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THE INVARIANT POLYNOMIAL ALGEBRAS FOR
THE GROUPS IU(n) AND ISO(n)

HITOSHI KANETA*

§ 1. Introduction

By the coadjoint representation of a connected Lie group G with the
Lie algebra g we mean the representation CoAd(g) = ^Ad^"1) in the dual
space g*. Imitating Chevalley's argument for complex semi-simple Lie
algebras, we shall show that the CoAd (G)-invariant polynomial algebra
on g* is finitely generated by algebraically independent polynomials when
G is the inhomogeneous linear group IU(ή) or ISO(ή). In view of a well-
known theorem [8, p. 183] our results imply that the centers of the enve-
loping algebras for the (or the complexified) Lie algebras of these groups
are also finitely generated. Recently much more inhomogeneous groups
have been studied in a similar context [2], Our results, however, are
further reaching as far as the groups IU(n) and ISO(n) are concerned
[cf. 3, 4, 6, 7, 9].

We shall state our results.
( i ) IU(ή) 0^2).
Let Gn and qn be the group IU(n) and its Lie algebra respectively,

namely

{( ) ; ueU(n)' aeC"
; Xeu(n), xec

The dual space g* of gn can be identified with gπ by the following non-

degenerate bilinear form < , >„ on gB X gn

f/

\
/X x\ (Y y\\ f(X 0 \ (Y 0
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44 HITOSHI KANETA

where < , ) s u ( n + 1) = the Killing form of the Lie algebra su(n+ 1) and <#, y)

= Re Λ;*;y. Thus we realize the coadjoint representation CoAd of Gn in

β* = gre as follows.

Let $Qn = be the 7i-dimensional subspace

0
0

0

o . . . o
o . . . o

of g*. Set Z j = Yj +

o

, Yn-l,

^j ^n - 1), s t = the i-th fundamental

polynomial (0 ^ i ^ n — 1) in Z J 5 and tt = sty
2

n.

THEOREM 1. The C-algebra of CoAd (IU(n))-invariant polynomial func-

tions on g* is isomorphic, via the restriction map f—>f\ίQn, to the C-algebra

C[ί0, •• ,ίT C_1]. The polynomials £0> •••> tn-\ a r e algebraically independent

over C.

(ii) ISO(ή) (n ^ 2).

Let Gn and Qn be the group ISO(ή) and its Lie algebra respectively,

namely

G" = {(o i ) ; ueS0(n)' a e R n } >

Denote by < , >n a non-degenerate bilinear form on Qn

where < , >,0(n + 1) = the Killing form of the Lie algebra so{n + 1) and (x, y)

= x*y. Identifying the dual space g* of qn with gn by this form, we define

the coadjoint representation CoAd of Gn in £* = §n as in the case (i). If

n = 21 + 1 (/ ^ 1), let φ Λ be a (ra + l)/2-dimensional subspace

https://doi.org/10.1017/S0027763000020821 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000020821


INVARIANT POLYNOMIAL ALGEBRAS 45

0

0
0 •

0

-γ .

0
0
0

y,
0

- i )

y,

0

0

. ' 0
- y ,

• 0
• 0

d>

0

. ' 0
— Yι

• 0

• 0
• 0

y,

0

0

0

0),

y«
0

0

0

0

0 0

0 0
0 0

0 yt

0 0

l e t £>f

0 0

o :
0 :
0 0
0 y
<3 0

of g*. Set st = the i-th fundamental symmetric polynomial in Y\, , Y?,

and ^ = 5^?+! (0 ^ i <Z). Set, further,

5 , = (Y,

Yι, tt = styι + 1 for n = 2Z + 1,

Y,)2, ^ = 8^?+! for n = 2(l + 1).

THEOREM 2. The C-algebra of CoAd (ISO(ή))-ίnυariant polynomial func-

tions on g* is ίsomorphίc, via the restriction map f—>f\ !gn, to the C-algebra

C[t0, , tt]. The polynomials t0, , tt are algebraically independent over C.

We shall prove Theorems 1 and 2 in Section 2 and Section 3 respec-

tively.

The author would like to express his sincere thanks to Dr. G. Seki-

guchi and Dr. M. Hashizume for their valuable suggestions.

