+(4V/2 −
1) �(E) and Id+(4V/2 − 1) �(?). Combining the single-site tensors of each, we will derive the PEPO

representation of 4−
V
2
�

syst

Λ and the corresponding PEPS representation of |d1/2
V

〉. We will use the notation

WV :=
4V − 1

|� |

along the section. It is also recommended to review the tensor notation that was introduced in Section

3.1, as we will be using it extensively in the upcoming sections.

4.2.1. Star operator as a PEPO

The star operator �(E) admits an easy representation as a PEPO, namely

,

where each individual tensor consists of four indices: two physical indices colored in black and two

virtual indices colored in red. All indices have the same dimension and are identified with ℓ2(�). These
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tensors can be explicitly described using the notation introduced in Section 3.1 as follows:

Since �(E) is a projection,

4
V
2
�(E)

= Id+(4V/2 − 1) �(E) = Id+WV/2 |� | �(E) ,

or equivalently

4
V
2
�(E)

=
(
1 + WV/2

) ⊗
4∈mE

)1 (4, E) +
(
WV/2

) ∑
6∈�
6≠1

⊗
4∈mE

)6 (4, E) .

Comparing with �(E), we find a natural description as a PEPO

,

where we are adding to the above representation for �(E) suitable weights

(4.4)

Therefore, we have a PEPO decomposition of 4
V
2
�(E) into four identical tensors acting individually on

each edge

where we can expand

G |6〉〈6 |G =
(
X6,1 + WV/2

)1/4 |6〉〈6 | .

4.2.2. Plaquette operator as a PEPO

The plaquette operator

�(?) =
1

|� |
∑

61 ,62 ,63 ,64∈�
jA46 (61626

−1
3 6−1

4 )
4⊗
9=1

��6 9 〉〈6 9 ��
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admits an easy PEPO representation. Using that

jA46 (61626
−1
3 6−1

4 ) = Tr(!61!62!6
−1
3 !6

−1
4 ) ,

we can decompose

,

where

and !6
±

is a shorthand for !f? (6) : it is either !6 or !6
−1

= (!6)†, depending on whether the orientation

of the edge agrees with the counterclockwise orientation of the plaquette (!6), or is the opposite (!6
−1

).

As in the case of the star operator, �(?) is a projection so

4
V
2
� (?)

= Id+(4V/2 − 1) �(?)

=

∑
61 ,62 ,63 ,64∈�

(
1 + WV/2 j

A46 (61626
−1
3 6−1

4 )
) 4⊗

9=1

��6 9 〉〈6 9 ��.
Recall that left regular representation is in general not irreducible [22]. Let us denote

%1 =
1

|� |
∑
6∈�

!6 . (4.5)

By direct calculation, one can verify that %1 is an orthogonal projection on a subspace of dimension 1

(since Tr %1 = 1). Moreover, since !6%1 = %1 for every 6 ∈ �, the regular representation acts trivially

on this subspace (%1 is the orthogonal projection onto+1 the unique trivial irreducible subrepresentation

of the regular representation). As a consequence of this, we get that for every 6 ∈ �

Tr(%1!
6) = Tr %1 = 1.

If we denote %0 := %⊥
1
= 1 − %1, then we have for every 6 ∈ �

!6 = %1!
6%1 + %0!

6%0 = %1 + %0!
6%0 , (4.6)

and so

1 + (WV/2) jA46 (61626
−1
3 6−1

4 ) = 1 + (WV/2) jA46 (64636
−1
2 6−1

1 )

= 1 + (WV/2) Tr(!64!63!6
−1
2 !6

−1
1 )

=
(
1 + WV/2

)
Tr(%1 !

64!63!6
−1
2 !6

−1
1 )

+ (WV/2) Tr( %0 !
64!63!6

−1
2 !6

−1
1 ) .

(4.7)
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Comparing with �(?), we have then the following decomposition

,

where we are adding to the above representation for �(?) suitable weights

. (4.8)

Therefore, we have a PEPO decomposition of 4
V
2
� (?) into four identical tensors acting individually

on each edge and given by

,

where we can expand

G !6
±
G = (1 + WV/2)1/4 %1 +

(
WV/2

)1/4
%0 !

6± %0 .

The choice of the sign is given according to the next picture

so that the order in the composition of the maps fits with (4.7).

4.2.3. PEPS tensor on an edge

We have decomposed each star operator 4
V
2
�(B) , respectively, plaquette operator 4

V
2
� (?) , into four tensors

acting, respectively, on the incident, respectively, surrounding, edges. Let us now fix an edge e with

orientation:

.

On this edge, we will have four tensors acting, two coming from the plaquettes and two coming from

the stars which the edge belongs to. Each of these four tensors has a component acting on the physical

space H4, which in the graphs has been denoted as a solid black ball, and a component acting on some

virtual space (which is also isomorphic to ℓ2(�)), which we denoted as colored lines (either red or blue).
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Figure 7. The contraction defining the slim edge tensor. Note that the resulting tensor depends on the

ordering of the product of the four original tensors. Here, we have convened to set the two tensors

coming from the plaquettes below the two tensors coming from the vertices.

All four tensors act on the same physical space, but each of them has a separate virtual space distinct

from the others. We want now to contract the indices of these tensors acting on the physical space. As

the weights tensors (the white dots in our graphical notation) act only on the virtual indices, we can for

the moment ignore them. The resulting tensor will be called slim (as it is lacking the weights), and will

be denoted by +̃4 ∈ B(H4) ⊗ B(ℓ2(�))⊗4.

Graphically, the situation is represented in Figure 7: on the left side, we have shown (in perspective)

the four tensors acting on the given edge following the specific order for their contraction (see Remark

4.1). On the right-hand side, the graphical representation of a tensor in B(H4) ⊗B(ℓ2(�))⊗4 (seen from

a top-down view): here, the black square represents an element of B(H4), while each of the four colored

lines is an element of B(ℓ2(�)). Performing the contraction, we obtain the following decomposition of

the tensor +̃4.

. (4.9)

This tensor defines a PEPO, and as discussed in Section 3, we can realize a local purification to obtain

a PEPS with physical space H2
4 = H4 ⊗ H4, via the purification map & ↦→ |&〉 = & ⊗ 1|Ψ〉, where

|Ψ〉 = ∑
ℎ |ℎℎ〉. It will be convenient to also represent the virtual spaces B(ℓ2(�)) as ℓ2(�) ⊗ ℓ2(�),

using the same purification map. With a minor abuse of notation, we will denote also by +̃4 the linear

map from the virtual space Hm4 = ℓ2(�)⊗8 to the physical space H2
4 given by

. (4.10)

The full tensor +4 is then constructed from +̃4 by adding the corresponding weights G and G on

the boundary indices. Indeed, adding the weights to the representation (4.9) leads to the corresponding

representation for +4 simply replacing

|ℎ〉〈ℎ| ↦→ G |ℎ〉〈ℎ|G , !6 ↦→ G !6G ,

whereas adding the weights to (4.10) leads to the same expression but replacing

〈ℎ ℎ | ↦→ 〈ℎ ℎ | (G ⊗ G ) , 〈!6 | ↦→ 〈!6 | (G ⊗ G ) .
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Using this last representation, we can relate

+4 = +̃4 Gm4 ,

where Gm4 is a suitable tensor product of (positive and invertible) operators of the form G ⊗ G and

G ⊗ G .

We will use a simpler picture for this slim tensor as well as for the full edge-tensor:

.

Remark 4.1. The tensor +4 we constructed depends on the way we have ordered the four components

coming from the plaquette and star terms. Choosing a different order would have given us a different

PEPO tensor representing the same operator 4−
V
2
�

syst

Λ . This choice will be irrelevant for our purposes,

as they all give rise to equivalent boundary states.

4.3. Boundary states

4.3.1. Edge

In the previous subsection, we have described the slim and full tensors of the PEPS associated to an

edge, namely, +̃4 and +4, both depending on the prefixed orientation. Next, we are going to construct

the corresponding boundary states d̃m4 and dm4 by contracting the physical indices. Let us first consider

an edge with fixed orientation:

.

The slim boundary state is constructed as d̃m4 = +̃
†
4 +̃4, or equivalently, by considering +̃4 ⊗ +̃†

4 and

contracting the physical indices:

.

Note that the scalar factor given in terms of the scalar product will be zero or one, the latter if and only if

6 = 6′ = (ℎ−1 ℎ′)−1 6 (:−1 : ′)

so if we denote 1 := :−1: ′ and 0 := ℎ−1ℎ′, then we can rewrite
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Let us introduce some notation for 0, 6 ∈ �

This allows us to rewrite the slim boundary state in the simpler form:

(4.11)

It will also be convenient to introduce the weighted version of these tensors. For that, we introduce

the analog of q̃0 and k̃6 when contracting with the weights of the PEPO representation of 4
V
2
�(B) and

4
V
2
� (?) , namely

and

Thus, analogously to the slim case, we can represent the full boundary state

(4.12)

For the sake of applying the theory relating boundary states and the gap property of the parent Hamilto-

nian of a PEPS (see Section 3), we should look at the boundary states d̃4 and dm4 as maps Hm4 −→ Hm4.

We could have taken the PEPS expressions for +̃4 and +4 described in the previous section as maps

Hm4 −→ H2
4, see (4.10), and calculated d̃m4 = +̃

†
4 +̃4 and dm4 = +

†
4+4. This can be obtained also from

(4.11) and (4.12) by reinterpreting for 0, 6 ∈ �

q̃0 =

∑
ℎ∈�

|ℎ0〉|ℎ0〉〈ℎ|〈ℎ| , k̃6 = |!6〉〈!6 | ,

and so

q0 =

∑
ℎ∈�

(
Xℎ,1 + WV/2

)1/4 (
Xℎ0,1 + WV/2

)1/4 |ℎ0〉|ℎ0〉〈ℎ|〈ℎ| ,

k6 =

∑
=,<∈{0,1}

(= + WV/2)1/4(< + WV/2)1/4 |%=!
6%=〉〈%<!

6%< | .
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We will use this notation for the rest of the paper. Recall that

q0 = (G ⊗ G ) q̃0 (G ⊗ G ) , k6 = (G ⊗ G ) k̃6 (G ⊗ G ) .

