ON COMMON MULTIPLES OF TRANSFINITE NUMBERS
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In his well known monograph [1] (p.81) H. Bachmann
indicates that two ordinal numbers > 1 always have a common
left multiple > 1, but not always have a right multiple (RM).

The monograph does not, however, contain any further analysis
of right multiples. The purpose of the present note is to supple-
ment this by formulating the following propositions which, despite
their simplicity, seem not yet to be known,

THEOREM 1. If two ordinals, « and # («x > B > 0),
have a CRM, then their least CRM P has the form B =cX =x+cCy
with ¢ and c; finite. (Thus the least CRM differs only by a finite
quantity from the larger number, « .)

THEOREM 2. Two ordinals, « and B (x » (3 > 0), have
a CRM if and only if either (i) « is itself a RM of § , or (ii)
is of the form « = + c with ¢ < w, and (in case (ii)) @ is mo
limit ordinal. 2)

A more explicit version of theorem 2 is this.

THEOREM 3. Two ordinals, « and (x> @ > 0), have
a CRM 1f and only if either
) B is a limit ordinal,and @ = '@ for some v ;
or n) @ is no limit ordinal, and &4 = f + ¢ with c < w ;
or (iii)@ is no limit ordinal, and « = o’ (B+gb)+h (gew; X < W),
where b is the last (finite) term in the expansion @ wy+b. 3)

1) We write "CRM" for " common right multiple'", and use

Bachmann's terminology, i.e., a RM of « # 0 is any ordinal
of the form oa& with o £ 0.

2) Conditions (i) and (ii) in theorem 2 do not exclude each other.
Example: a = 2(w +1) = w+ 2; B = w +1.

3) Theorem 3, though less concise than theorem 2, is more
convenient in applications, for it reduces the verification of
the existence of a CRM to a simple inspection of the normal
forms of « and @ . Cf. also theorem 3' below.
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The proof of the theorems is based on three very simple
lemmas. '

LEMMA 1. I § +« =0, then (a« +8 )3 = xy + BNy where
Ny = 1 or Ny = 0 according as 3 is, or is not, a number of the
form 3= A+ 1.

LEMMA 2. Every equation of the form Ta = o
(x>B >0, t,o # 0) can be reduced to '« = o' where 0 < v'« w
and 0 < o' < o .

LEMMA 3. Every product cx, with 0 < ¢ < w, can be
represented in the form cx = & + ¢y, withc] < w.

For the proof of lemma 1, see [1], p. 52. Lemma 2 was
obtained in [2] as a corollary of another proposition; it can also
easily be deduced from lemma 1. To prove lemma 3, put
« = WA +n(n <w), Wethenhave cx = cwA+ cn = (wA+ 1)
+ (c-1l)n =& + c] where ¢j = (c-1)n < w, as required.

We now proceed to prove our theorems. For the proof of
theorem 1, take any CRM of « and {3, say p = T = 0*(5 R
and use lemma 2 to reduce it to the least CRM, p' =coa = '
with 0 < ¢ < w . Then use lemma 3 to obtain the result.

To prove theorem 2 (necessity of conditions), let the least
CRM of « and p be m=« +c= off (c < w), and put
o= w'p+ € (0 «p<w, & <w). By lemma l,

(1) x+c= wpp + eNg (€ <w ).

Now if Ng = 0, equation (1) implies ¢ = 0, so that theorem
2 (i) holds. If Ne = land vy > 0, it follows from (1) that €
has the form € = A +c( A < w’), so that (1) reduces to

(2) o = W pP+ ANy =(w’p+A)p

(see lemma 1), and again theorem 2 (i) holds. Finally, if

Ng =1, v=0,then € < & =1, i.e.,, € =0, sothat (1)

yields « + ¢ = pp = B + p; (see lemma 3), where c < p) < w

(for « = @), and theorem 2 (ii) follows. As regards the
sufficiency of the conditions, case (i) of theorem 2 is obvious;

so suppose that (ii) holds. Then we may set « = A+ m, f =A+n
where A is a limit ordinal or 0, and m,n < w. Clearly,

na =n(dA +m) = A +mn=mp, sothat p = nk =mfP isa CRM
of x and B . Thus theorem 2 is proved. The same proof applies
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to theorem 3 as well; in particular, theorem 2 (iii) is easily
obtained from the first part of (2) by setting p = 14+q (recall that
0<p<w).d) '

From this proof it is obvious that theorem 2 (i) holds if
and only if either theorem 3 (i) or theorem 3 (iii) is fulfilled.
Hence, o is a RM of @ # 0if and only if « = w¥( P +gb)+ ANg,
with q, b, A and N@ defined as in theorem 3 and lemma 1 (note
that b vanishes if Ng = 0). This can be used to obtain a more
concise formulation of theorem 3, to wit:

THEOREM 3', Two ordinals, « and § (« = @ > 0) have
a CRM if and only if « = w” ([ + gb) + Ng (A +c),

(M = v, q,c < w), with band Ny defined as above. (This
formulation, obviously, covers all three cases of theorem 3.)
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Assumption University of Windsor

4) We prefer this proof to other possible proofs because,
besides its simplicity, it yields theorem 2 and theorem 3
simultaneously, without requiring additional arguments or
propositions to pass from one of them to the other one, It
also yields necessary and sufficient conditions for o to be
a RM of P in a simplified form (see below).
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