At the end of this section, we shall explain our basic notation. R

and C stand for real and complex number fields respectively. Imaginary

unit will be denoted by V — 1. ^Π^ΪR means the set of pure imaginary

numbers. For nonnegative integers m and n, Mmn(R) and Mmn{C) stand

for the set of real and complex m X n-matrices respectively, ϊ * ( I e M m n ( C ) )

means the complex conjugate of the transposed matrix X\ As usual t r X

(XeJI ίJC)) means the trace of X. Mnl(R) and Mnl(C) will be denoted

by Rn and Cn respectively. In is the unit matrix in Mnn(C). For positive
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46 HIΊOSHI KANETA

integers i and j , Eί3 means the matrix whose (ί, ̂ -component alone is non-

vanishing and is equal to 1. Set

= {ueMnn(C); u*u = In} ,

SO(n) = {ve Mnn(R); v*υ = Iny det u=l} .

Their Lie algebras will be denoted by u(ri) and so(ή) respectively.

Finally S£fW is a transformation of Mn + Un^(C) sending X to (^ 0^jx(in ^) *•

§ 2. The proof of Theorem 1

Let Gn?0 and GnΛ be the matrix group U(ΐ)χIU(ή) and U(n + 1) respec-

tively. Denote by gn?0 and gWjl the corresponding Lie algebras;

^ΪR, Xeu(n), x

Let for

where S£>7? is the transformation of MΏ + 1?n + 1(C) defined at the end of Section

1. For X = (X fy e $n,0, Xδ(0£δ£ί) means the matrix either

( X X ) ΐoτ 0 < ^ < l or (X x) for δ = 0.
\-δ2x* -trXJ ~ Vθ 0/

In addition, (c, Xδ) (c e V — 1R) means the matrix cln + 1 + Xδ in gWj3. Now

the bilinear form < , >δjn on gK)δ X g ^ will be defined as follows.

<(α, Zδ), (6, £)>,,„ = ab + (S^Xδ, Sδ^nYδ)su{n + 1) (0 < δ ^ 1) ,

<(α, Zo), (6, Zo)Xn = α& + <rX, ^Y>,tt(Λ + 1) + <x, y} .

In the above <,)S M ( n + i) = the Killing form of the Lie algebra sw(^ + 1),

<*, 3̂> = Re x*j and ^ Z = ί Q — trX/' ^ n c e ^ e bilinear forms < , >δ)TO are

non-degenerate, we can identify the dual space g*a with gn>3. Let < , )fij0)W

be the non-degenerate bilinear form on £re,εXgn,0 (0 < e <̂  1) defined by

<(α, X), (b, Zo)X,o,n = (α - tr X)6 + <x, y> + « X + t r Z ) , .y>SZiU + 1) .

Thus we have isomorphisms J ε,w: Q*o—>S*o and ^ε*w 9«,ε->gn,o satisfying

https://doi.org/10.1017/S0027763000020821 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000020821


INVARIANT POLYNOMIAL ALGEBRAS 47

<(α, Z.), (6, Zo)>.,O,n = <(<*, X,), J..nΦ, Σθ)>e,n

= ( J * ^ , Z.), (6, Zθ»O.n .

Let Adδ (g) be the representation of Gn,δ in gTO>δ defined by the formula

Ad, (g)(c, Xs) = g(c, XJg-1 for g e Gn,δ (0 £ δ ^ 1),

while CoAdδ means the representation of GU}δ in g*3 such that

g-1)(c, £ ) , (6, Z,)>,,» = <(<*, 2C), CoAd,

Denote by coAdε (0 < ε ^ 1) the representation J~l CoAdε J"e>w of Gw,ε in

Q*0. In accordance with this notation we write coAd0 for CoAd0. To

describe the transformation coAd0(g) explicitly, let {̂ 0, λu λij9 ωίh ei9 / ^ ϊ e ^ ;

1 ^ i ^ n, I <^ ί <Lj <L n} be a basis of gnj0 such that

Λ = V — l-4 + i , λt = ΛJ — 1EU , λi3 = V~^Λ(Eυ + S^) ,

ωi;- = ίJ o — E3ί , eέ = 2?<ιn + 1 .

The dual basis of g*0 will be denoted by {λ°, λ\ λ", ωίj, e\ J^Λe1}.

LEMMA 2.1. For g = ί Q ? j e Gn,0 α^cί (c, Zo)
 e 8*o ^

coAd0 (^)(c, Zo) = (c, Zo) with yf = wy and

+ (ωί3a, uy}ωίj) .

