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Abstract

In this paper, linear embeddings of partial designs into designs are found where no repeated blocks are
introduced in the embedding process. Triple systems, pure cyclic triple systems, cyclic and directed
triple systems are considered. In particular, a partial triple system with no repeated triples is
embedded linearly in a triple system with no repeated triples.

1980 Mathematics subject classification (Amer. Math. Soc): 05 B 05.

1. Introduction

A block design B[k, X; v] is a pair (V, B) where V is a set of v symbols and B is a
collection of A>tuples called blocks such that each pair of symbols occurs together
in precisely X blocks; if k = 3, it is called a triple system, and if in addition
X = 1, it is a Steiner triple system. A cyclic block design CB[k, X; v] is a pair
(V, B), where each block contains the ordered pair (x, y) if x precedes and is
adjacent to y in the block, where the last symbol is assumed to precede and be
adjacent to the first, and where each ordered pair occurs together in precisely X
blocks; if k = 3 and X = 1, it is called a Mendelsohn triple system. A directed
block design DB[k, X; v] is a pair (V, B), where a block in B contains the ordered
pair (x, y) if x precedes y, and where each ordered pair occurs together in
precisely X blocks. Partial designs result if the above definitions are relaxed to
allow each pair (ordered pair) to occur together in at most X blocks.
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The problem Of embedding partial Steiner triple systems (P, pt) and (P, p2) in
Steiner triple systems (S, s^ and (S, s2), respectively, so that s1 n s2 = px ^ Pz
was considered by Hall and Udding [6] and by Lindner [10]. This problem was
generalized by Lindner [10], who embedded a collection of k partial Steiner triple
systems on n symbols in an intersection preserving set of k Steiner triple systems,
each on v symbols, for every v > 2k(4n + 1), v = 1 or 3 (mod 6). Lindner,
Poucher and Rosa have also considered the intersection preserving finite embed-
dability property for other designs (see, for example, [11], [12], [13]).

In this paper we consider a related problem where a partial triple system of
order n is embedded in a triple system of order approximately 9\2n (see Theorem
3), and where no repeated blocks are introduced in the embedding procedure (the
smallest known embedding of partial triple systems (with no restrictions) is at
present approximately 6Xn (see [2])). An obvious corollary is that a partial triple
system with no repeated blocks can be embedded linearly in a triple system with
no repeated blocks.

A cyclic triple system is pure if no block occurs more than once in B, and if
[i,j, k} e B implies that {/, k, j) € B (so the underlying triple system has no
repeated blocks). Pure cyclic triple systems were introduced by di Paola and
Nemeth [5]. Here we show that a partial pure cyclic triple system can be linearly
embedded in a pure cyclic triple system.

Finally, linear embeddings of partial cyclic and partial directed triple systems
are found in which no repeated cyclic and directed triples, respectively, are added
during the embedding process.

A quasigroup (Q, •) of order v is symmetric if for all i, j with 1 < / <_/ < u,
we have i • j = j • i; it is antisymmetric if for all i, j with 1 < i < j < v, we have
' " j * J ' '*> and it is idempotent if for all i with 1 < i < v, we have / • / = i. Two
partial triple systems P and Q are said to be mutually balanced when, for each
pair of symbols x and y, x and y occur together in z blocks of P if and only if x
and y occur together in z blocks of Q.

In this paper, in counting triples we include repeated triples as many times as
they occur. Also [x] denotes the greatest integer less than or equal to x.

2. Triplp systems

The embedding techniques used here are a variation on the technique devel-
oped in [2], [3], [7] and [8], from which the following can easily be obtained.

LEMMA 1. Let S be a partial triple system B[3, A; n] with a repeated triples (Let
S be a partial pure cyclic triple system CB[3, A; «].) Then there exist two partial
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triple systems {partialpure cyclic triple systems) of order t and index X, say T and
7", where t < (3X + 2)n/2 (t < (3X + l)n), and where

(1) S is embedded in T;
(2) T and 7" are mutually balanced;
(3) T' contains no repeated triples (7" is pure), and 7" can be decomposed into X

partial Steiner triple systems (X partial pure Mendelsohn triple systems); and
(4) the only repeated triples in T are those in S {T is pure).

To prove the main result we shall also use the following theorem.

THEOREM 2 [4]. A partial idempotent symmetric quasigroup of order t can be
embedded in an idempotent symmetric quasigroup of order 2v + 1 for any v > t.

THEOREM 3. A partial 2? [3, X; n] with a repeated triples can be embedded in a
B[3, X; v] with a repeated triples, where

v < 3(2[X/2] + 1)((3X + 2)n + 1).

