PARTIAL CHARACTERS WITH RESPECT TO A NORMAL SUBGROUP

GABRIEL NAVARRO and LUCIA SANUS

(Received 7 January 1998; revised 22 September 1998)

Communicated by R. B. Howlett

Abstract

Suppose that G is a π -separable group. Let N be a normal π' -subgroup of G and let H be a Hall π -subgroup of G. In this paper, we prove that there is a canonical basis of the complex space of the class functions of G which vanish off G-conjugates of HN. This implies the existence of a canonical basis of the space of class functions of G defined on G-conjugates of HN. When N = 1 and π is the complement of a prime p, these bases are the projective indecomposable characters and set of irreducible Brauer characters of G.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 20C15. Keywords and phrases: π -partial characters, Brauer characters, projective indecomposable characters, π -separable groups.

1. Introduction

Let G be a finite group, let π be a set of prime numbers, and let $N \triangleleft G$ be a π' -subgroup of G. We consider the set $G^0 = \{x \in G | x_{\pi'} \in N\}$ and the space of complex class functions $cf(G^0)$ of G defined on G^0 . Also, if $\chi \in cf(G)$ is a class function of G, then we denote by χ^0 the restriction of χ to G^0 .

THEOREM 1.1. Suppose that G is π -separable. Then there exists a canonical basis $I_{\pi}(G|N)$ of $cf(G^0)$ such that if $\chi \in Irr(G)$, then

$$\chi^0 = \sum_{\phi \in \mathrm{I}_{\pi}(G|N)} d_{\chi\phi} \phi$$

for uniquely determined nonnegative integers $d_{\chi\phi}$.

This research was supported by DGICYT PB-97-0574-C02-02 and MEC.

^{© 1999} Australian Mathematical Society 0263-6115/99 \$A2.00 + 0.00

Let us write $\operatorname{vcf}_{\pi}(G|N) = \{\tau \in \operatorname{cf}(G) | \tau(x) = 0 \text{ whenever } x \in G - G^0\}$. For $\phi \in I_{\pi}(G|N)$, let

$$\Phi_{\phi} = \sum_{\chi \in \operatorname{Irr}(G)} d_{\chi\phi} \chi$$

Also, if $\theta, \phi \in cf(G) \cup cf(G^0)$, write

$$[\theta,\phi]^0 = \frac{1}{|G|} \sum_{x \in G^0} \theta(x) \overline{\phi(x)}.$$

THEOREM 1.2. Suppose that G is π -separable. Then the set $\{\Phi_{\phi} | \phi \in I_{\pi}(G|N)\}$ is a basis of $\operatorname{vcf}_{\pi}(G|N)$. In fact, if H is any Hall π -subgroup of G, this is the unique basis \mathscr{B} of $\operatorname{vcf}_{\pi}(G|N)$ satisfying the following two conditions.

(I) If $\eta \in \mathcal{B}$, then there exists $\alpha \in Irr(NH)$ such that

$$\alpha^G = \eta$$

(D) If $\gamma \in Irr(NH)$, then

$$\gamma^{G} = \sum_{\eta \in \mathscr{B}} a_{\eta} \eta$$

for uniquely determined nonnegative integers a_n .

Furthermore,

$$[\Phi_{\phi},\theta]^0 = \delta_{\phi,\theta}$$

for $\phi, \theta \in I_{\pi}(G|N)$.

When N = 1, Theorems 1.1 and 1.2 are well-known consequences of Isaacs π theory, and $I_{\pi}(G|N) = I_{\pi}(G)$ is the set of irreducible Isaacs π -partial characters of the group G. Of course, when N = 1 and $\pi = p'$, then $I_{\pi}(G|N) = IBr(G)$ is the set of irreducible p-Brauer characters of G. In the other extreme case, when $G^0 = G$ (that is, when N is a normal π -complement of G), then $I_{\pi}(G|N) = Irr(G)$. If G is a π' -group, then N is any normal subgroup of G and in this case $I_{\pi}(G|N)$ is the set of sums of the orbits of the action of G on Irr(N).

The set $I_{\pi}(G|N)$ of 'relative π -partial characters with respect to N,' is described in Section 6 below.

2. Good bases

We do Sections 2 and 3 of this paper in a general setting for further use.

If G is a finite group, we denote by cf(G) the space of complex class functions defined on G. Let H be a subgroup of G and write $G^0 = \bigcup_{e \in G} H^e$.

If $X \subseteq cf(H)$ is any subset, we write X^G to denote $\{\xi^G | \xi \in X\}$. Note that $X^G \subseteq cf(G)$ and that if X is a subspace of cf(H), then X^G is a subspace of cf(G). In particular, $cf(H)^G = \{\delta^G | \delta \in cf(H)\} \subseteq cf(G)$. Also, we write

$$\operatorname{vcf}(G|H) = \{ \alpha \in \operatorname{cf}(G) | \alpha(x) = 0 \text{ for } x \in G - G^0 \}.$$

If $G^0 = \bigcup_{K \in \mathscr{K}} K$, where \mathscr{K} is the set of conjugacy classes K of G such that $K \cap H \neq \emptyset$, notice that

$$\dim(\mathrm{vcf}(G|H)) = |\mathscr{K}|.$$

LEMMA 2.1. If H is a subgroup of G, then $cf(H)^G = vcf(G|H)$.

PROOF. It is clear by the induction formula that $cf(H)^G \subseteq vcf(G|H)$. Now, let \mathscr{K} be the set of conjugacy classes K of G such that $K \cap H \neq \emptyset$. Hence, $G^0 = \bigcup_{K \in \mathscr{K}} K$. If χ_K is the characteristic function of $K \in \mathscr{K}$, it is easy to check that $\{\chi_K\}_{K \in \mathscr{K}}$ is a basis of vcf(G|H). Now, let $K \in \mathscr{K}$ and let C be a conjugacy class of H contained in $K \cap H$. If χ_C is the characteristic function (in H) of C, then $(\chi_C)^G$ is a nonzero multiple of χ_K , and the proof of the lemma follows.

Now, let N be a normal subgroup of G contained in H. If $\theta \in \operatorname{Irr}(N)$, then we write $\operatorname{Irr}(G|\theta)$ for the set of irreducible constituents of θ^G . Also, $\operatorname{cf}(G|\theta)$ is the C-span of the set $\operatorname{Irr}(G|\theta)$. Now, let Θ be a complete set of representatives of the orbits of the action of G on $\operatorname{Irr}(N)$. It is clear, then, that

$$\mathrm{cf}(G) = \bigoplus_{\theta \in \Theta} \mathrm{cf}(G|\theta)$$

because

$$\operatorname{Irr}(G) = \bigcup_{\theta \in \Theta} \operatorname{Irr}(G|\theta)$$

is a disjoint union (by Clifford's theorem). We denote by

 $\operatorname{vcf}(G|H,\theta) = \operatorname{vcf}(G|H) \cap \operatorname{cf}(G|\theta).$

LEMMA 2.2. Let $N \triangleleft G$ and let $N \subseteq H \subseteq G$. Let Θ be a complete set of representatives of the action of G on Irr(N). Then

$$\operatorname{vcf}(G|H) = \bigoplus_{\theta \in \Theta} \operatorname{vcf}(G|H, \theta).$$

PROOF. It is clear that the sum on the right is direct and contained in vcf(G|H). Since $cf(H)^G = vcf(G|H)$ by Lemma 2.1, it suffices to prove that if $\alpha \in Irr(H)$, then $\alpha^G \in \sum_{\theta \in \Theta} vcf(G|H, \theta)$. Now, let $\mu \in Irr(N)$ be an irreducible constituent of α_N . Hence $\mu^g = \theta$ for some $\theta \in \Theta$ and $g \in G$. Now, if, as usual, α^g denotes the character of H^g satisfying $\alpha^g(h^g) = \alpha(h)$ for $h \in H$, then $\alpha^G = (\alpha^g)^G \in vcf(G|H) \cap cf(G|\theta)$, and the proof of the lemma follows.