Proof. It suffices to note that (Xa, uy} (Xeu(n)) is equal to (cX,
ι{Y' -

Remark 2.2. Bearing in mind that the complexification of the Lie

algebra su(n + 1) is isomorphic to the Lie algebra sl(n + 1, C), we can

easily verify that

* = v ^ Ί ( Σ ; * * ^ i - nEti)/dn , ^^ = ^,/cn , ω^ = ω^ /c.

with cn = - 4(n + 1) and dn - 2(n + I)2 [8, p. 295 or p. 390].

LEMMA 2.3. (1) Jε,n(c, Yo) - (c, YD for (c, Yo) e fl*0,

Y' = Y + tr Y - c/dn.

(2) J*n(c, Zβ) - (c7, Zί) /or (c, Z.) e βί,., ^/iβrβ cr - c - tr Z, ^ = x

Z 7 = Z + tr Z.

Proo/. Note that tr X = V r = l<iZ, Σ?=i ^), a(« + i). Then (1) follows at

once. The second assertion is almost obvious. Observe that (c, Kε)£Qn,ε
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48 HITOSHI KANETA

tends to (c, Xo) e gn,0 as ε—>0. In other words, contracting the Lie algebra

gWjl, we obtain the Lie algebra gn,0 [4], Consequently coAdε converge to

coAd0 in the following sense.

LEMMA 2.4. Assume te R and (6, Yo) e g*0, and let Z_ε e gn,ε (ε > 0) be

the element corresponding to Z_ = l~ i\)egTOi0. Then

lim coAd£ (exp tZε)(b, Yo) = coAd0 (exp ί ( f * W Yo) .

Proof. Evidently it suffices to show that the generators of the semi-

groups coAdε (exp tZε) converge to the generator of the semigroup

coAd0 (exp t( n 4._ rγ )). To this end, we can

d
dt

-(Ad o (exp - ^ _ t ^ ) ) ( α ; Xo), φ, Yo)

for any (α, Xo) e gn>0.

Remark 2.5. It is clear that coAdδ (exp c/TO + 2) is the identity operator

for any c/n + 1egn,ί.

Let F(b, Y,y) be the value at (b, YJ e g*i of a Co Adi (Gπ> ̂ -invariant

polynomial F. Then the polynomial function fε = FoS~i°Jεtn

 o n 8*0 i&

clearly coAdε (GW)£)-invariant. By Lemma 2.3 we have

f£(b, Y, 3/) = F(6, Y + (tr Y - b/dn)In, y/εcj ,

where the left-hand side stands for the value of fε at (b, Yo) e g?ϊ0. Regarding

fe as polynomial in ε"1, let f(b, Y,y) be the coefficient of the ε~d for the

highest degree d.

LEMMA 2.6. The polynomial function f on qn% defined above is coAd0(G7i)0)-

ίnvariant.

Proof In view of Lemma 2.4 the assertion is an immediate consequence

of the fact that f(b, Y, y) coincides with the limit of εdfε(b, Y, y) as ε^O.

We shall now clarify the relation between a CoAd (GJ-invariant poly-

nomial function on g* and a coAd0 (GW)0)-invariant polynomial function on

g*0 (recall the notation in Section 1). Note first that gn>0 = *J — \R + gw, the

https://doi.org/10.1017/S0027763000020821 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000020821


INVARIANT POLYNOMIAL ALGEBRAS 49

sum being orthogonal direct sum of Ad0 (Gnί0)-invariant subspaces. There-

fore, g*0 is a direct sum of coAd0 (Gn)0)-invariant subspaces V — 1R and g* = gw.

Moreover, the restriction coAd0 (g) \ V^ 1 R is the identity operator for g e

Gn>0, because so is the restriction Ad0 (g)\<f^ΪR. The bilinear form < , }n

on gn X Qn is nothing but the restriction < , )o,n 19n X gn. It now follows that

coAd0 (g) = CoAd(g) in gί c g * 0 for any g e Gn. On account of Remark 2.5

the set of operators {coAd0 (g) \ gw g e GWj0} coincides with {CoAd (g) g e Gn).