PROOF. Let S be a partial triple system with a repeated triples. From Lemma 1,
let T and 7" be partial systems of order t that satisfy conditions (1), (2), (3) and
(4), where / < (3X + 2)n/2. Let 7 ' be decomposed into partial Steiner triple
systems Vu..., Vx.

For each x, 1 < x < X, define a partial symmetric idempotent quasigroup of
order of t with product -x such that for each triple {i,j,k} in Vx, we have
/ xj = k, j -xk = /, and k -xi = j ; then, using Theorem 2, embed this in an
idempotent symmetric quasigroup {Qx, -x) of order It + 1.

For each x, 1 < x < X, form the quasigroups {Pl x, O(1 x)) and {P2,x, ©(2,;<:))>
each of order 2[X/2] + 1, with Plx = P2x = { 0 , 1 , . . . , 2[X/2]}, by defining

and

for 0 < i, j < 2[X/2], reducing symbols modulo 2[X/2] + 1. Then clearly
P1<19..., P1X form a collection of pairwise disjoint symmetric diagonal quasi-
groups. Also, since [X/2] and 2[X/2] + 1 are relatively prime, P21,...,P2\ form
a collection of pairwise disjoint symmetric diagonal quasigroups.

It will be relevant later to note that for each x, 1 < x < X, and for each j ,
0 < y < 2[X/2], we have
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and so

where all congruences are modulo 2[\/2] + 1.
Let u = (2[X/2] + l)(2f + 1). For each x, 1 < x < X, form the quasigroup

(Rj x, (,,*)), where 1 < i < 2, of order u, with Rt x — (1,2, . . . , u}, by the "direct
product" of Qx and Pt x; thus, for each /, j in Pt x, if /O(, x)j = k, then replace k
with a copy of Qx + k(2t + 1) (that is, add k(2t + 1) to each entry in Qx). Then
Rn,...,RiX form a collection of pairwise disjoint symmetric quasigroups, for
i = 1 or 2.

For each x, 1 < x < X, form the Steiner triple system (Sx, tx) on the symbols
(i, j), for 1 < i < 3 and 1 < y < u, as follows:

(i) for each j , 1 < j < u,

{(1, >), (2, y -(lyX)j), (3, (y -(i^y) -(2,x)(y "a,*)./))} e ' ^
(ii) for each j , k with 1 < j < k < u, tx contains

{(1, j), (1, k), (2, y -d^A:)}, {(2, j), (2,k), (3, y -(2<x)k)}

Then, since / ? , t , . . . ,R i X are pairwise disjoint for / = 1 or 2, no triple occurs in
more than one of Sr,..., Sx.

If (a, Z>, c) is a triple in Fx, then let A = b \iyX)C, B = a \itXf, C = a -(1 x)Z>,
a = B (2,X)C, B = A -(2yX)C and y = v4 \2,x)B- Then Sx contains a triple system
on the nine points (I, a), (1,6), (l,c), (2M), (2, B), (2,C), (3,«), (3,)3) and
(3,Y); this can be seen from the construction of Sx together with equations (*).
For each triple in Vx, say (a, b, c), unplug this subsystem on nine points and
replace it with a subsystem that contains the triples {(1, a), (1, b), (1, c)}, {(2, A),
(2, B), (2, C)}, {(3,«), (3, B), (3, y)), {(1, a), (2, A), (3, a)}, {(1, b), (2, B), (3,0)},
and {(1, c), (2, C), (3, Y)} to form the Steiner triple system (S;, t'x). Then no triple
occurs in more than one of S[,...,SX. Also, Sx contains a copy of Vx, since if
{a, b, c} is a triple in Fx, then {(1, a), (1, b), (1, c)} e t'x.

Combine S[,..., S{ to form a B[3, X; «], say W, which has no repeated triples,
and which has a copy of 7" on the points (1, 7) for 1 <y < /. Since the only
triples in W in which the three points all have first coordinate 1 are those in T',
replacing triples in T' by those in T creates no repeated triples except for those in
T. This produces the required embedding.

3. Pure cyclic triple systems

We shall need the following lemmas. The first is proved using an adaption of
Hilton's method [9] for embedding partial idempotent latin squares.
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LEMMA 4. A partial antisymmetric idempotent latin square of order n can be
embedded in an antisymmetric idempotent latin square of order 4n.