DEFINITION 2.3. Suppose that $N \triangleleft G$ is contained in $H \subseteq G$. Let $\theta \in Irr(N)$ and let $T = I_G(\theta)$ be the inertia group of θ in G. We say that θ is H-good (with respect to G), if for every $g \in G$, we have that $H^g \cap T$ is contained in some T-conjugate of $H \cap T$. In other words, θ is H-good if $G^0 \cap T = T^0$ where $T^0 = \bigcup_{t \in T} (H \cap T)^t$.

LEMMA 2.4. Suppose that N is a normal subgroup of G contained in $H \subseteq G$, let $\theta \in Irr(N)$ be H-good and let $T = I_G(\theta)$. Then induction defines an isomorphism

$$\operatorname{vcf}(T|T \cap H, \theta) \to \operatorname{vcf}(G|H, \theta).$$

PROOF. By the Clifford correspondence, we know that induction defines a bijection $cf(T|\theta) \rightarrow cf(G|\theta)$. So it suffices to show that if $\psi \in cf(T|\theta)$, then $\psi \in vcf(T|T \cap H)$ if and only if $\psi^G \in vcf(G|H)$.

If we assume that $\psi \in vcf(T|T \cap H)$, then, by the induction formula, it is clear that $\psi^G \in vcf(G|H)$.

Now, let $\psi \in cf(T|\theta)$ and assume that $\psi^G \in vcf(G|H)$. We claim that $(\psi^G)_T \in vcf(T|T \cap H)$. Let $t \in T - T^0$. Hence, $t \in T - G^0$ and therefore, $\psi^G(t) = 0$. Thus $(\psi^G)_T \in vcf(T|T \cap H)$, as claimed. Now, let Λ be a complete set of representatives of the orbits of the action of T on Irr(N). (Of course, $\theta \in \Lambda$ because θ is T-invariant.) Hence, by Lemma 2.2, we have that

$$\operatorname{vcf}(T|T \cap H) = \bigoplus_{\lambda \in \Lambda} \operatorname{vcf}(T|T \cap H, \lambda).$$

Write $\psi = \sum_{\tau \in Irr(T|\theta)} [\psi, \tau] \tau$. If $\tau \in Irr(T|\theta)$, then, by the Clifford correspondence, we know that

$$(\tau^G)_T = \tau + \Xi_\tau,$$

https://doi.org/10.1017/S1446788700036302 Published online by Cambridge University Press

where Ξ_{τ} is a character of T none of whose irreducible constituents lie over θ . Thus

$$(\psi^G)_T = \sum_{\tau \in \mathrm{Irr}(T|\theta)} [\psi, \tau](\tau^G)_T = \sum_{\tau \in \mathrm{Irr}(T|\theta)} [\psi, \tau](\tau + \Xi_{\tau}) = \psi + \Xi,$$

where

$$\Xi = \sum_{\tau \in \operatorname{Irr}(T|\theta)} [\psi, \tau] \Xi_{\tau}$$

does not have any irreducible constituent lying over θ . In other words,

$$\Xi \in \sum_{\lambda \in \Lambda - \{\theta\}} \mathrm{cf}(T|\lambda).$$

Since

$$\operatorname{cf}(T) = \bigoplus_{\lambda \in \Lambda} \operatorname{cf}(T|\lambda),$$

by Lemma 2.2 we conclude that necessarily $\psi \in vcf(T|T \cap H, \theta)$, as desired. \Box

In [6], we defined what it means for a basis of vcf(G|H) to be 'good'.

DEFINITION 2.5. A basis \mathscr{B} of vcf(G|H) is good if it satisfies the following two conditions.

(I) If $\eta \in \mathscr{B}$, then there exists $\alpha \in Irr(H)$ such that $\alpha^G = \eta$.

(D) If $\gamma \in Irr(H)$, then $\gamma^G = \sum_{\eta \in \mathscr{B}} a_\eta \eta$ for uniquely determined nonnegative integers a_η .

It is easy to show that good bases are necessarily unique.

THEOREM 2.6. If \mathscr{B} and \mathscr{C} are good bases of vcf(G|H), then $\mathscr{B} = \mathscr{C}$.

PROOF. See [6, Theorem 2.2].

We will denote by P(G|H) the unique good basis (if it exists) of vcf(G|H).

Here, we are interested in good bases 'over' an irreducible character of a suitable normal subgroup.

DEFINITION 2.7. Let $N \triangleleft G$, let $\theta \in Irr(N)$ and let $N \subseteq H \subseteq G$. A basis \mathscr{B} of $vcf(G|H, \theta)$ is *good* if it satisfies the following conditions.

(I) If $\eta \in \mathscr{B}$, then there exists $\alpha \in Irr(H|\theta)$ such that $\alpha^G = \eta$.

(D) If $\gamma \in Irr(H|\theta)$, then $\gamma^G = \sum_{n \in \mathscr{B}} a_n \eta$ for uniquely determined integers a_n .

[5]

109

The same elementary argument as in the proof of Theorem 2.6 shows that good bases 'over' irreducible characters are necessarily unique. We will denote by $P(G|H, \theta)$ the unique good basis (if it exists) of vcf $(G|H, \theta)$.

We may form a good basis for vcf(G|H) from good bases over normal irreducible constituents. To prove this result, we need a key property of *H*-good characters.

LEMMA 2.8. Suppose that N is a normal subgroup of G contained in H and let $\theta \in Irr(N)$ be H-good. If $\beta \in Irr(H|\theta^g)$ for some $g \in G$, then $\beta^G = \gamma^G$ for some character $\gamma \in cf(H|\theta)$.

PROOF. We have that there is a G-conjugate K of H with a character $\eta \in \operatorname{Irr}(K|\theta)$ such that $\eta^G = \beta^G$. Now, $\eta = \psi^K$ for some $\psi \in \operatorname{Irr}(T \cap K|\theta)$ by the Clifford correspondence. Since θ is H-good (with respect to G), it follows that $T \cap K$ is contained in some T-conjugate of $H \cap T$. So there is a $t \in T$ such that $U = (T \cap K)^t \subseteq T \cap H$. Now, $\psi^t \in \operatorname{Irr}(U|\theta)$, and therefore $\gamma = (\psi^t)^H$ is a character of H such that all irreducible constituents lie over θ . Since

$$\gamma^G = (\psi')^G = \psi^G = \eta^G = \beta^G$$

the proof of the lemma is complete.

[6]

LEMMA 2.9. Suppose that $N \triangleleft G$ and let $N \subseteq H \subseteq G$. Let Θ be a complete set of representatives of the action of G on Irr(N) and assume that each $\theta \in \Theta$ is H-good (with respect to G). For each $\theta \in \Theta$, suppose that $P(G|H, \theta)$ is a good basis of $vcf(G|H, \theta)$. Then

$$\bigcup_{\theta \in \Theta} P(G|H, \theta) = P(G|H).$$

PROOF. By elementary linear algebra and Lemma 2.2, we have that $\bigcup_{\theta \in \Theta} P(G|H, \theta)$ is a basis of vcf(G|H). To complete the proof of this lemma, we have to prove that given $\gamma \in Irr(H)$, then

$$\gamma^{G} = \sum_{\theta \in \Theta} \sum_{\eta \in P(G|H,\theta)} a_{\theta\eta} \eta$$

for some nonnegative integers $a_{\theta\eta}$. Now, there exists $g \in G$ and $\theta \in \Theta$ such that γ lies over θ^{g} . By Lemma 2.8, there exists a character β of H all of whose irreducible constituents lie in Irr $(H|\theta)$ and such that $\gamma^{G} = \beta^{G}$. Since

$$\beta^G = \sum_{\eta \in P(G|H,\theta)} a_{\theta\eta} \eta$$

for some nonnegative integers $a_{\theta\eta}$, the proof of the lemma is complete.