Bearing these observations in mind, we can easily verify the validity of

LEMMA 2.7. A polynomial function f(b, Y, y) on g*0 is coAd0 (Gn>0)-

inυariant iff the polynomial function /(&, Y, y) on g* is CoAd (G^-invariant

for any b.

Let /(g*) be the set of all CoAd (GJ-invariant polynomial functions on

9* = S«> and let rn be the restriction map sending /e/(g*) to /|ξ>n whose

image will be denoted by I(lQn). For the definition of the subspace $Qn of

Qn, see Section 1.

LEMMA 2.8. The union of the orbits {CoAd (Gn)Y0; YoelQn} is dense in

g*. In particular, the map rn is an algebraic isomorphism of I(g*) onto

Proof. For a Y, = (J yΛe g* with yeCn\{0}we shall show that there

exists a geGn such that CoAd (g) Yo e φ n . Take, first, a w e J7(n) satisfying

uy = (0, , - / ^ I | y | ) * with | j | - ( j^) 1 / 2 . We can find a n α e C " ( c G J

for which Y'o = CoAd (a u)Y0 satisfies Y{n = 0 (l^i^ή). Recall the well-

known fact that any Y/; 6 u(n — 1) can be diagonalized by an element of

SU(n — 1). Now we can find a u = u -J e SU(ή) such that CoAd(u α u) Yo

Let An be the subgroup of Gn consisting of all g e Gn such that

CoAd(g)φ n cφ n , and let An be the subgroup of An consisting oΐ all g e Άn

such that the restriction CoAd (g) \ Qn is the identity operator. The group

CoAd(AJ |^ n turns out not to differ so much from the Weyl group of

U(n — 1) [5, p. 305]. To be more precise, let σt (1 <I i < n — 1) and τ be

the linear transformations on $n such that

σt: (Ylt Yi+1) — > (y i+1, YJ , r : yκ - ^ - y , .

Denote by Wn_1 the group generated by σt (1 ̂  i < n — 1). Then we can

verify easily that CoAd (An)\!Qn, which is isomorphic to the quotient group

Άn/An, is generated by Wn^ and τ. Note that W,,.^ is the Weyl group
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50 HITOSHI KANETA

of U(n — 1). We shall now show that the polynomial functions t09 ,

tn-ι on £>n (see Section 1) belong to I($~)n). Indeed, there exist CoAd^G^i)-

invariant polynomial functions F^b, Y) on g*?1 such that

det(ί + Y) = tn+1 + Σΐ=iFi(b> Y)tn^ (t; an indeterminate) .

Applying Lemmas 2.6 and 2.7 to Ft, we deduce that s^^l (1 <L ί < n) lie

in I(φn). Denote by Tn the set of all polynomial functions on §n generated

fay £0> * •> ί«-i We shall show that Tn coincides with I(&n). For this pur-

pose it is convenient to introduce another subspace $n of g*.

= iί J); Y is a diagonal matrix [Yl9 , Yn] and

y. = 0 except for i = Λ L

Let rn be the restriction map sending an /e J(g*) to / | $ w , whose image

will be denoted by lφn). Set £* — fnr~\t^ (0 ̂ Lί <Ln — 1) and denote by

Tw the set of all polynomial functions on &n generated by tθ9 •••, ίw_i.

Note that an /(Yi, , Yn,yJ β /(§„) is invariant under the transformation

yn —> — yn and the permutations Yt <-> Yί + ί (I <L i < n — ΐ). For & in Q)

e «̂ m set Z^ = Yu + trY (1 <i < n), sί.1 = the (ί — l)-th fundamental sym-

metric polynomial in Z l5 , Zn_ t. Evidently ίt_j = St^yl. We claim that

fn consists of all polynomials of the form

Σι*ofι(Zl9 •• ,Zn_ί)ylι,

where fι are symmetric polynomials whose degrees in Zt do not exceed /.

In fact, fLy2

n

ι can be rewritten as

Σ ~rt l ~αn — l 2i

α\, , an — i g ϊ θ ϊ , α i , •> ct-n — 1 1 ^71 — 1 v/?2

with cc0 = —αλ— - - - — α:n_! + I ̂  0.