Defining Gm4 as G ⊗ G ⊗ G ⊗ G , up to a reordering of the tensor factors, we obtain that dm4 =

Gm4 d̃4 Gm4.

4.3.2. Plaquette

Let us next describe the boundary state of a plaquette, constructed by placing the boundary state of each

edge, as it was described in the previous subsection, and contracting indices accordingly:

.

For a more precise description, let us first label the edges and vertices of the plaquette 41, 42, 43, 44

and E1, E2, E3, E4 counterclockwise, as in the next picture

E1E2

E3 E4

41

42

43

44 .

At each vertex E 9 , when contracting the indices of q0 and q0′ coming from the two incident edges, we

have

.

Note that this contraction will be zero unless 0 = 0′, and in that case, only the summands with ℎ = ℎ′

will be nonzero. We will denote this tensor as q
(2)
0 , being

.

Hence, we can expand
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We remark that the elements 6 9 and 0 9 satisfy some compatibility conditions for the corresponding

summand to be nonzero, namely

02 = 6−1
1 0161 , 03 = 6−1

2 0262 , 04 = 63036
−1
3 , 01 = 64046

−1
4 . (4.13)

The whole circle corresponds to the full contraction of the inner k6’s placed on the edges, so it is a

constant factor

.

Since %:%:′ = 0 whenever : ≠ : ′ and %:!
6 = !6%: , we can simplify

And the last expression can be simplified further using (4.7)

(4.14)

Note that, since jA46 (6)/|� | is equal to zero or one, we have for every 6 ∈ �

(
1 + 4

V/2 − 1

|� | jA46 (6)
)2

= 1 + 4
V − 1

|� | jA46 (6) . (4.15)

Therefore, we can take the scalar out and rewrite
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Again, it should be noted that the sum expands over elements 6 9 and 0 9 , satisfying the compatibility

conditions (4.13). They yield, in particular, that knowing 6 9 for 9 = 1, 2, 3, 4 and one of the 0 9 ’s, we

can determine the rest. As a consequence, we can rewrite

where the sum is taken over 0, 6 9 satisfying

(61626
−1
3 6−1

4 ) 0 (61626
−1
3 6−1

4 )−1
= 0 . (4.16)

It will also be useful to consider the slim version d̃? of d? obtained by “removing” the weights from

the boundary virtual indices:

where, once again, the sum is taken over elements satisfying the compatibility condition (4.16).

4.3.3. Rectangular region

We aim at describing the boundary of the rectangular regions R ⊂ Λ ≡ E . We are going to make the

details in the case of a proper rectangle, since the cylinder case follows analogously with few adaptations.

First, we need to introduce some further notation regarding the edges and vertices that form R:

ER := edges contained in R,

EmR := edges with only one adjacent plaquette inside R,

E
R̊

:= edges with both adjacent plaquettes inside R,

VR := vertices contained in R,

VmR := vertices with some but not all incident edges in R,

V
R̊

:= vertices with all four incident edges in R,

=R := number of plaquettes contained in R .

To formally construct the transfer operator or boundary state dR on R, we must place at each edge e

contained in R the transfer operator d4 that was constructed in the previous subsection and contract the
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indices:

.

The philosophy is similar to the plaquette case, although more cumbersome to formalize. We are

going to expand the expression for dmR

as a sum over maps

6̂ : ER −→ � , 0̂ : VR −→ �

satisfying a certain compatibility condition. Let us explain the notation: at each edge 4 ∈ ER, we set a

value 6 := 6̂(4) according to whether we have

At each vertex E ∈ VR, the contraction of indices coming from incident edges and corresponding to

say q0 and q0′ will be zero unless 0 = 0′. Thus, a nonzero contraction will be determined by a unique

0̂(E) = 0 = 0′:

(4.17)

Moreover, the sum in the aforementioned expression for dmR is taken over maps 6̂ and 0̂ satisfying the

compatibility condition: for every edge 4 ∈ ER
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The notation for the rectangles with k6̂ and q0̂ is the obvious. They specifically refer to the tensor

product of operators q
( 9)
0 and k6 (respectively) that are present in the boundary. They do not encompass

the entire circles (constants) that are observed within the plaquettes:

.

The compatibility condition yields an interesting consequence that we also pointed out for plaquettes

in Section 4.3.2. For each pair (0̂, 6̂), the map 0̂ can be reconstructed, knowing only its value at one

vertex using 6̂. In particular, if we fix a vertex, namely, the lower right corner, we can rewrite the above

expression of dm' as

.

Here, 0̂ is the only map compatible with 6̂ and the choice a in the prefixed vertex. In particular, all the

elements 0̂(E), E ∈ VR belong to the same conjugation class. This means that we have two possibilities:

If 0 = 1, respectively, 0 ≠ 1, then 0̂(E) = 1, respectively, 0̂(E) ≠ 1, for every vertex of VR, and thus by

(4.17)

where we have extracted the constant factor resulting from full contraction in the inner vertices of the

rectangle. Analogously, we can argue with the k6̂ factor, where now we get a constant factor for each
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inner plaquette by (4.14) and (4.15):

where we are denoting for each plaquette

?

41

42

43

44 jA46 (6̂ |?) = jA46 (61626
−1
3 6−1

4 ), 68 = 6̂(48).

Note that the definition is independent of the enumeration of the edges, as long as it is done

counterclockwise (jA46 is invariant under cyclic permutations) and respect the inverses on the lower

and right edges.

We have then the following representation for the boundary state dR of the rectangular region R

where we are denoting

2V ( 6̂ ) :=
∏
? inner

plaquette

(
1 + WVjA46 (6̂ |?)

)
. (4.18)

We are going to deal with the slim version of the boundary state resulting from removing the weights

acting on the boundary indices:

(4.19)

Defining GmR to be the suitable tensor product of G2 , G3 and G corresponding to the boundary indices

appearing in mR, the two versions of the boundary state are related by

dmR = GmR d̃mRGmR .

4.3.4. Leading term and approximate factorization

Finding a short explicit formula for the boundary states dmR and d̃mR is not going to be feasible. But

we will show that, after rearranging summands, there is a dominant term that we can explicitly describe

in a short way. For that, let us introduce

Δ̃ :=
1

|� |
∑
6∈�

k̃6 =
1

|� |
∑
6∈�

|!6〉〈!6 |
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and consider the (product) operator

(4.20)

We will later show that this is indeed an orthogonal projection on HmR made of local projections Δ̃ and

q̃
1̂

on ℓ2(�) ⊗ ℓ2(�). We next state the first main (and most involved) result of the section.

Theorem 4.2 (Leading term of the boundary). Let us define the scalars

^R := (1 + WV) |VR̊
|+=R |� | |ER | , nR := 3 |� |2

(
WV

1 + WV

) |V
R̊
|
.

Then, we can decompose

d̃mR = ^R

(
S̃mR + S̃A4BC

mR

)

for some observable S̃A4BC
mR

with ‖S̃A4BC
mR

‖ ≤ nR.

Before proving the theorem, let us discuss two useful consequences. Recall that the full boundary

state dmR and its slim version d̃mR are related via a transformation GmR consisting of a tensor product

of the (positive and invertible) weight-operators (see Section 4.3.3):

dmR = +
†
R
+R = GmR +̃

†
R
+̃R GmR = GmR d̃mR GmR .

Denote by �mR and �̃mR the orthogonal projections onto (ker dmR)⊥ and (ker d̃mR)⊥, respectively.

Theorem 4.3 (Approximate factorization of the boundary). Following the notation of the previous

theorem, let us assume that nR < 1. Then, the following assertions hold:

(i) �mR = �̃mR = (̃mR. In other words, S̃mR is the orthogonal projection onto the support of the slim

boundary state and the full boundary state.

(ii) The operator

fmR := ^R (GmR�mR GmR),

satisfies d1/2
mR
f−1
mRd

1/2
mR

− �m'
 < nR ,

d−1/2
mR

fmRd
−1/2
mR

− �m'
 ≤ nR

1 − nR
,

where, here, the inverses are taken in the corresponding support.

In particular, �mR, �̃mR, and fmR inherit the tensor product structure of S̃mR, GmR.

In the rest of the subsection, we will develop the proofs of the above results. We have divided the

whole argument into four parts. The first two parts are Tool Box 1 and Tool Box 2 that contain some

auxiliary results. Then, we will first prove Theorem 4.2, and finally Theorem 4.3.

Tool Box 1: Boundary projections

We start with a few useful observations on the operators q̃ and k̃. Using the explicit formula q̃0 =∑
ℎ∈� |ℎ0〉|ℎ0〉〈ℎ|〈ℎ|, it is easy to check that

⊲ q̃0 q̃0′ = q̃0′0 for each 0, 0′ ∈ �,

⊲ q̃1 is a projection.
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For every 6, 6′ ∈ �

〈!6 |!6′〉 = Tr(!6−1

!6
′) = Tr(!6−16′) = X6,6′ |� |. (4.21)

This means that vectors 1√
|� |

|!6〉 are orthonormal in ℓ2 [�] ⊗ ℓ2 [�], so

⊲ 1
|� | k̃6 =

1
|� | |!6〉〈!6 | is a one-dimensional orthogonal projection,

⊲ 1
|� | k̃6 and 1

|� | k̃6′ are mutually orthogonal if g and 6′ are distinct.

These facts will be used throughout the forthcoming results.

Proposition 4.4. For each 5̂ : EmR −→ �, let

Then, PmR( 5̂ ) is an orthogonal projection on HmR. Moreover, if 5̂1 and 5̂2 are different, then PmR ( 5̂1)
and PmR( 5̂2) are mutually orthogonal, that is

PmR ( 5̂1) PmR( 5̂2) = PmR( 5̂2) PmR( 5̂1) = 0.

Proof. The first statement is clear, since PmR( 5̂ ) is by definition a tensor product of projections q̃1

and 1
|� | k̃6. Moreover, if 5̂1 and 5̂2 are different, then there is a boundary edge 4 ∈ EmR, such that

5̂1(4) ≠ 5̂2(4). Thus,

since k̃
5̂1 (4) and k̃

5̂2 (4) are mutually orthogonal by the above observations. �

Proposition 4.5. For each 5̂ : EmR −→ �, let us define

.