There is a 'Clifford correspondence' for good bases over normal irreducible constituents which easily follows from Lemma 2.4.

LEMMA 2.10. Suppose that $N \triangleleft G$ is contained in $H \subseteq G$. Let $\theta \in Irr(N)$ be H-good and let $T = I_G(\theta)$. If $P(T|T \cap H, \theta)$ is a good basis of $vcf(T|T \cap H, \theta)$, then $P(T|T \cap H, \theta)^G$ is a good basis of $vcf(G|H, \theta)$.

PROOF. It is clear by the definition of good bases, the Clifford correspondence and Lemma 2.4. $\hfill \Box$

LEMMA 2.11. Suppose that N is a normal subgroup of G contained in $H \subseteq G$ and let $\theta \in Irr(N)$ be H-good. Then

$$\operatorname{cf}(H|\theta)^G = \operatorname{vcf}(G|H,\theta).$$

PROOF. If $\alpha \in Irr(H|\theta)$, then it is clear that $\alpha^G \in vcf(G|H, \theta)$. Hence,

$$\mathrm{cf}(H|\theta)^G \subseteq \mathrm{vcf}(G|H,\theta)$$

and we now prove the reverse inclusion. Let $\phi \in vcf(G|H, \theta)$ and write $\phi = \eta^G$ for some $\eta \in cf(H)$. Decompose $\eta = \eta_1 + \eta_2$ where η_1 is a linear combination of irreducible characters of *H* lying over *G*-conjugates of θ and no irreducible constituent of η_2 lies over a *G*-conjugate of θ . Then

$$(\eta_2)^G = \phi - (\eta_1)^G \in \mathrm{cf}(G|\theta).$$

This easily implies that $(\eta_2)^G = 0$ and $\phi = (\eta_1)^G$.

To complete the proof of the lemma, it suffices to apply Lemma 2.8.

3. Partial characters

Our next objective is to associate to the basis P(G|H) of vcf(G|H), a natural basis I(G|H) of $cf(G^0)$, where $cf(G^0)$ is the set of complex class functions of G defined on G^0 .

Note that if $G^0 = \bigcup_{K \in \mathscr{K}} K$, where \mathscr{K} is the set of conjugacy classes K of G such that $K \cap H \neq \emptyset$, then

$$\dim(\mathrm{cf}(G^0)) = |\mathscr{K}| = \dim(\mathrm{vcf}(G|H)).$$

If $\phi, \theta \in cf(G^0) \cup cf(G)$, we write

$$[\phi,\theta]^0 = \frac{1}{|G|} \sum_{x \in G^0} \phi(x) \overline{\theta(x)}.$$

We may view $[\cdot, \cdot]^0$ as a bilinear pairing

$$[\cdot, \cdot]^0$$
 : cf(G^0) × vcf($G|H$) $\rightarrow \mathbb{C}$.

We claim that this pairing is non-degenerate. By elementary linear algebra, it suffices to prove that any $\eta \in vcf(G|H)$ is zero if $[\phi, \eta]^0 = 0$ for every $\phi \in cf(G^0)$. Now, if $\chi_K \in cf(G^0)$ is the characteristic function of $K \in \mathcal{K}$, where \mathcal{K} has the same significance as before, and $x_K \in K$, then we have that

$$0 = [\chi_K, \eta]^0 = \frac{|K|}{|G|} \overline{\eta(x_K)}.$$

This proves the claim.

Given a basis $\mathscr{B} = \{\eta_1, \ldots, \eta_k\}$ of vcf(G|H), then it follows that there exists a unique basis $\mathscr{I} = \{\phi_1, \ldots, \phi_k\}$ of cf(G⁰) satisfying

$$\left[\phi_i,\eta_j\right]^0=\delta_{i,j}.$$

If $\chi \in cf(G)$, then $\chi^0 \in cf(G^0)$ denotes the restriction of χ to G^0 .

THEOREM 3.1. Let $P(G|H) = \{\eta_1, \dots, \eta_k\}$ be the good basis of vcf(G|H) and let $I(G|H) = \{\phi_1, \dots, \phi_k\}$ be the unique basis of $cf(G^0)$ satisfying

$$[\eta_i,\phi_j]^0=\delta_{i,j}.$$

If χ is a character of G, then

$$\chi^0 = \sum_{\phi \in I(G|H)} d_{\chi\phi}\phi$$

for uniquely determined nonnegative integers $d_{\chi\phi}$.

PROOF. This is [6, Theorem 2.4].

We may view the basis I(G|H) as the set of 'irreducible Brauer characters' of G with respect to H. We view the integers $d_{\chi\phi}$ as the 'decomposition numbers' and the elements in a good basis P(G|H) as the 'projective indecomposable characters.' If $\phi \in I(G|H)$, then we denote by Φ_{ϕ} the unique element in P(G|H) such that

$$[\Phi_{\phi},\mu]^0 = \delta_{\phi,\mu}$$

for $\mu \in I(G|H)$.

LEMMA 3.2. If $\phi \in I(G|H)$, then

$$\Phi_{\phi} = \sum_{\chi \in \operatorname{Irr}(G)} d_{\chi \phi} \chi.$$

PROOF. For each $\mu \in I(G|H)$, let $\gamma_{\mu} \in Irr(H)$ be such that $(\gamma_{\mu})^{G} = \Phi_{\mu}$. Now, if $\chi \in Irr(G)$, then

$$\chi^0 = \sum_{\mu \in I(G|H)} d_{\chi\mu}\mu.$$

Since $H \subseteq G^0$, we have

$$\chi_H = \sum_{\mu \in I(G|H)} d_{\chi\mu} \mu_H$$

Let $\tilde{\mu} \in cf(G)$ be any extension of $\mu \in cf(G^0)$. Then

$$[\mu_{H}, \gamma_{\phi}] = [\tilde{\mu}_{H}, \gamma_{\phi}] = [\tilde{\mu}, (\gamma_{\phi})^{G}] = [\tilde{\mu}, \Phi_{\phi}] = [\mu, \Phi_{\phi}]^{0} = \delta_{\mu, \phi}.$$

Therefore

$$[\chi, \Phi_{\phi}] = [\chi_H, \gamma_{\phi}] = \sum_{\mu \in I(G|H)} d_{\chi\mu}[\mu_H, \gamma_{\phi}] = d_{\chi\phi},$$

as required.

LEMMA 3.3. Suppose that $\phi \in I(G|H)$. Then ϕ_H is an ordinary character of H.