LEMMA 2.9. TTC = 7(φn) or, equivαlently, fn =

Proof. We shall proceed by induction on ft ̂  2. The case n = 2 will

be discussed in Lemma 2.10. So assume that the lemma holds up to n —

1 >̂ 2. Define subspaces g°, Qn_ί9 Qn_x and IVn of gTC as follows.
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INVARIANT POLYNOMIAL ALGEBRAS 51

M(μ, X', *') =10 X' x' μ eV^lR, Xf e u(n - 1), xf e Cn

\0 0 0 /

ΛR, x*eCn'\ ceC\

We can identify the group Gπ_i with the connected subgroup of Gn cor-

responding to the subalgebra Qn-1. $n is a direct sum of the Ad(Gn.ί)'

invariant subspaces Qn_: and ifn. Moreover, since

Ad ( g ) ( * *) = ( ^ ' ^ ) with Z n = Xίι{orgeGa.1 and

it follows that the representation of Gn^x in the quotient space gjgw° is

the trivial one. Denote by ifL the orthogonal complement of a subspace

if of %n. It is easy to verify that

ί/Yί 0 0\ I

l\0 0 0/ j

Observe that Y/̂ - is CoAd(Gn_!)-invariant and that ί ̂  Λ ) e gn with Ye u(n)

lies in if^ iff Y is a linear combination of λ2, , Λn (see Remark 2.2).

Besides, CoAd(g)^1 = λι for geGn_u because the representation of Gn^1

in g ^ c g * is the trivial one as the representation of Gn_ι in the quotient

space gΏ/g°. Note also that gn_!, which we may regard as a subspace of

Q*, is a direct sum of the CoAd(Gw_i)-invariant subspaces y ^ and <ίίf ^ j ;

/iei? . In particular, §n_1 is CoAd(Gtt_ ̂ -invariant. For (^ Q ) e g* set Zf

= Yu + tr Y (1 ̂  ί ^ π,). Then simple computaion yields that

the diagonal part of Y = - 2 / I Γ ϊ Σ«=i ^ ^ / c w

with cn = — 4(n J

Γ 1). Define a basis {Λί? 2£j, ω t J; 2 <^ ί ^ n, 2 <̂  i < j ^ n}

of gn_! as for g^0, and denote by {2*, ίίj, ωίj, 2 ^ i < n, 2 <^i < j ^n} the

dual basis. Now let Ln be a linear isomorphism of Y/Λf onto g*_τ = g.ri_j

defined by

Yί 0 0\

o v o )
\0 0 0/ ° n

/Yί o o\ /o o o\ n

\0 o 0/ °"1-1 \0 0 0/ \C
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52 HITOSHI KANETA

It turns out that

(*) LJ* = λ* (2 ^ i ^ ή) .

Assume that the restriction F\§n_x of an Fel(&*) takes the form

Σ**iZϊFk{Z2, - ,Zn,yn,y2--.,yn_u YiS)

at (Q QJeg^.iCg*. In the above Ytj stands for all the off-diagonal com-

ponents of Y. Since the function Zx on §n_γ is CoAdίG^O-invariant, so

are Fk. On account of (*), together with the induction hypothesis, it fol-

lows that Fk(Z2, -,yn, 0, , 0) take the form

where / u are symmetric polynomials whose degrees in Zt are not greater

than /. Consequently the restriction / — F\$n is of the form

where

As we observed before, /z are symmetric polynomials in Z1? , Zn_!. Thus

the degrees of ft in Zt (1 ^ ί ^ n — 1) do not exceed I, which proves F\$n

e f

LEMMA 2.10. T2 = J(§2).

Proof. Throughout the proof let n = 2. Assume an F in I(gί) to be

a homogeneous polynomial such that the restriction / = F\ξ>n takes the

form

for some positive integer m. We shall show that m — 2k <L k iΐ bk Φ 0.

For Y, 21? z2 e V^-li?\{0} let a be a real number satisfying

V — 1 (cos a, sin a) = (z29 z{)l\z\ with \z\ = (ZyZf + z2z£)1/2.

Set

α* = (α1? a2) = (V — 1 cn cos a sin αr, — V — \n~ιdn sin2 αr)Y/[-ε|.

See Remark 2.2 for the definition of cn and dn. Denote by g the matrix
ίcosa - s i n α \ T h e n j l e c a l c u l a t i o n y i e l d s
\sm α: cos a) * J
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INVARIANT POLYNOMIAL ALGEBRAS 53

IY 0 zλ IYa 0 0 \
CoAd(α ^) 0 0 z2 = 0 0 Λ ^ = 1 | Z | ,

\0 0 0/ \0 0 0 /

where Ya — Y(cos2 a + ϊ)ln. Consequently f(Ya9 *J — l\z\) must be a poly-

nomial in Y, zu z2, which implies the desired inequality 2(m — 2k) <L 2k,

provided bk Φ 0.