PROOF. Let P be a partial antisymmetric idempotent latin square of order n.
Fill the empty cells of P using symbols l,...,2n to produce an incomplete
antisymmetric idempotent latin square of order n, call it Ax, and embed Ax in a
latin square A of order In. Subdivide A as in Figure 1, with x = A.

x —

xl

x3

x2

* 4

Figure 1

Form a latin square B by adding n to each entry at AT, reducing entries
modulo 2«. Form a latin square C by adding 2n to each entry in A, and form a
latin square D by adding 2w to each entry in B. Subdivide B, C and D as
depicted in Figure 1. Then the required embedding of P can be formed as
indicated in Figure 2.

1

n

Q

c2

A3

D<

n + 1

'2n

* 3

Z)2

2« + 1

3«

^ 4

^ 3

B2

B,

3« + 1

4«

Figure 2. The required embedding of P
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THEOREM 5. -A partial pure CB[3, X; n] can be embedded in a pure CB[3, X; v],
where

v < 3(2[X/2] + 1)(12X + 4)n + 1.

PROOF. The proof closely follows that of Theorem 3, so we describe only the
main differences.

Let S be a partial pure cyclic triple system of order n. Lemma 1 is used to
construct partial pure cyclic triple systems T and T, where T is decomposed
into X partial pure Mendelsohn triple systems Vx,..., Vx. For each x, 1 < x < X,
a partial idempotent antisymmetric quasigroup corresponding to Vx is formed
which is embedded in an idempotent antisymmetric quasigroup Qx of order At
using Lemma 4.

Construct the collection of pairwise disjoint symmetric quasigroups Pn,..., PiX,
for i = 1 and 2, as in Theorem 3.

Let u = (2[X/2] + l)4f. Let Q'x be the antisymmetric quasigroup of order 4t
formed by adding 1 to each entry in Qx, reducing the symbol modulo At. For
each x, 1 < x < X, form the quasigroup (R, x, •(,,*>), where 1 < i < 2, of order
u, by a type of direct product as follows: for each /, j such that 1 < /,
j < 2[X/2] + 1, if /O(( x)j = k, then replace k with a copy of Qx + 4tk when
/ > j , and with a copy of Q'x + Atk when / < j . Then RiV..., RiX, for / = 1 and
2, are pairwise disjoint and are antisymmetric.

Construct X pure Mendelsohn triple systems (Sx,tx) on the set of symbols
{oo} U {(J, j)\\ < i < 3 and 1 < 7 < «} as follows:

(a) for each j , 1 < j < u, tx contains

. (2,; -(i,,);). (3, (j -{1,x)j) -(2,x){j -a,,)

{ o o , ( 3 , ( j - l l t X ) j ) - ^ { j - ( 1 < x ) j ) ) , ( 1 , j ) } ,

{(i.y).(3>0-(\.x)j)•(2,x)(;-(i,^;))>(2. j

(b) for each j and k with 1 < j , k < u, tx contains {(1, j), (1, k), (2, j -(1 x)k)},
{(2, j), (2, k), (3, j -(2,x)k)}, and {(3, j), (3, k), (1, 7 -^Af)}.

The proof now follows that of Theorem 3, and the details are omitted.

4. Other results

We can obtain results similar to Theorem 3 for cyclic triple systems and for
directed triple systems.

THEOREM 6 [1]. A partial idempotent latin square of order n can be embedded in
an idempotent latin square of order 2n + 1.
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THEOREM 7. A partial CB[S, A; n] with a repeated cyclic triples can be embedded

in a CB[i, A; v] with a repeated triples, where

v < 3(2[A/2] + 1)((3A + 2)n + 1).

PROOF. The proof closely follows that of Theorem 3, except that Theorem 6 is

used instead of Theorem 2. The details are omitted.

THEOREM 8. A partial DB[3, X; n] with a repeated directed triples can be

embedded in a DB[3, X; v] with a repeated directed triples, where

v < 3(2[A/2] + 1)((6A + 2)« + 1).

PROOF. Lemma 1 can be stated for directed triple systems, where t < (3A + \)n,

where T is a partial directed triple system containing S, and where T' is a partial

cyclic triple system with no repeated cyclic triples (see [3]). The proof closely

follows that of Theorem 3 using the embedding technique developed in [2] and

[3].

5. Conclusion

The same techniques that are described here can be used to embed partial triple

systems (Pv pv),. ..,(Pk,pk) into triple systems {Sx,^....(S^,sk), respec-

tively, where for 1 < / < j < k, where pt n Pj = j , O Sj, and they may be applied

to analogous problems for cyclic and directed triple systems. The size of the

embedding increases by a factor of approximately 2[k/2] + 1.
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