Recall that for each 0 ∈ �, the element 0̂ that appears on the right-hand side is the only choice

compatible with 5̂ and the fixed a. Then, QmR( 5̂ ) is an orthogonal projection. Moreover, if 5̂1 and 5̂2
are different, then QmR( 5̂1) and QmR( 5̂2) are mutually orthogonal.

Proof. Let us first check that QmR( 5̂ ) is an orthogonal projection. For that, it is enough to check that

each of the two (tensor product) factors is a projection. The first factor is indeed a tensor product of

projections 1
|� | k̃6. For the second factor, we just need to check that it is self-adjoint and idempotent.

Since for every a, the adjoint of q̃0 is q̃0−1 , it holds

,
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and that the latter is, again, compatible with 5̂ , since at each edge, the condition 02 = 6016
−1 is

equivalent to 0−1
2

= 60−1
1
6−1. Thus, summing over all 0 ∈ �, we get self-adjointness, and so the first

statement is proved. To see the second statement, note that

,

and that the resulting element q̃
1̂0

is compatible with g, since 02 = 6016
−1 and 12 = 6116

−1 yield that

0212 = 601116
−1. Hence, summing over 0, 1 ∈ � in the previous expression, we get

.

This finishes the argument that QmR( 5̂ ) is an orthogonal projection. Finally, if 5̂1 and 5̂2 are different,

then we can check that QmR ( 5̂1) and QmR( 5̂2) are mutually orthogonal, arguing as in the proof of

Proposition 4.4. �

Lemma 4.6. The operator

Δ̃ :=
1

|� |
∑
6∈�

k̃6 =
1

|� |
∑
6∈�

|!6〉〈!6 |

is a projection on ℓ2(�) ⊗ ℓ2(�) satisfying

Δ̃k̃6 = k̃6Δ̃ = k̃6 for all 6 ∈ � , (G ⊗ G )Δ̃ = Δ̃ (G ⊗ G ) .

Proof. It is clear from the above observations on 1
|� | k̃6 that Δ̃ is actually the projection onto the vector

subspace generated by vectors of the form |!6〉, and that Δ̃k̃6 = k̃6Δ̃ = k̃6 for all 6 ∈ �. To prove the

last identity, let us apply (4.6) to decompose

|!6〉〈!6 | = |%1〉〈%1 | + |%1〉〈%0!
6%0 | + |%0!

6%0〉〈%1 | + |%0!
6%0〉〈%0!

6%0 | .

Since %1 =
1
|� |

∑
6∈� !

6 (see (4.5) and the subsequent discussion), we get after summing over 6 ∈ �
in the previous expression

Δ̃ =
1

|� |
∑
6∈�

|!6〉〈!6 | = |%1〉〈%1 | +
1

|� |
∑
6∈�

|%0!
6%0〉〈%0!

6%0 | .

Note that

(G ⊗ G ) |%1〉 = |G %1G 〉 = (1 + WV/2)1/4 |%1〉 ,

(G ⊗ G ) |%0!
6%0〉 = |G %0!

6%0G 〉 = (WV/2)1/4 |%0!
6%0〉,

that is |%1〉 and |%0!
6%0〉 are both eigenvectors of G ⊗ G . As a consequence

Δ̃ (G ⊗ G ) = (1 + WV/2)1/4 |%1〉〈%1 | + (WV/2)1/4 1

|� |
∑
6∈�

|%0!
6%0〉〈%0!

6%0 |
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and so taking adjoints, we immediately get that

Δ̃ (G ⊗ G ) = (G ⊗ G )Δ̃ .

This concludes the proof. �

Proposition 4.7. The operator

is a projection on HmR satisfying

d̃mR = d̃mR S̃mR = S̃mR d̃mR , GmR S̃mR = S̃mR GmR.

Proof. The first statement is clear, as it is a tensor product of projections Δ̃ and q̃
1̂
. Let us check that

S̃mR d̃mR = d̃mR. In view of the representation of d̃mR given in (4.19), it is enough to prove that

(4.22)

for all possible choices of 6̂ and 0̂. The composition on the left-hand side of (4.22) is, again, a tensor

product of operators of the form q̃1 q̃0 = q̃0 and Δ̃ k̃6 = k̃6, so (4.22) holds. Analogously, we can argue

that d̃mR S̃mR = d̃mR.

Finally, to see that GmR S̃mR = S̃mR GmR, note that both GmR and S̃mR have a compatible tensor

product structure, so that their product GmR S̃mR is, again, a tensor product of elements of the form

(G ⊗ G )Δ̃ , (G3 ⊗ G3 )q̃1 , (G2 ⊗ G2 )q̃1 ,

and analogously for S̃mR GmR,

Δ̃ (G ⊗ G ) , q̃1(G3 ⊗ G3 ) , q̃1(G2 ⊗ G2 ) .

By Lemma 4.6, we know that (G ⊗ G )Δ̃ = Δ̃ (G ⊗ G ). For the others, we only need to check that

(G ⊗ G ) q̃1 =

∑
ℎ∈�

(Xℎ,1 + WV/2)1/4 |ℎ〉|ℎ〉〈ℎ|〈ℎ| = q̃1 (G ⊗ G ) .

This finishes the proof. �

Tool Box 2: Plaquette constants

We need a couple of auxiliary results. First, let us introduce the notation

j̃A46 (6) = jA46 (6) − 1 = |� |X6,1 − 1 , 6 ∈ � .

If %1 is the projection onto +1, then

j̃A46 (6) = Tr(!6 (1 − %1)) .
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Lemma 4.8. Let us fix D, E ∈ � and complex numbers 00, 10, 01, 11 ∈ C. Then,

∑
61 ,...,6<∈�

(00 + 10 j̃
A46 (D61 . . . 6<))

(
01 + 11 j̃

A46 (6−1
< . . . 6−1

2 6−1
1 E)

)

= |� |< (0001 + 1011 j̃
A46 (DE)) .

Proof. Note that the left-hand side of the equality can be rewritten as

∑
6∈�

∑
61 ,...,6<∈�
61 ... 6<=6

(00 + 10 j̃
A46 (D6))

(
01 + 11 j̃

A46 (6−1E)
)

= |� |<−1
∑
6∈�

(00 + 10 j̃
A46 (D6))

(
01 + 11 j̃

A46 (6−1E)
) ,

so we can restrict ourselves to the case < = 1. First, let us expand

∑
6∈�

(00 + 10 j̃
A46 (D6))

(
01 + 11 j̃

A46 (6−1E)
)

= 0001 |� | + 0011

∑
6∈�

j̃A46 (6−1E) + 1001

∑
6∈�

j̃A46 (D6)

+ 1011

∑
6∈�

j̃A46 (D6) j̃A46 (6−1E) .

The second and third summands are equal to zero, since∑
ℎ∈�

j̃A46 (ℎ) =
∑
ℎ∈�

(
|� | Xℎ,1 − 1

)
= |� | − |� | = 0 .

Moreover,∑
6∈�

j̃A46 (D6) j̃A46 (6−1E) =
∑
6∈�

(|� | XD6,1 − 1) (|� |X6−1E,1 − 1)

=

∑
6∈�

|� |2 XD6,1X6−1E,1 − |� |
∑
6∈�

(
XD6,1 + X6−1E,1

)
+ |� |

= |� |2XDE,1 − 2|� | + |� |

= |� |
(
|� |XDE,1 − 1

)
= |� |

(
jA46 (DE) − 1

)
,

so the fourth summand in the aforementioned expansion is equal to 1011 j̃
A46 (DE), leading to the desired

statement. �

Next, we need a result which helps us to deal with the constants

2V ( 6̂ ) :=
∏
? inner

plaquette

(
1 + WV jA46 (6̂ |?)

)

that appear in d̃mR, see (4.19). Let us first extend the notation jA46 (6̂ |?) from plaquettes to the boundary

of the rectangle R: let us enumerate its boundary edges EmR counterclockwise by fixing any initial edge
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41, 42, . . . , 4: . Given a map 5̂ : EmR −→ � associating 4 9 ↦−→ 6 9 , let us define

616263

64

65

66 67 68

69

610

jA46 ( 5̂ ) := jA46 (6f1

1
6
f2

2
. . .),

where f9 = 1 if 4 9 is in the upper or left side of the rectangle, and f9 = −1 otherwise. We will also use

the notation

j̃A46 ( 5̂ ) := jA46 ( 5̂ ) − 1 .

As in the case of plaquettes, note that the definition is independent of the enumeration of the edges

as long as it is done counterclockwise (jA46 is invariant under cyclic permutations) and respects the

inverses (f9 = −1) on the lower and right edges.

Proposition 4.9. For fixed 5̂ : EmR −→ �, we have that

∑
6̂:ER−→�

6̂ |EmR= 5̂

2V (6̂) = |� | |ER̊
|
( (

1 + WV
)=R + W=R

V
j̃A46 ( 5̂ )

)
.

Proof. If the region R only consists of one plaquette, then the identity is trivial since there is only one

summand 6̂ = 5̂ , so that

2V (6̂) = 1 + WVjA46 (6̂ |?) =
(
1 + WV

)
+ WV j̃A46 (6̂ |?) .

Let us denote to simplify notation

0V := 1 + WV , 1V := WV .

For multiplaquette rectangular regions, the key is Lemma 4.8. Let us illustrate the case of a region

R consisting of two (adjacent) plaquettes.

.
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Then, as a consequence of the aforementioned lemma

∑
ℎ∈�

(
1 + WVjA46 (62636

−1
4 ℎ−1)

) (
1 + WVjA46 (ℎ6−1

5 6−1
6 61)

)
=

=

∑
ℎ∈�

(
0V + 1V j̃A46 (62636

−1
4 ℎ−1)

) (
0V + 1V j̃A46 (ℎ6−1

5 6−1
6 61)

)

= |� |
(
02
V + 12

V j̃
A46 (62636

−1
4 6−1

5 6−1
6 61)

)
.

The procedure is now clear and can be formalized by induction. Let R be a rectangular region. We

can obviously split R into two adjacent rectangles sharing one side R = �� as below. The induction

hypothesis yields that the identity is true for A and C. Let us set some notation for the boundary edges

of A and C:

.