PROOF. Since $\phi \in cf(G^0)$, we have that $\phi_H \in cf(H)$. Therefore, we may write

$$\phi_H = \sum_{\gamma \in \operatorname{Irr}(H)} [\phi_H, \gamma] \gamma.$$

Let $\gamma \in Irr(H)$. We prove that $[\phi_H, \gamma]$ is a nonnegative integer. By property (D) of the good bases, we have that

$$\gamma^G = \sum_{\mu \in I(G|H)} a_\mu \Phi_\mu$$

for nonnegative integers a_{μ} . Let $\tilde{\phi} \in cf(G)$ be any extension of ϕ to G. Since γ^{G} vanishes off G^{0} , we have that

$$[\phi_H, \gamma] = [\tilde{\phi}_H, \gamma] = [\tilde{\phi}, \gamma^G] = [\tilde{\phi}, \gamma^G]^0 = [\phi, \gamma^G]^0$$
$$= \left[\phi, \sum_{\mu \in I(G|H)} a_\mu \Phi_\mu\right]^0 = \sum_{\mu \in I(G|H)} a_\mu [\phi, \Phi_\mu]^0 = a_\phi$$

This proves the lemma.

[9]

Our next objective is to prove a Clifford type theorem for partial characters which we will need later on.

Suppose that $N \triangleleft G$ is contained in H and let $\theta \in Irr(N)$. Note that the map ${}^{0}: cf(G) \rightarrow cf(G^{0})$ given by $\chi \mapsto \chi^{0}$ is \mathbb{C} -linear and surjective. We denote by

$$\operatorname{cf}(G^0|\theta) = \operatorname{cf}(G|\theta)^0.$$

LEMMA 3.4. Suppose that N is a normal subgroup of G contained in H and let Θ be a complete set of representatives of the orbits of the action of G on Irr(N). Then

$$\operatorname{cf}(G^0) = \bigoplus_{\theta \in \Theta} \operatorname{cf}(G^0|\theta).$$

PROOF. Since

$$\operatorname{cf}(G) = \bigoplus_{\theta \in \Theta} \operatorname{cf}(G|\theta),$$

it follows that

$$\operatorname{cf}(G^0) = \sum_{\theta \in \Theta} \operatorname{cf}(G^0|\theta).$$

Suppose that

$$\sum_{\theta \in \Theta} (\mu_{\theta})^0 = 0$$

where $\mu_{\theta} \in cf(G|\theta)$ for $\theta \in \Theta$. We prove that $(\mu_{\theta})^0 = 0$. Since $H \subseteq G^0$, we have that

$$\sum_{\theta\in\Theta}(\mu_{\theta})_{H}=0$$

We claim that $(\mu_{\theta_1})_H$ and $(\mu_{\theta_2})_H$ do not have any 'irreducible constituent' in common whenever $\theta_1 \neq \theta_2$. This is because the character $(\mu_{\theta})_H$ consists of a linear combination of characters of the form χ_H for $\chi \in Irr(G|\theta)$. Hence, if θ_1 and θ_2 are not *G*-conjugate, it follows that $[\chi_H, \eta_H] = 0$ for $\chi \in Irr(G|\theta_1)$ and $\eta \in Irr(G|\theta_2)$. We conclude that $(\mu_{\theta})_H = 0$ for $\theta \in \Theta$. However, since μ_{θ} is a class function of *G*, we see that $(\mu_{\theta})_H = 0$ if and only if $(\mu_{\theta})^0 = 0$, and the proof of the lemma is complete.

In several parts of this paper, we use the fact that $[\gamma, \eta]^0 = 0$ for $\gamma \in cf(G^0|\theta)$ and $\eta \in vcf(G|H, \mu)$ whenever θ and μ are not G-conjugate. This easily follows from the following argument. If $\chi \in cf(G|\theta)$ is such that $\chi^0 = \gamma$, then

$$[\gamma,\eta]^0 = [\chi,\eta] = 0$$

[10]

because χ and η do not have any common 'irreducible constituent' by Clifford's theorem.

We already know that $\dim(cf(G^0)) = \dim(vcf(G|H))$. In fact, there is a natural isomorphism between both complex spaces.

LEMMA 3.5. The map $\phi \mapsto (\phi_H)^G$ is a natural linear isomorphism $cf(G^0) \rightarrow vcf(G|H)$. In fact, if N is a normal subgroup of G contained in H and $\theta \in Irr(N)$, then the map $\phi \mapsto (\phi_H)^G$ maps $cf(G^0|\theta)$ isomorphically onto $vcf(G|H, \theta)$. Therefore, if $\{\eta_1, \ldots, \eta_k\}$ is any basis of $vcf(G|H, \theta)$, then there exists a unique basis $\{\gamma_1, \ldots, \gamma_k\}$ of $cf(G^0|\theta)$ satisfying

$$\left[\gamma_i,\eta_j\right]^0=\delta_{i,j}.$$

PROOF. It is clear that the map $\phi \mapsto (\phi_H)^G$ is a linear map $cf(G^0) \to vcf(G|H)$. Since dim $(cf(G^0)) = \dim(vcf(G|H))$, it is enough to show that it is injective to complete the proof of the first part of the lemma.

Suppose that $(\alpha_H)^G = 0$ for some $\alpha \in cf(G^0)$. Let $\tilde{\alpha} \in cf(G)$ be an extension of α to G. Then

$$(\alpha_H)^G = (\tilde{\alpha}_H)^G = (\tilde{\alpha}_H \mathbf{1}_H)^G = \tilde{\alpha}(\mathbf{1}_H)^G.$$

We have that

$$0 = ((\alpha_H)^G)_H = \tilde{\alpha}_H ((1_H)^G)_H = \alpha_H ((1_H)^G)_H.$$

Since the character $((1_H)^G)_H$ is never zero, we deduce that $\alpha_H = 0$. Since $\alpha \in cf(G^0)$, we have that $\alpha = 0$. This proves that the map $\phi \mapsto (\phi_H)^G$ is an isomorphism.

If $\theta \in \operatorname{Irr}(N)$, then we want to show that the map $\phi \mapsto (\phi_H)^G$ carries $\operatorname{cf}(G^0|\theta)$ isomorphically onto $\operatorname{vcf}(G|H, \theta)$. Let Θ be a complete set of representatives of the action of G on $\operatorname{Irr}(N)$ with $\theta \in \Theta$. By Lemma 2.2 and Lemma 3.4, it suffices to show that if $\phi \in \operatorname{cf}(G^0|\theta)$, then $(\phi_H)^G \in \operatorname{vcf}(G|H, \theta)$. Since we already know that $(\phi_H)^G \in \operatorname{vcf}(G|H)$, we have to show that $(\phi_H)^G \in \operatorname{cf}(G|\theta)$. Let $\mu \in \operatorname{cf}(G|\theta)$ be such that $\phi = \mu^0$. Then $\phi_H = \mu_H$ and we prove that $(\mu_H)^G \in \operatorname{cf}(G|\theta)$. However, this reduces to proving that whenever $\chi \in \operatorname{Irr}(G|\theta)$, then $(\chi_H)^G \in \operatorname{cf}(G|\theta)$. Let $\tau \in \operatorname{Irr}(G)$ be an irreducible constituent of $(\chi_H)^G$. Hence, τ is an irreducible constituent of some ξ^G , where $\xi \in \operatorname{Irr}(H)$ is an irreducible constituent of χ_H . Since χ lies over θ , by Clifford's theorem we have that ξ lies over some G-conjugate of θ . Hence, τ lies over θ and the second part of the lemma is complete.