Lemmas 2.9 and 2.10 prove the first assertion of Theorem 1, while the

second one is obvious in view of the well-known fact; polynomials ft{Xu ,

Xn) (1 ̂  ί ^ ή) in Xt (I <L ί <L n) are algebraically independent if the deter-

minant of the Jacobian (dfJdXj) is a non-zero polynomial.

§ 3. The proof of Theorem 2

Let Gn,0 and GnΛ be the matrix group ISO(n) and SO(n + 1) respec-

tively. Denote by gn,0 and QnΛ the corresponding Lie algebras;

We define Gnjδ and gn?δ (0 ̂  δ ̂  1) in the same manner as in Section 2.

For X = L ϊ ) e gn,0 (i.e. I e so(7i), x e Rn), Xδ stands for the matrix

I*
Let < , yδt7l denote the non-degenerate bilinear form on gnjδ X gβ)δ such that

<Xε, 7ε>£>n = <S-£Y., S^Y.>.0(n + 1) (0 < e ̂  1) ,

<X0, Y0>0,n -

where <x,y) = x*y and ̂ X= ίQ QJ€SO(TI + 1). Thanks to the bilinear

form we can identify the dual space g*a of gre5δ with gw,δ. Since the bilinear

form <,) e,w is the Killing form of gn,ε, the coadjoint representation CoAdε

of Gw,ε in g*e is nothing but the adjoint representation Adε of GK)£. Another

bilinear form < , >ε>0)n on gTO)£ X gw,0 is defined by the relation

Y)S0(n + 1) + (x,y) .

Let Jεjn (resp. J * J be the linear isomorphism of g*0 (resp. gWjfi) onto g*ε
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54 HITOSHI KANETA

(resp. gre>0) satisfying the following equalities.

Denote by coAd6 the representation J~l CoAdε c/e>n of Gn£ in g*0. We write

coAd0 for CoAd0. Set ωυ = Eu — Esj (l<^i<j <Z> ή) and ω^ = ωtjlcn with

cΏ = (ωij9 ω^>o,n [cf. 8, p. 390]. Now we can easily verify the following

Lemmas 3.1-3.3.

LEMMA 3.1. For

we have

\o lAo o/ \o o

where Y7 = uYu~ι + Σί<j (ωί;α> uy}ωίj.

LEMMA 3.2.

θ)~\-y*lcn 0

X x\ IX x\
e«x* 0 / " V0 0 Γ

L E M M A 3.3. Assume t e R and Yo e gra>0. and let I ε e g B ) £ ( O < ε ^ 1) be

the element corresponding to Z_ = l~ ^ J e gni0. Then

lim coAdε (exp tZε)Y0 = coAd0 (exp ίZ)70 .

Let F(Y,y) be the value at ί * QJ e g*sl of a CoAd! (Gn)1)-invariant

polynomial function F. The polynomial function fβ = Fo S~l<>Jβtn on g*0

is obviously coAdε(GW)£)-invariant. Note that the value fε(Y,y) of /e at

(o o) e ^*° ^s e ( l u a ^ °̂ F(Y>yleCn)- Considering f8 as a polynomial in ε"1,

let f(Y,y) be the coefficient of (ε"1)^ for the highest degree d. On account

of Lemma 3.3 we obtain

LEMMA 3.4. The polynomial function f defined above is coAd0 (GWf0)-

invariant.
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In what follows, we shall freely use the notation introduced in Section

1 for the group ISO(ή). Denote by /(g*) the set of CoAd (GJ-invariant

polynomial functions on g*. Let r be the restriction map sending fe /(g*)

t° f\Qn> whose image will be denoted by I(!Qn). To describe the symmetry

shared by elements of I(φn), set An = {ge Gn; CoAd (#)(£>Jcξ>TO} and An =

{g e An CoAd (g) \ $n = the identity}. In case n = 21 + 1 (Z ̂  1), denote by

Wn.ί the group of the linear transformations on %>n generated by the fol-

lowing Oi (1 <I i ^ /) and r, (1 <Lj ^ Z);

If 7i = 2(Z + 1) (Z ̂ > 1), let Wn.x be the group of the linear transformations

on ξ>n generated by the above α̂  (1 ^ i < Z) and the following σt;

σt: (Yt_u Yt) >(-Yu-Yι_ι).