Fix a boundary function 5̂ : EmR → � (note that EmR = UW), let us consider the sum over all choices

6̂ : ER −→ �, such that 6̂ coincides with 5̂ on the boundary edges of R

∑
6̂:ER→�

6̂ |mR= 5̂

2V (6̂) =

∑
6̂:ER→�

6̂ |UW= 5̂

∏
?⊂R

plaquette

(
0V + 1V j̃A46 (6̂ |?)

)
=

=

∑
6̂:ER→�

6̂ |UW= 5̂

∏
?⊂�

plaquette

(
0V + 1V j̃A46 (6̂ |?)

) ∏
?⊂�

plaquette

(
0V + 1V j̃A46 (6̂ |?)

)
. (4.23)

Next, we want to apply the induction hypothesis on each subregion A and C. For that, we have to make

the right expression appear. We can split the sum

∑
6̂:ER→�

6̂ |UW= 5̂

=

∑
ℎ̂:I→�

∑
6̂:ER→�

6̂ |UW= 5̂

6̂ |I=ℎ̂

=

∑
ℎ̂:I→�

∑
6̂:E�→�

6̂ |U= 5̂ |U
6̂ |I=ℎ̂

∑
6̂:E�→�

6̂ |W= 5̂ |W
6̂ |I=ℎ̂

. (4.24)
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Hence, we can rewrite (4.23) as∑
6̂:ER→�

6̂ |UW= 5̂

∏
?⊂R

plaquette

(
0V + 1V j̃A46 (6̂ |?)

)
=

=

∑
ℎ̂:I→�

( ∑
6̂:E�→�

6̂ |U= 5̂ |U
6̂ |I=ℎ̂

∏
?⊂�

plaquette

(
0V + 1V j̃A46 (6̂ |?)

) )

·
( ∑
6̂:E�→�

6̂ |W= 5̂ |W
6̂ |I=ℎ̂

∏
?⊂�

plaquette

(
0V + 1V j̃A46 (6̂ |?)

) )

.

.

Applying the induction hypothesis, we have that the above expression can be rewritten as

∑
ℎ̂:I→�

|� | |E�̊ |
(
0
=�

V
+ 1=�

V
j̃A46 (6̂ |U ℎ̂ )

)
|� | |E�̊ |

(
0
=�
V

+ 1=�
V
j̃A46 ( ℎ̂ 6̂ |W)

)

= |� | |E�̊ |+ |E�̊ |
∑

ℎ̂:I→�

(
0
=�

V
+ 1=�

V
j̃A46 (6̂ |U ℎ̂ )

) (
0
=�
V

+ 1=�
V

j̃A46 ( ℎ̂ 6̂ |W)
)
,

where =� and =� are the number of inner plaquettes of A and C, respectively; 6̂ |U ℎ̂ is the map Em� → �

that coincides with 6̂ on U and with ℎ̂ on z; and ℎ̂ 6̂ |W is the map Em� → � that coincides with 6̂ on W

and with ℎ̂ on z. Finally, we use Lemma 4.8 to rewrite the above expression as

|� | |E�̊ |+ |E�̊ |+ |I |
(
0
=�+=�
V

+ 1=�+=�
V

j̃A46 (6̂ |U6̂ |W)
)
.

Finally, observe that the set E
R̊

of inner edges of R is actually formed by the disjoint union of E�̊, E�̊
and z, whereas the number =R of inner plaquettes of R is indeed the sum of =� and =� , so that

∑
6̂:ER→�

6̂ |0W= 5̂

∏
?⊂R

plaquette

(
0V + 1V j̃A46 (6̂ |?)

)
= |� | |ER̊

|
(
0
=R

V
+ 1=R

V
j̃A46 ( 5̂ )

)
.

This finishes the proof of the proposition. �

Proof of the Leading term of the boundary Theorem 4.2

We are now ready to prove our main result about the boundary state of the thermofield double. Our

starting point is (4.19). We can replace the sum over 6̂ : ER → � with a double sum, the first one over

5̂ : EmR → � (fixing first the values at the boundary), and the second one over 6̂ : ER → � with
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6̂ |EmR
= 5̂ , so that

,

where, from Proposition 4.9, it follows that

2V ( 5̂ ) :=
∑

6̂:ER→�

6̂ |EmR= 5̂

2V ( 6̂ ) = |� | |ER̊
| [(1 + WV)=R + W=R

V
j̃A46 ( 5̂ )

]
. (4.25)

Let us now split the sum over 0 ∈ � into a first summand with 0 = 1 (which forces 0̂(E) = 1 for every

E ∈ VR, as we argued in previous sections) and 0 ≠ 1:

.

In the first summand, we can, moreover, decompose

.

Thus, combining both expressions

.
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Dividing the above expression by

^R = |� | |ER | (1 + WV) |VR̊
|+=R = |� | |ER̊

|+ |EmR | (1 + WV) |VR̊
|+=R ,

we obtain

1

^R
d̃mR = S1 +

(
WV

1 + WV

)=R

S2 +
(
WV

1 + WV

) |V
R̊
|
S3 −

(
WV

1 + WV

) |V
R̊
|
S4, (4.26)

where

.

Note that the first summand actually corresponds to

.

To estimate the norm of S2 and S4, we are going to use that the operators

are (orthogonal) projections and mutually orthogonal (see Proposition 4.4). Then, we can estimate

‖S2‖ ≤ sup
5̂ :EmR−→�

| j̃ A46 ( 5̂ ) | ≤ |� | ,

and by recalling that Proposition 4.9 implies the formula for 2V ( 5̂ ) given in (4.25), we obtain

‖S4‖ ≤ sup
5̂ :ER−→�

2V ( 5̂ )
(1 + WV)=R |� | |ER̊

| ≤ 1 +
(
WV

1 + WV

)=R

|� | .
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To estimate the norm of S3, we are going to use that the operators

are (orthogonal) projections and mutually orthogonal (see Proposition 4.5). Then, again, by using (4.25),

‖S3‖ = sup
5̂ :EmR−→�

|� | 2V ( 5̂ )
(1 + WV)=R |� | |ER̊

| ≤ |� |
[
1 +

(
WV

1 + WV

)=V
|� |

]
.

Combining all these estimates, we can reformulate (4.26) as

d̃mR = ^R
(
S̃mR + S̃A4BC

mR

)
,

where the observable S̃A4BC
mR

satisfies

‖S̃A4BC
mR ‖ ≤

( WV

1 + WV

)=R

|� | +
( WV

1 + WV

) |V'̊ |
(|� | + 1)

[
1 +

( WV

1 + WV

)=R

|� |
]

≤
( WV

1 + WV

) |V'̊ | (
|� | + (1 + |� |)2

)

≤ 3 |� |2
( WV

1 + WV

) |V'̊ |
=: nR ,

having used in the second inequality that |V
R̊
| ≤ =R.

Proof of the approximate factorization of the boundary Theorem 4.3

Let us assume that nR < 1. By Proposition 4.7, we have that (̃mR is a projection satisfying d̃mR =

d̃mR(̃mR = (̃mR d̃mR. Moreover, by Theorem 4.2

^−1
R d̃mR − (̃mR

 = ‖(̃A4BCmR ‖ ≤ nR < 1 . (4.27)

These three properties yield that (̃mR = �̃mR, as a consequence of the next general observation:

Let T be a self-adjoint operator onH ≡ C3 , and Π an orthogonal projection onto a subspace, ⊂ H,

such that ) Π = Π ) = ) and ‖) −Π‖ < 1. Then, Π is the orthogonal projection onto (ker))⊥. Indeed,

since ) = Π)Π, we have that (ker))⊥ is contained in W. If they were different subspaces, then there

would be a state |D〉 ∈ , with ) |D〉 = 0. But then, 1 = 〈D |D〉 = 〈D | (Π − ))D〉 ≤ ‖) − Π‖ < 1.

Next, observe that by Proposition 4.7

[GmR, �̃mR] = [GmR, (̃mR] = 0 .

This yields that dmR and d̃mR have the same support, that is �mR = �̃mR, since they are related

via dmR = GmR d̃mR GmR, where GmR is invertible. Moreover, the operators fmR = ^R GmR �̃R GmR

and f̃mR = ^R �̃R will also have the same support as dmR. We can thus argue as in the proof of
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Proposition 3.6 to get

‖d1/2
mR

f−1
mR d

1/2
mR

− �mR‖ = ‖ d̃1/2
mR

(^R �̃mR)−1 d̃
1/2
mR

− �̃mR‖

= ‖^−1
R d̃

1/2
mR
�̃mR d̃

1/2
mR

− �̃mR‖
= ‖^−1

R d̃mR − �̃mR‖ ≤ nR,

where in the last line, we have used, again, (4.27). Finally, since fmR and dmR have the same support,

we can use the identity

d
−1/2
mR

fmR d
−1/2
mR

=
(
d

1/2
mR

f−1
mR d

1/2
mR

)−1
= �mR +

∞∑
<=1

(
�mR − d1/2

mR
f−1
mR d

1/2
mR

)<

to deduce that

‖d−1/2
mR

fmR d
−1/2
mR

− �mR‖ ≤
∞∑

<=1

n<R =
nR

1 − nR
.

4.4. Approximate factorization of the ground state projections

In this section, we study for a given rectangular region R split into three suitable regions �, �, �, where

B shields A from C and such that ��, �� are again rectangular regions, how to estimate

‖%��� − %��%�� ‖

in terms of the size of B. This problem is related to the approximate factorization property of the

boundary states that we studied in the previous sections (see Section 3.4.2 for details on this relation

and the main results in the context of general PEPS). Our main tools will be Theorems 3.5 and 4.3.

Corollary 4.10. Let us consider a rectangular region with open boundary conditions

split into three subregions �, �, �, as in the next picture

,

so that ��, ��, � are again rectangular regions. If B has M plaquettes per row and N plaquettes per

column with

n� := 3 |� |2
(
WV

1 + WV

) ("−1) (#−1)
<

1

2
, (4.28)
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then the orthogonal projections %R onto Im(+R) satisfy

‖%��%�� − %��� ‖ ≤ 16n� .

Proof. In order to apply Theorem 3.5, we arrange the virtual indices of ���, ��, ��, and B into four

sets 0, 2, U, W as in the next picture:

,

so that

m��� = 02 , m�� = 0W , m�� = U2 , m� = UW .