Finally, suppose that $\{\eta_1, \ldots, \eta_k\}$ is any basis of $vcf(G|H, \theta)$. We wish to find a basis $\{\gamma_1, \ldots, \gamma_k\}$ of $cf(G^0|\theta)$ satisfying

$$[\gamma_i,\eta_j]^0=\delta_{ij}$$

By elementary linear algebra, it suffices to show that the bilinear pairing

$$[\cdot, \cdot]^0$$
 : cf($G^0|\theta$) × vcf($G|H, \theta$) $\rightarrow \mathbb{C}$

is nondegenerate. If Θ has the same significance as before, this easily follows from Lemma 2.2, Lemma 3.4, the fact that the 'whole' pairing

$$[\cdot, \cdot]^0$$
 : cf(G^0) × vcf($G|H$) $\rightarrow \mathbb{C}$

is nondegenerate, and the fact that $[\gamma, \eta]^0 = 0$ for $\gamma \in cf(G^0|\theta_1), \eta \in vcf(G|H, \theta_2)$ and distinct $\theta_1, \theta_2 \in \Theta$. (See the remark preceding the statement of this lemma.) \Box

Suppose that $N \triangleleft G$ and $N \subseteq H \subseteq G$. Assume that the good basis $P(G|H, \theta)$ of $vcf(G|H, \theta)$ exists. Then we denote by $I(G|H, \theta)$ the unique basis of $cf(G^0|\theta)$ uniquely determined by $P(G|H, \theta)$ by Lemma 3.5.

Next we prove the analogue of Lemma 2.9 for partial characters.

LEMMA 3.6. Suppose that $N \triangleleft G$ and let $N \subseteq H \subseteq G$. Let Θ be a complete set of representatives of the action of G on Irr(N) and assume that each $\theta \in \Theta$ is H-good (with respect to G). For each $\theta \in \Theta$, suppose that $P(G|H, \theta)$ is a good basis of $vcf(G|H, \theta)$. Then

$$\bigcup_{\theta \in \Theta} I(G|H, \theta) = I(G|H).$$

PROOF. By Lemma 2.9, we have that

$$\bigcup_{\theta \in \Theta} P(G|H, \theta) = P(G|H).$$

Clearly, it is enough to show is that $[\gamma, \eta]^0 = 0$ for $\gamma \in cf(G^0|\theta)$ and $\eta \in vcf(G|H, \mu)$ whenever θ and μ are not G-conjugate. We already remarked on this fact before the statement of Lemma 3.5.

Next, we define induction of partial characters. Suppose that J is a subgroup of G such that $J^0 = G^0 \cap J$, where $J^0 = \bigcup_{x \in J} (J \cap H)^x$. Suppose that $\eta \in cf(J^0)$. Then we define $\eta^G \in cf(G^0)$ in the following way. If $x \in G^0$, we set

$$\eta^G(x) = \frac{1}{|J|} \sum_{g \in G \atop gxg^{-1} \in J} \eta(gxg^{-1}).$$

It is straightforward to check that this is a well defined class function on G^0 . Furthermore, if $\mu \in cf(J)$ is such that $\mu^0 = \eta$, then $(\mu^G)^0 = \eta^G$.

LEMMA 3.7. Suppose that $N \triangleleft G$, where $N \subseteq H \subseteq G$. Assume that $\theta \in Irr(N)$ is H-good and suppose that $P(T|T \cap H, \theta)$ is a good basis of $vcf(T|T \cap H, \theta)$, where $T = I_G(\theta)$. Then the map $\gamma \mapsto \gamma^G$ is a bijection $I(T|T \cap H, \theta) \rightarrow I(G|H, \theta)$.

PROOF. By Lemma 2.10, we know that $P(T|T \cap H, \theta)^G$ is a good basis of $vcf(G|H, \theta)$. Hence, it suffices to show that

$$[\gamma^G, (\Phi_{\tau})^G]^0 = \delta_{\gamma,\tau}$$

for $\tau, \gamma \in I(T|T \cap H, \theta)$.

If $\tau \in I(T|T \cap H, \theta)$, then we claim that

$$((\Phi_{\tau})^G)_T = \Phi_{\tau} + \Delta,$$

where Δ is a character of T such that none of its irreducible constituents lies over θ . By definition of a good basis of T over θ , it is clear that we may write $\Phi_{\tau} = \sum_{\psi \in Irr(T|\theta)} [\Phi_{\tau}, \psi] \psi$. By the Clifford correspondence, we know that

$$(\psi^{\,G})_T = \psi + \Delta_{\psi},$$

where Δ_{ψ} is a character of T none of whose irreducible constituents lie over θ . Thus

$$((\Phi_{\tau})^G)_T = \sum_{\psi \in \operatorname{Irr}(T|\theta)} [\Phi_{\tau}, \psi](\psi^G)_T = \sum_{\psi \in \operatorname{Irr}(T|\theta)} [\Phi_{\tau}, \psi](\psi + \Delta_{\psi}) = \Phi_{\tau} + \Delta,$$

where

$$\Delta = \sum_{\psi \in \operatorname{Irr}(T|\theta)} [\Phi_{\tau}, \psi] \Delta_{\psi}$$

does not have any irreducible constituent lying over θ , as claimed.

Suppose that $\gamma \in I(T|T \cap H, \theta)$ and let $\tilde{\gamma} \in cf(T|\theta)$ be such that $\tilde{\gamma}^0 = \gamma$. Then $\tilde{\gamma}^G \in cf(G)$ is such that $(\tilde{\gamma}^G)^0 = \gamma^G$. Now

$$[\gamma^{G}, (\Phi_{\tau})^{G}]^{0} = [\tilde{\gamma}^{G}, (\Phi_{\tau})^{G}] = [\tilde{\gamma}, ((\Phi_{\tau})^{G})_{T}] = [\tilde{\gamma}, \Phi_{\tau} + \Delta] =$$
$$= [\tilde{\gamma}, \Phi_{\tau}] + [\tilde{\gamma}, \Delta] = [\tilde{\gamma}, \Phi_{\tau}] = [\gamma, \Phi_{\tau}]^{0} = \delta_{\gamma, \tau},$$

as desired.

4. Reviewing π -theory

Suppose that G is a π -separable group, and denote by G^{π} the set of π -elements of G, so that if H is a Hall π -subgroup of G, then $G^{\pi} = \bigcup_{g \in G} H^g$. Also, if $\chi \in cf(G)$, then $\chi^{\pi} \in cf(G^{\pi})$ denotes the restriction of χ to G^{π} .

Isaacs proved in [1] the existence of a unique basis $I_{\pi}(G)$ of $cf(G^{\pi})$ satisfying the following two properties.

[13]

(D) If $\chi \in Irr(G)$, then

$$\chi^{\pi} = \sum_{\phi \in \mathrm{I}_{\pi}(G)} d_{\chi \phi} \phi$$

for uniquely determined nonnegative integers $d_{\chi\phi}$.

(FS) If $\phi \in I_{\pi}(G)$, then there exists $\chi \in Irr(G)$ such that $\chi^{\pi} = \phi$.

Of course, in the 'classical case' where $\pi = p'$, then $I_{\pi}(G) = IBr(G)$ by the Fong-Swan theorem.

As the reader may easily check, any basis of $cf(G^{\pi})$ satisfying (D) and (FS) is necessarily equal to $I_{\pi}(G) = \{\chi^{\pi} | \chi \in Irr(G), \chi^{\pi} \text{ is not of the form } \chi^{\pi} = \alpha^{\pi} + \beta^{\pi}$ for characters α and β of $G\}$. Isaacs calls $I_{\pi}(G)$ the set of *irreducible* π -partial characters of G, while the restrictions χ^{π} of the characters χ of G are simply called the π -partial characters of G.

There are two known proofs of the theorem above. The original proof in [1] constructed a canonical subset $B_{\pi} G \subseteq Irr(G)$ such that the map $\chi \mapsto \chi^{\pi}$ turned out to be a bijection $B_{\pi} G \to I_{\pi}(G)$. Another easier proof (which, however, does not allow development of Clifford theory for I_{π} -characters, among other things) was given later in [3].