Note that the group Wn^x is isomorphic to the Weyl group of SO(n — 1).

In view of Lemma 3.1 we can easily verify that the group CoAd (An) \ $Qn

which is isomorphic to the quotient group An/An, is generated by Wn_1

and τ = CoAd(Jn_lf8). Here In_ l i 2 - Jn + 1 - 2(En.hn_ί + EnJ. In view of

Lemma 3.1 τ is a linear transformation of φΛ such that τ: (Yι,yι + d ->

((—iyYl9 —yι + ί) with ε = 0 or 1 according as τι is even or odd. We have

seen that any element of I(ξ)n) is CoAd (^ϊπ)-invariant. As is well known,

a polynomial / in Yί9 , Yι is Wn^-invariant iff / lies in the algebra C[su

••',St] [5, p. 302]. Note also that U e J(φn) for 0 ^ i < I To see this, in

case n = 21 + 1, let pt (0 <̂  i ^Z) be the CoAdt (Gn>1)-invariant polynomial

functions on £*5l such that

det (t + (_ ^ J)) - ί2^2 + pXY, y) +

while in case 72 = 2(Z + 1), let qt (0 ^ i ^ Z) be the CoAd1(Gn>1)-invariant

polynomial functions on g*5l such that

d e t ( * + (_ *

[8, pp. 410-411]. Evidently p* and qt (0 < ί < I) are of degree 2 in yl9 ,

yn except for pu which is of degree 1 in yl9 , yn. Applying Lemma 3.4

to polynomials pt and qu we conclude that tt e I(ξ)n). The determinant of

the Jacobian matrix (d(t0, , tt)ld(Yu , Yι9yt+1)) does not vanish in the

polynomial ring, which can be verified by all means. Consequently the
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polynomials tt (0 <* ί <I I) are algebraically independent over C. Denote

by Tn the C-algebra generated by tt (0 <: i ^ Z). In what follows we shall

show that Tn = !(£„). Observe that a CoAd (AJ-invariant polynomial /

on φ n belongs to jPn iff it takes the form

is

is injectiue.

where the degree of /* in Yj does not exceed k. Indeed, fk being invariant

-under Wn_l9 fky*+i can be rewritten as

Σ«,ao α^. αtf1 s°ιyk

ι+1 (αβl...βι e C)

= Σ^oα^.-.Λ"0*?1 *"

with 2ao = k-2at- - 2^_x - (2 - ε)at ^ 0, where ε = 0 or 1 ac-

cording as n is even or odd.

LEMMA 3.5. The union of the orbits |CoAd(G n)L ζ\; L Q

dense in g*. in particular, t/iβ restriction map r: I(g*) -> ί ( φ j i

Proo/. It suffices to show that for Yo = ( J Q) e 9 * w i t h y φ ° t h e r e

exists a geGn such that Coad(g)yoeiρn. Take a ueSO(ή) such that

αy = (0, , 0, |y|)* with |y| - (y*y)1/2. Set Y[ = CoAd(u)Y0 = (*' jf),

where ^ ; - uy. We can find a n α = (***, 0)* e Rn such that Y" = CoAd (α)Γo

=: ( Q7/ J'Y where Y/7 e so(ή) takes the form (% § for some Z e SO(n - 1).

As is well known, the set B^\xe so(n - 1); (jf j ) e $„, where X = (^ J)

e so(τι)\ is a maximal abelian subalgebra of so{n — 1). Hence there exists

a veSO(n - 1) such that vZv^eB. Thus CoAd(u α α)Y0 belongs to φ n .

LEMMA 3.6. Γw = J(φn) /or τι ^ 2.

Proo/. Since § n - ί ^ j V y - (0, y2)*J for n = 2, the assertion is valid.

The cases τι = 3, 4 will be separately discussed in the following Lemma

3.7. We thus proceed by induction on n assuming that Γn_2 = 7n_2(φn).

Define subspaces Ψ*ny iT°n and gw_2 of qn as follows.