The hypothesis n� < 1 ensures that the hypothesis nR < 1 in Theorem 4.3 is satisfied for R ∈
{�, ��, ��, ���}, and so �mR and fmR have a simple tensor product structure. This allows us to

factorize

�m��� = �0 ⊗ �2 , �m� = �U ⊗ �W ,

fm�� = �0 ⊗ �W , fm�� = �U ⊗ �2 ,

where �0, �2 , �U, and �W are projections. The local structure of S̃mR and GmR allows us to decompose

both operators as a tensor product of operators acting on 0, 2, U, W. Hence, we can define

f0 :=
^��√
^�

G0S̃0G0 , f2 :=
^��√
^�

G2 S̃2 G2 ,

fU :=
√
^� GU S̃U GU , fW :=

√
^� GW S̃W GW .

Then, we can easily verify that ^���^� = ^��^�� , and so

fm��� = f0 ⊗ f2 , fm� = fU ⊗ fW ,

fm�� = f0 ⊗ fW , fm�� = fU ⊗ f2 .

From Theorem 4.3, it follows that for each R ∈ {���, ��, ��, �}

‖d1/2
mR
f−1
mRd

1/2
mR

− �mR‖ < n� ,

and

‖d−1/2
mR

fmR d
−1/2
mR

− �mR‖ ≤ n�

1 − n�
≤ 2n� .

Thus, applying Theorem 3.5, we conclude the result. �

Analogously, we can prove results for the torus and cylinders.
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Corollary 4.11. Let us consider a cylinder with open boundary conditions and split it into four sections

�, �, �, �′ so that �′�� and ���′ are two overlapping rectangles whose intersection is formed by two

disjoint rectangles B and �′, as in the next picture:

Let us assume that B and �′ have at least M plaquettes per row and N plaquettes per column with

n��′ := 3 |� |2
(
WV

1 + WV

) ("−1) (#−1)
≤ 1

2
,

then the orthogonal projections %R onto Im(+R) satisfy

‖%�′��%���′ − %����′ ‖ ≤ 48n��′ .

Proof. We are going to apply Theorem 3.5 for the three regions A, ��′, and C. Firstly, we need to find

a suitable arrangement of the virtual indices. First, we split the boundary of ��′ into two four parts

W, W′, U, U′ as in

and define regions a and c according to

,
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so that

m�′�� = W′0W , m���′
= U2U′ , m����′

= 02 ,

m� = UW , m�′
= W′U′ .

The local structure of (̃mR and GmR allows us to write them as a tensor product of operators acting

on the defined boundary segments, and consider

f0 :=
^�′��√
^�^�′

G†
0S̃0G0, f2 :=

^���′
√
^�^�′

.G†
2S̃2G2 ,

fU :=
√
^�^�′G†

U , S̃UGU fU′ := G
†
U′S̃U′GU′ ,

fW :=
√
^�^�′G†

W , S̃WGW fW′ := G
†
W′S̃W′GW′ .

Then, using that ^���^�^�′ = ^�′��^���′ , we can easily check that

fm�′�� = fW′ ⊗ f0 ⊗ fW , fm���′ = fU′ ⊗ f2 ⊗ fU′ , fm����′ = f0 ⊗ f2 ,

fm� = fU ⊗ fW , fm�′ = fW′ ⊗ fU′ .

By Theorem 4.3, we have for each R ∈ {�, �′, �′��, ���′, ����′}
‖d1/2

mR
f−1
mRd

1/2
mR

− �mR‖ , ‖d−1/2
mR

fmRd
−1/2
mR

− �mR‖ ≤ 2n��′ .

In particular, considering the joint region ��′, we get

‖d−1/2
m��′fm��′d

−1/2
m��′ − �m��′ ‖ ≤ ‖(d−1/2

m�
fm�d

−1/2
m�

) (d−1/2
m�′ fm�′d

−1/2
m�′ ) − �m��m�′ ‖

≤ ‖d−1/2
m�

fm�d
−1/2
m�

− �m� ‖ · ‖d−1/2
m�′ fm�′d

−1/2
m�′ ‖

+ ‖d−1/2
m�′ fm�′d

−1/2
m�′ − �m�′ ‖ · ‖�m� ‖

≤ 2n��′ (1 + 2n��′) + 2n��′

≤ 6n��′ .

Applying Theorem 3.5, we conclude the result. �

Corollary 4.12. We consider a decomposition of the torus into four regions �, �, �, �′ as below. We

have then two overlapping cylinders �′�� and ���′, whose intersection is formed by two disjoint

cylinders B and �′.

https://doi.org/10.1017/fms.2023.98 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.98


56 A. Lucia, D. Pérez-García and A. Pérez-Hernández

Let us assume that B and �′ have at least M plaquettes per row and N plaquettes per column with

n��′ := 3 |� |2
(
WV

1 + WV

) ("−1) (#−1)
≤ 1

2
,

then the orthogonal projections %R onto Im(+R) satisfy

‖%�′��%���′ − %����′ ‖ ≤ 48n��′ .

Proof. We are going to apply Theorem 3.5 for the three regions A, ��′, and C. Firstly, we need to find

a suitable arrangement of the virtual indices. The boundary of B (respectively, �′) can be split into two

regions: the part connecting with A, denoted by U (resp. U′); and the part connecting with C, denoted

by W (respectively, W′):

.

The local structure of (̃mR and GmR allows us to write them as a tensor product of operators acting

on the defined boundary segments, and define

fU :=
√
^�^�′ G†

US̃UGU , fW :=
√
^�^�′ G†

US̃UGU

fU′ :=
^���′
√
^�^�′

G
†
U′S̃U′GU′ , fW′ :=

^�′��√
^�^�′

G
†
W′S̃W′GW′ .

Using that ^����′^�^�′ = ^�′�� ^���′ , we can easily verify

fm� = fU ⊗ fW , fm�′ = fU′ ⊗ fW′

fm�′�� = fW′ ⊗ fW , fm���′ = fU ⊗ fU′ .

By Theorem 4.3, we have for any cylinder R ∈ {�′��, ���′, �, �′}

‖d1/2
mR
f−1
mRd

1/2
mR

− �mR‖ , ‖d−1/2
mR

fmRd
1/2
mR

− �mR‖ ≤ 2n��′ .

Reasoning as in the previous corollary, we have for the region joint ��′

‖d1/2
m��′f

−1
m��′d

1/2
m��′ − �m��′ ‖ ≤ 6 n��′ .

Applying Theorem 3.5, we conclude the result. �

4.5. Parent Hamiltonian of the thermofield double

The PEPS description of |d1/2
V

〉 is given in terms of a family of tensors whose contraction defines linear

maps

+R : HmR −→ H2
R,

where R runs over all rectangular regions R ∈ F# . Recall that we denote by %R the orthogonal

projection onto Im(+R).
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Corollary 4.13. The family of orthogonal projectors (%R)R satisfies the martingale condition with the

decay function X : (0,∞) −→ R given by

X(ℓ) = min
{
1, 144|� |2

(
WV

1 + WV

)ℓ−1 }
where WV :=

4V − 1

|� | .

Proof. We have to check conditions (8)–(888) from Definition 2.4 for the given function X(ℓ). To see (8),
notice first that ‖%��� − %��%�� ‖ ≤ 1 always holds by Lemma 2.1. So let us assume that B contains

at least ℓ plaquettes along the splitting direction for a value ℓ satisfying X(ℓ) < 1, which necessarily

means that

X(ℓ) = 144|� |2
(
WV

1 + WV

)ℓ−1

< 1 . (4.29)

Using the notation of Corollary 4.10, and taking into account that B contains at least two plaquettes

along the nonsplitting direction, we deduce that

n� < 3|� |2
(
WV

1 + WV

)ℓ−1

=
X(ℓ)
48

<
1

48
. (4.30)

Thus, the aforementioned corollary can be applied to obtain the desired estimate

‖%��%�� − %��� ‖ ≤ 8n� (1 + n�) < 16n� ≤ X(ℓ) .

The proof of (88) and (888) is analogous, using, respectively, Corollaries 4.11 and 4.12. For instance, to

see (88), we can, again, assume that B and �′ have both at least ℓ plaquettes along the splitting direction

where ℓ satisfies (4.29). This yields, using the notation of Corollary 4.11, that (4.30) holds with n��′

instead of n�. And thus, applying the same corollary, we get

‖%�′��%���′ − %����′ ‖ < 48n� ≤ X(ℓ) .

�

Next, we aim at constructing a parent Hamiltonian of this PEPS following the guidelines of Section

3.3, that is by verifying the conditions of Proposition 3.2.

Lemma 4.14. For each V > 0, let us fix a natural number

=(V) ≥ 4
(
1 + (1 + WV) log

(
288|� |2

))
.

Then, for every ℓ ≥ =(V), it holds that

X(ℓ/4) ≤ (1/2)
ℓ

=(V) ≤ 1/2 .

Proof. Using that the map G ↦→ (1 − 1/G)G is upper bounded by 1/4 for G > 1, we can estimate from

above

(
WV

1 + WV

) =(V)
4

−1

=

(
1 − 1

1 + WV

) (1+WV) =(V)
4

−1

1+WV
≤ 4

−
=(V)

4
−1

1+WV ≤ 1

288|� |2
.
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Hence, for every ℓ ≥ =(V)

(
WV

1 + WV

) ℓ
4
−1

≤
(
WV

1 + WV

) ( =(V)
4

−1) ℓ
=(V)

≤
(

1

288|� |2

) ℓ
=(V)

≤ 1

144|� |2

(
1

2

) ℓ
=(V)

.

The last inequality immediately yields the result. �

Next, consider the family of proper rectangles X=,# = FA42C
=,#

having at most = ∈ N plaquettes per

row and per column

0

1

1 ≤ 0, 1 ≤ = ,

and define the local Hamiltonian

�E#
=

∑
- ∈X=,#

%⊥
- ,

where %⊥
-

:= 1−%- , that is, the orthogonal projection onto Im(+- )⊥. Note that the range of interaction

of the Hamiltonian �E#
depends on the parameter n.

If we choose = = =(V) from Lemma 4.14, we obtain, as a consequence of Proposition 3.2, that �E#

is a parent Hamiltonian for |d1/2
V

〉.