An important role in π -theory is played by the so called Fong characters. If $\phi \in I_{\pi}(G)$, then an irreducible constituent $\alpha \in Irr(H)$ of ϕ_H is a *Fong character* of H associated with ϕ , if $\alpha(1) = \phi(1)_{\pi}$. Fong characters always exist and if $\alpha_{\phi} \in Irr(H)$ is a Fong character associated with $\phi \in I_{\pi}(G)$, then

$$[\phi_H, \alpha_\mu] = \delta_{\phi,\mu}$$

for $\phi, \mu \in I_{\pi}(G)$ (see [2, Section 2]). If

$$\Phi_{\phi} = \sum_{\chi \in \operatorname{Irr}(G)} d_{\chi \phi} \chi,$$

then it easily follows that any Fong character α associated to ϕ satisfies $\alpha^{G} = \Phi_{\phi}$.

In the next result, we use the notation of Sections 2 and 3.

LEMMA 4.1. If H is a Hall π -subgroup of a π -separable group G, then the set $\{\Phi_{\phi} | \phi \in I_{\pi}(G)\}$ is the good basis P(G|H) of vcf(G|H). Furthermore $I(G|H) = I_{\pi}(G)$.

PROOF. The first part is [6, Theorem 3.5]. For each $\phi \in I_{\pi}(G)$, let $\alpha_{\phi} \in Irr(H)$ be such that $(\alpha_{\phi})^{G} = \Phi_{\phi}$ and let $\chi_{\phi} \in Irr(G)$ be such that $(\chi_{\phi})^{0} = \phi$. If $\theta, \phi \in I_{\pi}(G)$, then

$$[\theta, \Phi_{\phi}]^0 = [(\chi_{\theta})^0, \Phi_{\phi}]^0 = [\chi_{\theta}, \Phi_{\phi}] = [(\chi_{\theta})_H, \alpha_{\phi}] = [\theta_H, \alpha_{\phi}] = \delta_{\theta, \phi},$$

as desired.

[14]

5. Main results

We say that $\chi \in Irr(G)$ is a π -character if $\chi(1)$ and $o(\chi)$ (the order of the determinantal character det χ in the group of linear characters of G) are π -numbers. The key result on π -characters is due to Gallagher ([4, Corollary 8.16]). It asserts that if $N \triangleleft G, \theta \in Irr(N)$ is a G-invariant π -character and |G:N| is a π '-number, then θ has a unique extension χ to G such that χ is a π -character.

If U is a subgroup of G and $\alpha \in cf(U)$, then we say that α is G-stable if $\alpha(x) = \alpha(y)$ whenever $x, y \in U$ are G-conjugate.

The proof of our main results heavily depends on the following lemma.

LEMMA 5.1. Let $N \triangleleft G$ and let $\theta \in Irr(N)$ be a G-invariant π -character. Suppose that $N \subseteq U \subseteq G$ is such that |U : N| is a π' -number. If $\alpha \in Irr(U)$ is the unique π -character of U extending θ , then α is G-stable.

PROOF. Let $x, y \in U$ and suppose that $x = y^g$ for some $g \in G$. We wish to prove that $\alpha(x) = \alpha(y)$. Let $K = N\langle x \rangle \subseteq U$ and let $J = N\langle y \rangle \subseteq U$. Note that $J^g = K$. Also, note that α_K is the unique π -character of K extending α and that α_J is the unique π -character of J extending α . Write $\beta = \alpha_J$ and consider the character β^g of $J^g = K$ defined by $\beta^g(j^g) = \beta(j)$ for $j \in J$. Since θ is G-invariant, observe that

$$\beta^{g}(n) = \beta(n^{g^{-1}}) = \theta(n^{g^{-1}}) = \theta(n).$$

Hence, β^g is a character of K extending θ . Also, $o(\beta^g) = o(\beta)$ is a π -number. By the uniqueness of the π -character extension, we deduce that

$$\beta^g = \alpha_K.$$

Now,

$$\alpha(y) = \alpha_J(y) = \beta(y) = \beta^g(y^g) = \alpha_K(y^g) = \alpha_K(x) = \alpha(x),$$

as desired.

LEMMA 5.2. Let N be a normal π -subgroup of a π -separable group G and let $\theta \in \operatorname{Irr}(N)$ be G-invariant. Let H be a Hall π -complement of G and let $\hat{\theta} \in \operatorname{Irr}(NH)$ be the π -character of N H extending θ . Then the character $\hat{\theta}_H$ is never zero.

PROOF. Let $h \in H$ and write $K = N \langle h \rangle$. Since $(\hat{\theta})_K$ is the unique π -character of K extending θ , we may assume that K = G. If θ^* is the Glauberman correspondent of θ with respect to $\langle h \rangle$, it follows by [4, Theorem 13.6] that there is $\epsilon = \pm 1$ such that

$$\hat{\theta}(h) = \epsilon \theta^*(1) \neq 0,$$

as desired.

[15]

If *H* is a π -subgroup of *G* and *N* is a normal π' -subgroup of *G*, note that we may view the characters of *H* as characters of *HN* with *N* in contained in their kernel. In fact, given α a character of *H* there is a unique character $\hat{\alpha}$ of *NH* with $N \subseteq \ker \hat{\alpha}$ such that $\hat{\alpha}_H = \alpha$. We will use this notation in several parts below. Furthermore, if as usual we identify the characters of $\bar{G} = G/N$ with the characters of *G* with *N* contained in their kernel (suppose that $\chi \mapsto \bar{\chi}$ is the natural bijection $\{\chi \in \operatorname{Irr}(G) | N \subseteq \ker \chi\} \to \operatorname{Irr}(\bar{G})$), we have that

$$\hat{\alpha}^G = \sum_{\tilde{\chi} \in \operatorname{Irr}(\tilde{G})} [\tilde{\hat{\alpha}}^{\tilde{G}}, \tilde{\chi}] \chi.$$

THEOREM 5.3. Suppose that G is a π -separable group. Let H be a Hall π -subgroup of G and for each $\phi \in I_{\pi}(G)$, let $\alpha_{\phi} \in Irr(H)$ be a Fong character associated with ϕ . Let N be a normal π' -subgroup of G and suppose that $\theta \in Irr(N)$ is G-invariant. If $\hat{\theta} \in Irr(NH)$ is the π -character of HN extending θ , then

$$P(G|HN,\theta) = \{ (\widehat{\theta}\widehat{\alpha_{\phi}})^G | \phi \in I_{\pi}(G) \}.$$

PROOF. By Lemma 5.1, we know that $\hat{\theta}$ is G-stable. Hence, we may find $\tilde{\theta} \in cf(G)$ extending $\hat{\theta}$.

Let $\gamma \in \text{Irr}(HN|\theta)$. By Gallagher [4, Corollary 6.17], we have that $\gamma = \hat{\theta}\hat{\mu}$ for some $\mu \in \text{Irr}(H)$.

Notice that for $\phi \in I_{\pi}(G)$, we have that $\widehat{\alpha_{\phi}}$ is a Fong character of G/N when considered as a character of HN/N. By Lemma 4.1 (applied in G/N) and the comments preceding the statement of this theorem, it is easy to check that

$$\hat{\mu}^G = \sum_{\phi \in \mathbf{I}_{\pi}(G)} a_{\phi}(\widehat{\alpha_{\phi}})^G$$

for some nonnegative integers a_{ϕ} . Then

$$\gamma^{G} = (\hat{\theta}\hat{\mu})^{G} = (\tilde{\theta}_{NH}\hat{\mu}^{G}) = \tilde{\theta}\hat{\mu}^{G}$$
$$= \tilde{\theta}\sum_{\phi \in \mathbf{I}_{\pi}(G)} a_{\phi}(\widehat{\alpha_{\phi}})^{G} = \sum_{\phi \in \mathbf{I}_{\pi}(G)} a_{\phi}(\hat{\theta}\widehat{\alpha_{\phi}})^{G}.$$

By Lemma 2.11, we have that the set $\{(\hat{\theta}\widehat{\alpha_{\phi}})^G | \phi \in I_{\pi}(G)\}$ spans $vcf(G|HN, \theta)$.