, x% c ) =

0 μ x c

-μ 0

-x* 0 0

0 0 0

μeR,
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8»-2 = { X e $ n ; Xij = 0ΐor l£ί<2,l^

We can naturally identify the Lie algebra gn_2 and the group Gn_2 with

<jn_2 and the connected subgroup Gn_2 of Gn associated with the subalgebra

qn_2 respectively. For M(μ, x, c) e iΓn and geGn_2 we have

(3.1) Ad (g)M(μ, x, c) = M(μ, x, c)eiTn.

Therefore Ad(Gre_2) leaves iΓn9 Ψ"°n and Qn_2 invariant. gπ being a

direct sum of Ad (Gn_2)-invariant subspaces if \ and gn_2, it follows that

CoAd((χw_2) leaves the orthogonal complements Ψ*^ and ĝ -_2 invariant.

Since iV\ is Ad(Gn_2)-invariant, iTQ

n

L is CoAd(Gn_2)-invariant. We can

easily verify that Ψ*k = Qn_2 and

V- - {TIE* - E21) + X; Xe gre_2) Y.eR}.

Since the representation of Gn_2 in the quotient space QJΨΊ is trivial due

to (3.1), so is the representation of Gn_2 in iΓ°n

L = if^/Qk. This implies

that the function Yt on Ψ"°n

L is CoAd (GK_2)-invariant. Identifying the dual

space g*_2 of gTO_2 with TF^, define a linear isomorphism Ln of g*_2 = i^n

onto g*_2 - gπ_2 by requiring

VO 0

for (*' j Ί e g n - ϊ and (ζ ζ\ e Wk with y = (0, / * ) * € Rn. Then

= (fl n) vftih Z = cnY/cn.2. The constants cn are defined just before Lemma

3.1. Now let f be the restriction F\ iV\L of an Fe I(g*) assuming the value

at (J j W j 1 , where Y= ί̂ 1 y,\ Since the function ^ and the sub-
space iVk are CoAd(Gw_2)-invariant, so are fk. In particular, fki as func-

tions on iVk, are CoAd(Gβ_2)-invariant. Denote by fk the restriction

fk oL'1 \&n-2- By the induction hypothesis fk take the form

V f (Y . . YΊv™
^ijm^O Jkm\J-2i j ^l/Jl + l 9

where the degree of fkm in Ύι does not excead m. Consequently the re-
striction f = f\<Qn takes the form
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tmV-M>

with

UYU •.., yz) =

where c/ — cn_2jcn. Therefore the degree of fm in Yt does not exceed m.

Since fmyT+i is CoAd (An)-invariant, fmyΓ+1 (hence, / as well) belongs to Tn*

This concludes the proof of Lemma 3.6.

LEMMA 3.7. Tn = I(φn) for n = 3, 4.

Proof It suffices to show t h a t Tn z> I($n). The case n = 4 alone will

be discussed in detail, for the another one can be dealt with similarly.

Let F be a homogeneous polynomial in I(g?), whose restriction F\ξ)n may

be assumed to be of even degree 2m of the form

f(V y \ _ y m Z. y2m-2fcv2λ; // _ 1\

We must show t h a t 2m - 2k ^ 2fc, provided 6, ^ 0. For (z2, zA)* e R2\{0},

let a be a real satisfying

(cos a, sin a) = (zi9 z2)/\z\ with \z\ = (z2

2 +
y/2

Moreover, set

1 0 0 0

0 cosα 0 — sin a

0 0 1 0

0 sin a 0 cos a

a = —
cπ sin a

z

1
0

0

0

Then simple calculation yields the following equality;

CoAd (a ua)

0 Y 0 0 0

- Y 0 0 0 z2

0 0 0 0 0

0 0 0 0 z,

0 0 0 0 0

0 Ya 0 0 0 1

-Ya 0 0 0 0

0 0 0 0 0

0 0 0 0 |2

0 0 0 0 0

where Yα = Ycosα. Since /(Y«, |^|) can be rewritten as

Σ J Γ = O bkY
2m~21czlm~21c(zl + 24) 2 f c~m ,

it follows that m ^ 2/̂ , provided bk Φ 0, because /(Yα, |z|) must be a poly-

momial in Y, 2:2, ̂ 4.
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Added in proof. After this paper had been accepted for publication,
[10] appeared. [2] is now published (Comm. Math. Phys., 90 (1983),
353-372).
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