Corollary 4.15 (Uniqueness of the ground state). For every rectangular region R ∈ F# containing at

least =(V) plaquettes per row and per column, we have that the associated Hamiltonian

�R =

∑
- ∈X ,- ⊂R

%⊥
- satisfies ker(�R) = Im(%R) .

In other words, %R is the orthogonal projector onto the ground state space of �R. In particular, |d1/2
V

〉
is the unique ground state of �E#

.

Let us now turn to the spectral gap properties of this Hamiltonian. Combining Theorems 2.3 and 2.6,

we can estimate the spectral gap of the parent Hamiltonian uniformly in the system size.

Corollary 4.16 (Spectral gap). There is a positive constant K > 0 independent of N and V, such that

gap(F C>ADB
# ,# ) ≥ K .

Proof. Let us denote X: := X(⌊ =(V)
4

(
√

9/8 ):⌋ ) and B: := ⌊(
√

4/3 ):⌋ for each integer : ≥ 0. Observe

that the choice of =(V) in Lemma 4.14 and the fact that log (288) > 5 ensure that # ≥ =(V) > 16, and

that for each : ≥ 0

X: ≤ (1/2) (
√

9/8): < 1/2 . (4.31)

We can apply Theorems 2.5 and 2.6 to estimate from below

gap(F C>ADB
# ,# ) ≥ 1

16
gap(FA42C

# ,# ) ≥ 1

16

[ ∞∏
:=0

1 − X:
1 + 1

B:

]
gap(FA42C

# ,= ) .

Observe that for regions - ∈ FA42C
# ,=

, we have that gap(�- ) ≥ 1 since �- ≥ %⊥
-

, as %⊥
-

itself is a local

interaction, and %- is the projector onto the ground space of �- by the previous corollary. Therefore,
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we can lower bound gap(FA42C
# ,=

) ≥ 1, and so

gap(F C>ADB
# ,# ) ≥ 1

16

[ ∞∏
:=0

1 − X:
1 + 1

B:

]
.

The infinite product in the right hand-side (r.h.s.) is positive and can be bounded independently of N

and V, since

∞∏
:=0

1 − X:
1 + 1

B:

≥ exp

[
−2

∑
:

X: −
∑
:

1

B:

]
.

Both of the two series are summable, and their value is upper bounded by a constant independent of N

and V, since B: does not depend on either and X: can be estimated as in (4.31). �

5. Davies generators for quantum double models

5.1. Davies generators

We will now recall the construction of the generator of a semigroup of quantum channels which describes

a weak-coupling limit of the joint evolution of the system with a local thermal bath, known as the Davies

generator [14]. This construction applies to any commuting local Hamiltonian, but for simplicity of

notation, we will only consider the same setup of the previous sections, that is the qudits C3 live on the

edges, and not the vertices, of a lattice Λ = (V , E).

Definition 5.1. Let dV denote the Gibbs state associated to �
syst

Λ
at inverse temperature V. Then

〈�, �〉V := Tr(dV�†�), �, � ∈ BΛ,

defines a scalar product on BΛ, called the Liouville or GNS scalar product.

An operator T : BΛ → BΛ satisfies detailed balance if it is self-adjoint with respect to the GNS

scalar product.

When the system is in contact with a thermal bath at inverse temperature V, the joint Hamiltonian of

the system+bath is given by

�_ = �
syst

Λ
⊗ 1

bath + 1
syst ⊗ �bath + _�� , (5.1)

where �
syst

Λ
is the Hamiltonian of the system, �bath is the Hamiltonian of the bath, �� is the coupling

term between system and bath, and _ ≥ 0 is the coupling strength. We will assume that the coupling

interaction is local, in the sense that

�� =

∑
4∈E

∑
U∈A

(4,U ⊗ �4,U, (5.2)

where for each edge e, {(4,U}U∈A is a finite family of self-adjoint operators on H4, while �4,U are

self-adjoint operators on the bath.

We will assume that the bath satisfies the appropriate conditions that guarantee (see [14]), in the

weak-coupling limit, that the reduced dynamics of the system in the Heisenberg picture is described by

a Quantum Markov semigroup )C = 4
CG : BΛ −→ BΛ whose generator takes the following form:

G = 8X
�

syst

Λ

+ L, (5.3)
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where X
�

syst

Λ

(&) =
[
�

syst

Λ
, &

]
is a derivation (generating a unitary evolution), while the dissipative term

L has the specific form

L =

∑
4∈E

L4 , L4 =

∑
U,l

6̂4,U (l)D4,U,l , (5.4)

D4,U,l (&) =
1

2

(
(†4,U (l) [&, (4,U (l)] + [(†4,U (l), &] (4,U (l)

)
.

The variable l runs over the finite set of Bohr frequencies of �
syst

Λ
(the differences between energy

levels), while 6̂4,U (l) are positive transition rates which depend on the autocorrelation function of the

bath. In particular, if the bath is assumed to be at thermal equilibrium at inverse temperature V, then

they satisfy 6̂4,U (−l) = 4−Vl 6̂4,U (l). The jump operators (4,U (l) are the Fourier components of

(4,U evolving under �
syst

Λ
, namely

48C�
syst

Λ (4,U4
−8C� syst

Λ =

∑
l

(4,U (l) 4−8lC , C ∈ R .

From this definition, it follows that (
†
U (l) = (U (−l).

We can then rewrite the sum in the definition of L4 only over l ≥ 0:

L4 =

∑
U

[
6̂4,U (0)D4,U,0 +

∑
l>0

(
6̂4,U (l)D4,U,l + 6̂4,U (−l)D4,U,−l

) ]
.

We now denote for each 4, U, and l ≥ 0

L4,U,l =

{
6̂4,U (0)D4,U,0 if l = 0,

6̂4,U (l)D4,U,l + 6̂4,U (−l)D4,U,−l otherwise.

The properties of the Davies generator which we will need are summarized in the following proposition.

Proposition 5.2 [14].

1. L4 commutes with X� syst

Λ

for each e.

2. L4,U,l satisfies detailed balance for each 4, U, and l.

3. −L4,U,l is positive semidefinite with respect to the GNS scalar product. In fact

−〈�,L4,U,l (�)〉V = 6̂4,U (l)
[�, (4,U (l)]2

V
+ 6̂4,U (−l)

[�, (†4,U (l)]2

V
≥ 0. (5.5)

4. The Gibbs state dV is an invariant state for L4,U,l , in the sense that

Tr(dV4CL4,U,l (&)) = Tr(dV&) for every & and every C ≥ 0.

Our main result will only apply under the following conditions on the thermal bath: the first will

guarantee that the generator L is translation invariant, while the second will imply its ergodicity.

Assumption 5.3. The coupling operators (4,U and the transition rates 6̂4,U (l) are translation invariant,

in the sense that

1. for a fixed U ∈ A, (4,U are translates of each other when we vary e;

2. 6̂4,U (l) does not depend on e.

In this case, we will write 6̂U (l) for the common value of 6̂4,U (l).
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Assumption 5.4. The following two conditions hold:

1. 6̂4,U (l) > 0 for every choice of 4 ∈ E , U, and l, such that (4,U (l) ≠ 0.

2. For every 4 ∈ E

{(4,U}′U∈A = C1H4
, (5.6)

where {}′ denotes the commutant.

Proposition 5.5. Suppose that 6̂4,U (l) > 0 for every choice of 4 ∈ E , U, and l, such that (4,U (l) ≠ 0.

Then for each - ⊆ E , we have that

ker

(∑
4∈-

L4

)
=

{
(4,U (l) | 4 ∈ -,∀U, l

} ′
. (5.7)

In particular, if Assumption 5.4 holds, then

ker

(∑
4∈-

L4

)
⊂ 1H-

⊗ B(HE\- ),

which implies that L =
∑

4∈E L4 has a unique invariant state.

Proof. The inclusion of the commutant of the jump operators in the kernel of the generator can be

verified directly. The converse follows from the fact that dV is a full rank invariant state for
∑

4 L4. This

implies that ker(∑4 L4) is a *-algebra [17]. If � ∈ ker(∑4 L4), then also �† and �†� are in ker(∑4 L4).
Then one can see that

0 =

∑
4∈-

L4 (�†�) − �†L4 (�) − L4 (�)†�

=

∑
4∈-,U,l

6̂4,U (l)
(
(4,U (l)†�†�(4,U (l) − (4,U (l)†�†(4,U (l)�

− �†(4,U (l)†�(4,U (l) + �†(4,U (l)†(4,U (l)�
)

=

∑
4∈-,U,l

6̂4,U (l)
[
�, (4,U (l)

]† [
�, (4,U (l)

]
,

which is only possible when A commutes with all the jump operators (4,U (l). The second part follows

from the fact that (4,U =
∑

l (4,U (l), and therefore

{
(4,U (l) | 4 ∈ -,∀U, l

} ′ ⊂ {(4,U | 4 ∈ -,∀U}′,

and, if Assumption 5.4 holds, then the r.h.s. of the last equation is simply 1H-
⊗ B(HE\- ), which

reduces to C1HE
when - = E . �

Corollary 5.6. If Assumption 5.4 holds, then L is primitive, in which case

gap(G) = gap(L).

In what follows, we will always assume that the choice of the coupling terms (4,U guarantees that

the Davies generator is primitive.
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Figure 8. Region supporting L4 (the edge 4 = (E1, E2) is marked in red).

5.2. Davies generators for the quantum double models

We can now give an explicit description of the Davies generators for the quantum double models.

Proposition 5.7. If �
syst

Λ
is the Hamiltonian of a quantum double model, then for each 4 ∈ E , L4 only

acts nontrivially on the two plaquettes and the two stars containing e (see Figure 8). Moreover, (4,U (l)
is zero unless l ∈ Ω := {−4,−3, . . . , 3, 4}.