To complete the proof of the theorem, it remains to show that the set $\{(\hat{\theta}\widehat{\alpha_{\phi}})^G | \phi \in I_{\pi}(G)\}$ is linearly independent. If

$$0 = \sum_{\phi \in \mathbf{I}_{\pi}(G)} b_{\phi} (\hat{\theta} \, \widehat{\alpha_{\phi}})^{G}$$

for some complex numbers b_{ϕ} , then we have that

$$0 = \tilde{\theta} \sum_{\phi \in \mathbf{I}_{\pi}(G)} b_{\phi}(\widehat{\alpha_{\phi}})^{G}.$$

Therefore

$$0 = \hat{\theta}_H \sum_{\phi \in \mathbf{I}_{\pi}(G)} b_{\phi}((\widehat{\alpha_{\phi}})^G)_H.$$

By Lemma 5.2, we conclude that

$$\sum_{\phi \in \mathbf{I}_{\pi}(G)} b_{\phi}((\widehat{\alpha_{\phi}})^G)_H = 0.$$

In fact, using that the characters $(\widehat{\alpha_{\phi}})^G$ have N contained in their kernel, and that they are induced from characters of HN, this easily implies that

$$\sum_{\phi\in \mathbf{I}_{\pi}(G)} b_{\phi}(\widehat{\alpha_{\phi}})^{G} = 0.$$

By Lemma 4.1 (applied in G/N), we conclude that $b_{\phi} = 0$ for all ϕ , proving the theorem.

Now we are ready to prove Theorems 1.1 and 1.2. First, we unify the notation we used in the introduction and in the previous sections.

Suppose that G is a π -separable group and let N be a normal π' -subgroup of G. Let H be a Hall π -subgroup of G and notice that

$$G^0 = \{x \in G | x_{\pi'} \in N\} = \bigcup_{g \in G} (HN)^g.$$

Also,

 $\operatorname{vcf}_{\pi}(G|N) = \{\tau \in \operatorname{cf}(G) | \tau(x) = 0 \text{ for } x \in G - G^0\} = \operatorname{vcf}(G|HN).$

PROOF OF THEOREMS 1.1 AND 1.2. Let H be a Hall π -subgroup of G. Firstly, we prove that there exists a good basis for vcf(G|HN).

Given $\theta \in \operatorname{Irr}(N)$, we claim that there exists $x \in G$ such that θ^x is HN-good. Recall that $\eta \in \operatorname{Irr}(N)$ is HN-good if for every $g \in G$, we have that $H^g N \cap T$ is contained in some *T*-conjugate of $HN \cap T$, where $T = I_G(\eta)$. Let *P* be a Hall π -subgroup of $I_G(\theta)$. Hence $P \subseteq H^{x^{-1}}$ for some $x \in G$. Thus P^x is a Hall π -subgroup of $T = I_G(\theta^x)$ contained in *H*. Therefore, $H \cap T = P^x$ is a Hall π -subgroup of *T* and thus $(H \cap T)N/N$ is a Hall π -subgroup of T/N. Write $\eta = \theta^x$. We prove that η is HN-good. Let $g \in G$. Then $(H^g N \cap T)/N = (T \cap H^g)N/N$ is a π -subgroup of

T/N. Hence, there exists $t \in T$ such that $(H^g N \cap T)/N \subseteq (H \cap T)^t N/N$. Therefore, $H^g N \cap T \subseteq (H \cap T)^t N = (HN \cap T)^t$. This proves the claim.

By the claim, we may find a complete set Θ of representatives of the orbits of the action of G on Irr(N) such that each $\theta \in \Theta$ is HN-good.

By Lemma 2.9, it suffices to show that there exists a good basis $P(G|HN, \theta)$ of $vcf(G|HN, \theta)$ for every $\theta \in \Theta$. (We write $I_{\pi}(G|N, \theta)$ for the unique basis of $cf(G^{0}|\theta)$ uniquely determined by $P(G|HN, \theta)$ by applying Lemma 3.5.)

We fix $\theta \in \Theta$ and, by Lemma 2.10, note that we may assume that θ is *G*-invariant. In this case, there exists a good basis of vcf(G|HN, θ) by Theorem 5.3. This proves that there exists a good basis P(G|HN) of vcf(G|HN) by Lemma 2.9.

Let $I_{\pi}(G|N) = I(G|HN)$ be the unique basis of $cf(G^0)$ determined by P(G|HN)by using Theorem 3.1. (Note also that $I_{\pi}(G|N) = \bigcup_{\theta \in \Theta} I_{\pi}(G|N, \theta)$ by Lemma 3.6.) Also, again by Theorem 3.1, we know that whenever $\chi \in Irr(G)$, then

$$\chi^0 = \sum_{\phi \in \mathbf{I}_{\pi}(G|N)} d_{\chi\phi}\phi$$

for uniquely determined integers $d_{\chi\phi}$. Furthermore, if

$$\Phi_{\phi} = \sum_{\chi \in \mathrm{Irr}(G)} d_{\chi \phi} \chi$$

then, by Lemma 3.2,

$$P(G|HN) = \{\Phi_{\phi} | \phi \in I_{\pi}(G|N)\}.$$

This completes the proof of Theorems 1.1 and 1.2.

6. The set $I_{\pi}(G|N)$

In this final section, we give a complete description of the set $I_{\pi}(G|N)$.

Suppose that N is a normal π' -subgroup of a π -separable group G. As before, we let $G^0 = \{x \in G | x_{\pi'} \in N\}$ and, as in Section 4, write G^{π} for the set of π -elements of G. If $\theta \in Irr(N)$ is G-invariant and $\phi \in cf(G^{\pi})$, we define a class function $\theta * \phi \in cf(G^0)$ as follows. Let H be any Hall π -subgroup of G and let $\hat{\theta} \in Irr(HN)$ be the unique extension of θ to HN which is a π' -character. By Lemma 5.1, we know that $\hat{\theta}$ is G-stable. If $x \in G^0$, then x is G-conjugate to some hn for some $h \in H$ and $n \in N$. By elementary group theory, note that h is then determined up to G-conjugacy. We define

$$(\theta * \phi)(x) = \hat{\theta}(hn)\phi(h)$$

Observe that this is a well defined function by Lemma 5.1. Also, note that $\theta * \phi \in cf(G^0)$ does not depend on H.

If $\theta \in \operatorname{Irr}(N)$, recall that $\operatorname{cf}(G^0|\theta) = \{\chi^0 | \chi \in \operatorname{cf}(G|\theta)\}$, where χ^0 denotes the restriction of χ to G^0 .

LEMMA 6.1. Suppose that N is a normal π' -subgroup of a π -separable group G. Let $\theta \in Irr(N)$ be G-invariant and suppose that $\phi \in cf(G^{\pi})$. Then $\theta * \phi \in cf(G^{0}|\theta)$.