Proof. Since the local terms of �
syst

Λ
are commuting, for fixed 4 ∈ E and U and for every C ∈ R, we have

that

48C�
syst

Λ (4,U4
−8C� syst

Λ

= 48C (�(E1)+�(E2)+� (?1)+� (?2)) (4,U 4
−8C (�(E1)+�(E2)+� (?1)+� (?2)) ,

(5.8)

where E1, E2 are the vertices of e and ?1, ?2 are the two plaquettes containing e. The local terms �(E) and

�(?) are both projections. For a projection Π with orthogonal complement Π⊥ := 1 − Π, it holds that

48CΠ = Π
⊥ + 48CΠ ,

and so

48CΠ&4−8CΠ = Π&Π + Π
⊥&Π⊥ + 4−8CΠ⊥&Π + 48CΠ&Π⊥ .

Consequently, we can rewrite (5.8) as a sum

48C�
syst

Λ (4,U 4
−8C� syst

Λ =

4∑
l=−4

(4,U (l) 48Cl ,

where each (4,U (l) has also support contained in mE1 ∪ mE2 ∪ ?1 ∪ ?2 . �

5.3. Davies generator as a local Hamiltonian

We have seen in the previous sections that −L = −∑
4∈E L4 is local, self-adjoint, and positive with

respect to the GNS scalar product, with a unique element in its kernel corresponding to the Gibbs state

dV . We will now describe how to convert it into a frustration-free local Hamiltonian whose unique

ground state is the thermofield double of dV (a local purification of the Gibbs state), defined as

|d1/2
V

〉 = 1

/
1/2
V

∑
_∈f (� syst

Λ
)

4−
V
2 |_〉 ⊗ |_〉 =

(
d

1/2
V

⊗ 1

)
|Ψ〉, (5.9)

where |Ψ〉 is a maximally entangled state on H2
Λ
= HΛ ⊗HΛ. We will find it convenient to work with a

“vectorized” representation of the GNS scalar product, which we introduce in the next proposition.
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Proposition 5.8. Let |Ψ〉 be a maximally entangled state on H2
Λ
= HΛ ⊗ HΛ, and denote

](�) = �d1/2
V
, � ∈ BΛ.

Then

BΛ ∋ & −→ |](&)〉 =
(
&d

1/2
V

⊗ 1

)
|Ψ〉 ∈ H2

Λ
(5.10)

is an isometry between (BΛ, ‖·‖V) and H2
Λ

(equipped with the natural Hilbert tensor scalar product).

Proof. The map is manifestly linear, it is a bijection since dV is full rank, and a simple calculation shows

that it preserves the scalar product:

〈](�) |](�)〉 = 〈Ψ|
(
d

1/2
V
�†�d1/2

V

)
⊗ 1|Ψ〉 = tr

(
dV�

†�
)
= 〈�, �〉V

for every �, � ∈ BΛ �

Note that (H2
Λ
, c, |d1/2

V
〉), with c(&) = & ⊗ 1, is a GNS triple for the pair (BΛ, dV).

This isometry allows us to define a local Hamiltonian representing the dissipative part of the Davies

generator L:

Proposition 5.9. Let �̃ be the operator on H2
Λ

, defined by

�̃ =

∑
4∈E

�̃4 where �̃4 |](&)〉 = −|](L4 (&)〉, ∀& ∈ BΛ.

Then, �̃ is self-adjoint and positive semidefinite. Moreover, if Assumption 5.4 is satisfied, the following

statements hold:

1. If - ⊂ E is a finite subset, then

ker

(∑
4∈-

�̃4

)
=

{
|](&)〉 | & ∈ ker

(∑
4∈-

L4

)}
(5.11)

⊆
{(
(& ⊗ 1- )d1/2

V

)
⊗ 1|Ψ〉 | & ∈ BE\-

}
.

In particular, the thermofield double |d1/2
V

〉 = |](1)〉 is the unique ground state of �̃.

2. gapL = gap �̃.

The proof is an immediate consequence of Propositions 5.5 and 5.8.

Remark 5.10. Note that the support of �̃4 will in general be larger than the support of L4 (see Figure 9).

In general, �̃4 will not be a projection. In order to simplify the comparison with the parent Hamilto-

nian, we will first lower bound
∑

4∈- �̃4 by a projection.

Proposition 5.11. For each - ⊂ E , let Π- denote the projection on the subspace{(
(& ⊗ 1- )d1/2

V

)
⊗ 1|Ψ〉 | & ∈ BE\-

}
. (5.12)

Then, under Assummptions 5.3 and 5.4, there exist positive constants �1, �2 independent of the system

size and of V, such that for every - ⊂ E

∑
4∈-

�̃4 ≥ �2

|Ω|
6̂min

|- | 4
−�1V |'- |

Π
⊥
- , 6̂min = min

U
min
l∈Ω

6̂U (l), (5.13)
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Figure 9. Region supporting �̃4 (the edge e is marked in red).

where '- denotes the region supporting
∑

4∈- �̃4, and |- | and |'- | denote the number of edges in X

and '- , respectively.

Proof. Let us denote by

X4,U,l (�) = [�, (4,U (l)], X4,U (�) = [�, (4,U] =
∑
l

X4,U,l (�).

We can then rewrite (5.5) as

〈q|�̃4q〉 = −〈]−1q|L4 (]−1q)〉V =

∑
U, l

6̂U (l)〈X4,U,l ]−1(q) |X4,U,l ]−1 (q)〉V

=

∑
U, l

6̂U (l)
X4,U,l ]−1 (q)

2

V
,

which implies

∑
4∈-

〈q|�̃4q〉 ≥ 6̂min

∑
4∈-

∑
U, l

X4,U,l (&)2

V
≥ 6̂min

|Ω|
∑
4∈-

∑
U

X4,U (&)2

V
, (5.14)

where we denoted & = ]−1(q) ∈ BΛ, or equivalently, |q〉 = (&d1/2
V

⊗ 1) |Ψ〉.
Let '- be the region supporting

∑
4∈- �̃4. We define a localized version of the norm ‖·‖V , by

‖&‖2
'-

= tr
[
4
−V� syst

'-&∗&
]
, & ∈ BΛ.

Note that

‖&‖2
V =

1

/V

&4− V
2
(� syst

Λ
−� syst

'-
)


2

'-

.

In other words, denoting & ′ = 1

/
1/2
V

&4
− V

2
(� syst

E
−� syst

'-
)
, we have that ‖&‖V = ‖& ′‖'-

.

Moreover, since 4
−V ‖� syst

'-
‖
1 ≤ 4

−V� syst

'- ≤ 1, where ‖�syst

'-
‖ denotes the largest eigenvalue of �

syst

'-
,

it follows that

4
− V

2
‖� syst

'-
‖ ‖& ′‖�( ≤ ‖& ′‖'-

≤ ‖& ′‖�( , (5.15)
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where ‖·‖�( denotes the standard Hilbert-Schmidt (HS) norm on BΛ. Now, let us consider the following

quantity

| | |& ′ | | |- :=

(∑
4∈-

∑
U

X4,U (& ′)
2

�(

)1/2

,

so that we can lower bound the right hand-side of (5.14), obtaining

∑
4∈-

∑
U

X4,U (&)2

V
=

∑
4∈-

∑
U

X4,U (& ′)
2

'-
≥ 4

−V ‖� syst

'-
‖ | | |& ′ | | |2- . (5.16)

We can see that | | | · | | |- is a seminorm, and | | |& ′ | | |- = 0 if and only if

& ′ ∈ {(4,U | 4 ∈ -,∀U}′ = BE\- .

Moreover, for each &0 ∈ BE\- , it holds that

| | |& ′ −&0 ⊗ 1- | | |2- =

∑
4∈-,U

| |X4,U (& ′) − X4,U (&0 ⊗ 1- ) | |2�(

=

∑
4∈-,U

| |X4,U (& ′) | |2�( = | | |& ′ | | |2- .

Therefore we can pass to the quotient space BE/BE\- , and compare the norm induced by | | | · | | |- with

the norm induced by the Hilbert-Schmidt scalar product. As we show in Lemma 5.13, there exists a

constant �2 > 0, independent of system size and V, such that for every X

| | |& ′ | | |2- ≥ �2

|- | inf
&0∈BE\-

‖& ′ −&0 ⊗ 1- ‖2
�( ≥ �2

|- | inf
&0∈BE\-

‖& ′ −&0 ⊗ 1- ‖2
'-
. (5.17)

Let us now consider Π⊥
-

. We observe that, once again setting |q〉 = (&d1/2
V

⊗ 1) |Ψ〉,

〈q|Π⊥
-q〉 = ‖Π⊥

- |q〉‖2
= inf

&0∈BE\-
‖& −&0 ⊗ 1- ‖2

V

= inf
&0∈BE\-

1

/V

(& −&0 ⊗ 1- )4−
V
2
(� syst

E
−� syst

'-
)


2

'-

= inf
&0∈BE\-

 1

/V
&4

− V
2
(� syst

E
−� syst

'-
) −&0 ⊗ 1-


2

'-

= inf
&0∈BE\-

‖& ′ −&0 ⊗ 1- ‖2
'-
.

Putting this last expression together with bounds (5.14), (5.16), and (5.17) concludes the proof, by

observing that ‖�syst

'-
‖ ≤ �1 |'- | for a constant �1 independent of X and of the system size. �

In order to prove the bound on the | | | · | | |- seminorm needed to complete the proof of the last

proposition, we first show an intermediate result about a related quantity.

Lemma 5.12. Let ((U)U∈A and (+W)W∈C be two families of operators in B(C3), such that their commu-

tators satisfy {(U}′U = {+W}′W = C13 . For each 4 ∈ Λ, let (4,U and +4,W be the associated elements in
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the canonical inclusion B4 ↩→ BΛ, and define the following seminorms on BΛ

| | |& | | |4 =

(∑
U∈A

‖[(4,U, &]‖2
�(

)1/2

, | | |& | | |′4 =

(∑
W∈C

‖[+4,W , &]‖2
�(

)1/2

.

Then, there is a constant  > 0 independent of the system size and of the edge e, such that

 | | |& | | |4 ≤ || |& | | |′4 ≤ 1

 
| | |& | | |4 (5.18)

for every & ∈ BΛ.