PROOF. We know that $\theta * \phi \in cf(G^0)$. Let Λ be a complete set of representatives of the orbits of the action of G on Irr(N). By Lemma 3.4, we have that

$$\operatorname{cf}(G^0) = \operatorname{cf}(G^0|\theta) \oplus \left(\sum_{\lambda \in \Lambda - \{\theta\}} \operatorname{cf}(G^0|\lambda)\right).$$

Hence, we may write $\theta * \phi = \chi^0 + \psi^0$, where $\chi \in cf(G|\theta)$ and $\psi \in \sum_{\lambda \in \Lambda - \{\theta\}} cf(G|\lambda)$. Then

$$(\theta * \phi)_{NH} = \chi_{NH} + \psi_{NH}.$$

Now, $(\theta * \phi)_{NH} = \hat{\theta} \widehat{\phi}_{H}$ is a character of NH all of whose irreducible constituents lie over θ . (Recall that ϕ_{H} is a character of H and that $\widehat{\phi}_{H}$ is the unique extension of ϕ_{H} to NH containing N in its kernel.) Also, χ_{NH} only involves irreducible characters of NH lying over θ . On the other hand, no 'irreducible constituent' of ψ_{NH} lies over θ . Therefore, by the linear independence of Irr(NH), we conclude that $\psi_{NH} = 0$. Hence, $\psi^{0} = 0$ and the proof of the lemma is complete.

Recall that we are writing $I_{\pi}(G)$ for the set of the Isaacs irreducible π -partial characters of G.

THEOREM 6.2. Suppose that G is a π -separable group. Let N be a normal π' -subgroup of G and let $\theta \in Irr(N)$ be G-invariant. Then

$$\{\theta * \phi | \phi \in I_{\pi}(G)\} = I_{\pi}(G|N, \theta).$$

Therefore, if $\chi \in Irr(G|\theta)$, then

$$\chi^0 = \sum_{\phi \in I_{\pi}(G)} a_{\chi\phi}(\theta * \phi)$$

for some nonnegative integers $a_{\chi\phi}$.

PROOF. Let H be a Hall π -subgroup of G. By Theorem 5.3 (and Lemma 3.5), it is enough to show that

$$[\theta * \phi, (\hat{\theta} \widehat{\alpha_{\mu}})^G]^0 = \delta_{\phi,\mu}$$

for $\phi, \mu \in I_{\pi}(G)$. Let $\chi \in B_{\pi} G$ with $\chi^{\pi} = \phi$ and let $\widehat{\theta * \phi}$ be any class function of G extending the class function $\theta * \phi$. Now

$$\begin{split} [\theta * \phi, (\hat{\theta} \widehat{\alpha_{\mu}})^G]^0 &= [\widehat{\theta * \phi}, (\hat{\theta} \widehat{\alpha_{\mu}})^G]^0 = [\widehat{\theta * \phi}, (\hat{\theta} \widehat{\alpha_{\mu}})^G] = [(\widehat{\theta * \phi})_{NH}, \hat{\theta} \widehat{\alpha_{\mu}}] \\ &= [(\theta * \phi)_{NH}, \hat{\theta} \widehat{\alpha_{\mu}}] = [\hat{\theta} \chi_{NH}, \hat{\theta} \widehat{\alpha_{\mu}}]. \end{split}$$

Now, N is in the kernel of χ [1, Corollary 5.3] and therefore, all irreducible constituents of χ_{NH} have N in its kernel. By Gallagher [4, Corollary 6.17], (and using that $N \subseteq \ker \chi$), we have that

$$[\theta \chi_{NH}, \theta \widehat{\alpha_{\mu}}] = [\chi_{NH}, \widehat{\alpha_{\mu}}] = [\chi_{H}, \alpha_{\mu}].$$

Now,

$$[\chi_H, \alpha_\mu] = [\phi_H, \alpha_\mu] = \delta_{\phi, \mu}$$

by [2, Theorem 2.2].

Since it is always possible to choose a complete set Θ of representatives of the action of G on Irr(N) such that each member $\theta \in \Theta$ is HN-good (as we already did in the proof of Theorems 1.1 and 1.2), it follows that Theorem 6.2, together with Lemma 3.6 and Lemma 3.7 completely describes the set $I_{\pi}(G|N)$.

There is a relationship between the sets $I_{\pi}(G)$ and $I_{\pi}(G|N)$. The general fact is the next result. If $\chi \in cf(G)$, we are denoting by χ^{π} the restriction of χ to G^{π} , the set of π -elements of G.

THEOREM 6.3. Suppose that $\chi \in Irr(G)$ is such that $\chi^{\pi} \in I_{\pi}(G)$. Then $\chi^{0} \in I_{\pi}(G|N)$ for every normal π' -subgroup N of G.

PROOF. By Theorem 1.1, write

$$\chi^0 = \sum_{\phi \in \mathrm{I}_{\pi}(G|N)} d_{\chi\phi}\phi,$$

where the $d_{\chi\phi}$ are nonnegative integers. Let H be a Hall π -subgroup of G. Then

$$\chi_H = \sum_{\phi \in \mathrm{I}_{\pi}(G|N)} d_{\chi\phi} \phi_H$$

[20]

and note that ϕ_H is a *G*-invariant character of *H* because ϕ_{HN} is a character of *HN* by Lemma 3.3. Hence, by [5, Theorem B], there exists a character ψ_{ϕ} of *G* such that $(\psi_{\phi})_H = \phi_H$. Now,

$$\chi_H = \sum_{\phi \in \mathbf{I}_{\pi}(G|N)} d_{\chi\phi}(\psi_{\phi})_H$$

and we deduce that

$$\chi^{\pi} = \sum_{\phi \in \mathbf{l}_{\pi}(G|N)} d_{\chi\phi}(\psi_{\phi})^{\pi}.$$

Since $\chi^{\pi} \in I_{\pi}(G)$, this implies that there is a unique $\phi \in I_{\pi}(G|N)$ such that $d_{\chi\phi} = 1$, while $d_{\chi\mu} = 0$ for $\phi \neq \mu \in I_{\pi}(G|N)$. This proves the theorem.

We say that $\chi, \psi \in \operatorname{Irr}(G)$ are *linked* if there exists $\phi \in I_{\pi}(G|N)$ such that $d_{\chi\phi} \neq 0 \neq d_{\psi\phi}$. Of course, the connected components in $\operatorname{Irr}(G)$ of the graph defined by linking partitions $\operatorname{Irr}(G)$ into 'blocks' associated with the normal π' -subgroup N. These blocks, the associated Cartan matrices and some other relevant features are studied in [7].

A natural question when dealing with canonical bases of certain normal subsets of a finite group, is whether or not there is a 'Fong-Swan theorem' for them; that is, if the elements of the canonical basis can be extended to characters of the group. Contrary to the case where N = 1, this is not true here.

References

- [1] I. M. Isaacs, 'Characters of π -separable groups', J. Algebra 86 (1984), 98–128.
- [2] ——, 'Fong characters in π -separable groups', J. Algebra 99 (1986), 89–107.
- [3] —, 'Partial characters of π -separable groups', *Prog. Math.* 95 (1991), 273–287.
- [4] _____, Character theory of finite groups (Dover, New York, 1994).
- [5] ——, 'Extensions of characters from Hall π-subgroups of π-separable groups', Proc. Edinburgh Math. Soc. 38 (1995), 313–317.
- [6] G. Navarro, 'Bases for induced characters', J. Austral. Math. Soc. (Ser. A) 61 (1996), 369-376.
- [7] L. Sanus, Good bases for induced characters (Ph.D. Thesis, Universitat de Valencia, to appear).

Departament d'Algebra Facultat de Matemátiques Universitat de Valencia 46100 Burjassot Valencia Spain e-mail: gabriel@uv.es, lucia.sanus@uv.es [21]