Proof. We can then rephrase the condition {(U}′U = {+W}′W = C13 as the fact that the seminorms | | | · | | |4
and | | | · | | |′4 restricted to B4 ≡ B(C3) define actual norms on the quotient space B4/C1 ≡ B(C3)/C1,

whose dimension is 32 − 1. Hence, both quotient norms have to be equivalent. But note that | | |& | | |4 =

| | |&+C1| | |4 and | | |& | | |′4 = | | |&+C1| | |′4 for every& ∈ B4. Thus, there exists a constant  > 0 depending

on both of the families and on d, but independent of the system size and e, such that for every & ∈ B4

 | | |& | | |4 ≤ || |& | | |′4 ≤ 1

 
| | |& | | |4 . (5.19)

To extend the latter inequalities to every & ∈ BΛ, let us fix such a Q with �(-norm equal to one, and

consider its Schmidt decomposition & =
∑32

:=1 B:&: ⊗ & ′
:

with respect to the Hilbert-Schmidt scalar

product, where {&: }3
2

:=1
⊂ B4 and {& ′

:
}32

:=1
⊂ BΛ\{4} are orthonormal sets and

∑
: B

2
:
= 1. Then

‖[(4,U, &]‖2
�( = ‖

32∑
:=1

B: [(4,U, &: ] ⊗ & ′
: ‖2

�( =

32∑
:=1

B2: ‖[(4,U, &: ]‖2
�( ‖& ′

: ‖2
�( ,

so that

| | |& | | |24 =

∑
U∈A

‖[(4,U, &]‖2
�( =

32∑
:=1

B2:

(∑
U∈A

‖[(4,U, &: ]‖2
�(

)
‖& ′

: ‖2
�(

=

32∑
:=1

B2: | | |&: | | |24 .

An analogous equality holds for | | | · | | |′4, replacing the (4,U with+4,W . Thus, applying (5.19), we conclude

that (5.18) holds. �

Lemma 5.13. There exists a constant�2 > 0, depending on the local dimension d and the bath operators

{(U}U, such that for every - ⊂ E and every & ∈ BΛ

| | |& | | |2- :=
∑
4∈-

∑
U

X4,U (&)2

�(
≥ �2

|- | inf
&0∈BE\-

‖& −&0 ⊗ 1- ‖2
�( . (5.20)

Proof. The idea is similar to [33], where it is shown that if an observable almost commutes with every

observable supported on a region X, then it is close to an observable supported in Λ\- . Let us start with

the following observation: there exists a family of unitaries {* 9 } 9∈[32 ] , where [32] := {0, 1, . . . , 32−1},
that forms an orthogonal basis of B(C3), and such that

1

32

∑
9∈[32 ]

* 9&*
†
9
= tr(&) 1

3
13 (5.21)
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for every & ∈ B(C3). Indeed, one can define \ := 42c8/3 and consider the Sylvester operators (also

known as Weyl-Heisenberg matrices) Σ1 =
∑3−2

:=0 |:〉〈: + 1| + |3 − 1〉〈0|and Σ3 =
∑3−1

:=0 \
: |:〉〈: |, which

satisfy Σ3Σ1 = \Σ1Σ3. Then, the family of unitaries

{*:,; := Σ
:
1Σ

;
3 = \:;Σ;

3Σ
:
1 : 0 ≤ :, ; ≤ 3 − 1}

satisfies the above conditions. One can easily demonstrate that they are orthogonal with respect to the

Hilbert-Schmidt scalar product, and so they form a basis. To check (5.21), it is sufficient to check its

validity when considering Q as the elements of the basis, which can be easily verified. This completes

the proof of the observation. Notice also that the commutant of this family satisfies {* 9 }′9∈[32 ] = C13

since it spans the whole algebra.

For each site 4 ∈ Λ, let us identify the local Hilbert space H4 ≡ C3 and take the family {*4,: }:∈[32 ]
in B4 ↩→ BΛ given in the previous observation. The families {(4,U}U and {*4,: }:∈[32 ] satisfy the

conditions of Lemma 5.12 by the assumptions on the bath operators (4,U and the construction of *4,: ,

so there exists a constant  > 0 independent of the system size and of the edge e, such that the norms

given in the aforementioned lemma satisfy

 | | |& | | |4 ≤ || |& | | |′4 ≤ 1

 
| | |& | | |4 (5.22)

for every & ∈ BΛ. Let us now consider a finite subset X of Λ. For each k : - → [32], define the unitary

*-,k :=
∏

4∈- *4,k(4) supported on X. Then, as a consequence of (5.21), we have that

1

32 |- |

∑
k:-→[32 ]

*-,k&*
†
-,k

= tr- (&) ⊗ 1
3 |- | 1- , (5.23)

and therefore

& − tr- (&) ⊗ 1
3 |- | 1- =

1

32 |- |

∑
k:-→[32 ]

[&,*-,k]*†
-,k

.

We can then upper bound the norm of this difference, using the fact that the Hilbert-Schmidt norm is

unitarily invariant,

& − tr- (&) ⊗ 1
3 |- | 1-

2

�(
≤ 1

34 |- |


∑

k:-→[32 ]
[&,*-,k]*†

-,k


2

�(

≤ 1

32 |- |

∑
k:-→[32 ]

‖[&,*-,k]‖2
�( .

(5.24)

Next, we will make use of the fact that for every family of unitary operators �1, . . . , �<, it holds that

‖[&, �1 . . . �<]‖�( = ‖
<∑
9=1

�1 . . . � 9−1 [&, � 9 ]� 9+1 . . . �<‖�( ≤
<∑
9=1

‖[&, � 9 ]‖�( .

Using the product expression defining*-,k, we can apply the previous estimation to bound from above

(5.24) as follows
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& − tr- (&) ⊗ 1
3 |- | 1-

2

�(
≤ 1

32 |- |

∑
k:-→[32 ]

(∑
4∈-

‖[&,*4,k(4) ]‖�(

)2

≤ |- |
32 |- |

∑
k:-→[32 ]

∑
4∈-

‖[&,*4,k(4) ]‖2
�(

=
|- |
32 |- |

∑
4∈-

32 |- |−2
∑

:∈[32 ]
‖[&,*4,: ]‖2

�(

≤ |- |
32 2

∑
4∈-

∑
U∈A

‖[&, (4,U]‖2
�(

=
|- |
32 2

| | |& | | |2- ,

where in the last inequality, we have applied (5.22). Finally, note that the infimum on the right hand-side of

(5.20) is upper bounded by the first term in the previous expression, since&0 = tr- (&)⊗ 1
3 |- | 1- ∈ BΛ\- ,

so taking �2 = 32 2, we conclude with the desired inequality. �

Remark 5.14. One could weaken Assumption 5.3, and not require that the coupling constants 6̂4,U are

independent of the edge e. In this case, one can still prove Proposition 5.11, replacing 6̂min by

6̂- = min
4∈-

min
U,l

6̂4,U (l).

If one is nonetheless able to find a lower bound to 6̂- uniform in X, then one could use that bound in place

of 6̂min to recover a uniform result as in the translation invariant case. Similarly, if the jump operators

(4,U depend on the location e, then the constants �1 and �2 in Proposition 5.11 are not independent on

X anymore, but the result could be recovered if one is able to obtain uniform estimates on them. For �2,

one can take the supremum over the constants K from Lemma 5.12.

5.4. Parent Hamiltonian vs. Davies generator

We now have two Hamiltonians, one coming from the Davies generator and the other from the parent

Hamiltonian construction (see Section 4.5)∑
4∈E

�̃4 and �E =

∑
- ∈X

%⊥
-

both having the same (unique) ground state |d1/2
V

〉. Recall that j = j=,# = FA42C
=,#

, where = = =(V) is

chosen as in Lemma 4.14. Since we have computed the gap of the parent Hamiltonian in Section 4.5,

we now want to show that we can use that estimate to bound the gap of the Davies generator.

Proposition 5.15. If the Davies generator for the quantum double model with group G satisfies Assump-

tions 5.3–5.4, then its spectral gap L is bounded by

gap(L) ≥ � 6̂min
4−2V =(V)2

=(V)4
gap(�E ), (5.25)

where �E is the parent Hamiltonian of the thermofield double state |d1/2
V

〉 with parameter =(V), c and

C are positive constants independent of V, G, and the system size, and 6̂min = minU,l 6̂U (l).

By combining Proposition 5.15 with Corollary 4.16, Theorem 1.1 is then obtained as a corollary,

gap(�E ) is a constant independent on N and V, and =(V) scales as� ′4V for some constant� ′ depending
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on |� | (see Lemma 4.14). Therefore, we can always find constants _ and 2′, independent of system size

and V, such that gap(L) ≥ 6̂min4
−2′ 4V_.

Proof. We begin by counting how many rectangles - ∈ X contain a given edge e: we want to find an

upper bound <(X ) independent of the edge e.

To estimate <(X ), recall that each - ∈ X has dimension 0 × 1 with 2 ≤ 0, 1 ≤ =(V), and so X

contains $ (=(V)2) edges. For a fixed choice of a and b, a given edge is therefore contained in at most

$ (=(V)2) rectangles of size 0 × 1. Since there are $ (=(V)2) possible choices of a and b within the

allowed range, we can roughly estimate

<(X ) ≤ $ (=(V)4) .

Then this implies that

∑
4∈E

�̃4 ≥ 1

<(X )
∑
- ∈X

(∑
4∈-

�̃4

)
≥ 1

<(X )
�2

|Ω| 6̂min

∑
- ∈X

1

|- | 4
−�1V |'- |

Π
⊥
- ,

where we used Proposition 5.9. As we just discussed, |- | is $ (=(V)2), while '- is contained in a

rectangle with sides of length at most =(V) + 4, which also contains $ (=(V)2) edges. We can therefore

find positive constants C and c, such that

∑
4∈E

�̃4 ≥ � 6̂min
4−2V=(V)

2

=(V)4

∑
- ∈X

Π
⊥
- .

Next, we note that %- ≥ Π- for every rectangular region - ⊂ E , or equivalently

kerΠ⊥
- = { (� ⊗ 4−

V
2
�- )4−

V
2
(�E−�- ) : � ∈ BE\- } ⊆ Im(+- ) ,

Indeed, using the PEPS decomposition

we can compare

kerΠ⊥
- =

{
�

4−
V
2
�E

HE\- H-

: � ∈ BE\-

}

and
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This implies that
∑

- ∈X Π⊥
-

≥ ∑
- ∈X %

⊥
-

= �E , and chaining all the lower bounds, we obtain the

claimed result. This finishes the proof of the result. �
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