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OPTIMAL RESULTS IN LOCAL BIFURCATION THEORY

J, ESQUINAS AND J, LOPEZ-GOMEZ

Let us consider the abstract equation

(O.I) L(z)u + F(e,u) = 0 ,

where F(z,u) = 0(\u\ ) for z near zero. In this paper we

define a multiplicity depending only on Liz) allowing us to

obtain the following result: "Odd multiplicity entails bifur-

cation and, if the multiplicity is even, it is possible to find

F(z,u) such that the only solution to (0.1) near the origin

are the trivial ones".

1. Introduction.

Let U, V be two real Banach spaces and N: R x U -*• V a nonlinear

operator such that

(1.1) N(z,0) = 0

for e in a neighbourhood of zero. We seek nontrivial solutions to

(1.2) N(z,u) = 0

bifurcating from (z3u) = (0,0) , where we assume

(1.3) N(z,u) = L(e)u + F(e,u)

and Liz) and F(z,u) satisfy the following conditions:
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HL1. -Liz) : U -*• V is a linear continuous operator from U to V

such that the mapping e -*• Liz) , from R to L(U3V) , is

of class three. Here we denote by L(U,V) the space of

linear continuous operators between U and V .

HL2. -L(0) is a Fredholm operator of index zero.

HF . - Fiz,u) is a CT-mapping from a neighbourhood of zero in

R x U to V such that

(1.4) Fiz,0) = 0, DuF(z,O) = 0

for e sufficiently small.

By the implicit function theorem, a necessary condition for the

origin to be a bifurcation point of (1.2) is

(1.5) dim N(L(0)) = m > 1 .

In the literature concerning this topic, it is usual to define a

generalised algebraic multiplicity for L(z) at the critical value of

the parameter, z = 0 . In all cases, an odd multiplicity entails bi-

furcation from (ZjU) = (0,0) and there are "particular" counterexamples

when the multiplicity is an even number.

Roughly speaking odd multiplicity implies an odd number of eigen-

values of Liz) (counted with their algebraic multiplicities) crossing

the imaginary axis at e = 0 . Thus, odd multiplicity entails a change

in the stability of the trivial solution (z,u) = (z,0) at e = 0 . So,

we obtain bifurcation from (z,u) = (0,0) . See Chow-Hale [/] and

Kielhofer [4] for a more extensive information.

Not all notions of generalised multiplicities are sufficiently

transparent since they do not show which intrinsic properties of Liz)

yield an odd or an even multiplicity (Kielhofer [4]) .

In this direction, we shall give here an "optimal result" involving

L(0)t L'(O) and L''(0) (primes denotes derivation with respect to the

parameter) allowing dim N(LiO)) to be even or odd.

More specifically, if L(0), L'(O), L"iO) satisfy a suitable

nondegeneracy condition (see (2.5)), we define a concept of multiplicity

(see (2.7)) depending only on L(0), L'iO), L"(0) and we obtain the

following result (theorem in Section two) :
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"Odd multiplicity entails bifurcation and, if the multiplicity

is even, it is possible to find F(z,u) such that the only

solution to (1.2) in a neighbourhood of (z,u) = (.0,0) are

the trivial ones".

Our nondegeneracy condition is a natural extension of the conditions

of Crandall-Rabinowitz [2] and Westreich [7]. Our result generalises the

above ones allowing dim N(L(0)) to be even. In [3] we gave a version

of our result without proof.

In Section two we give the main result, in Section three the proof

of the result in Section two and in Section four we give an example.

2. Main result.

To simplify the notation, we shall write

(2-15 La = L(0), Li = L'(0), L2 = Hl"(0)

Then equation (1.2) can be written as

(2.2) L u + zLu + e2L2u + R(z)u + F(z,u) = 0 „

where

(2.3) R(Z) = ore3; .

Now, we give the following definitions:

DEFINITION 1. We say that zero is a generic eigenvalue of the

chain (L ,L ,L ) if the following conditions are satisfied

(2.4) dim N(LQ) = m > 1 ,

(2.5) L^NfLj) 0 L^NfL^) n N(LQ)) 9 R(LQ) = V .

Remark 1. Crandall-Rabinowitz [2] and Westreich [7] use

(2.6) L^Ntt,^) § R(LQ) = V ,

instead of (2.5). Since L. is a Fredholm operator of index zero,

condition (2.6) entails

N(L ) n N(LQ) = Span[0] ,

hence, (2.5) is more general than (2.6).

DEFINITION 2. If zero is a generic eigenvalue of (L ,L .L ), we

shall call the multiplicity of (L ,L 3L2) at zero the number

(2. 7) x = «a + 2nz ,
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where

(2.8) nx = dim L^HKL^)), n2 = dim l^VKLj n N(LQ)) .

Remark 2. Observe that x is °dd if and only if n, is odd. So,

if (2.6) holds, x is °dd if and only if dim N(L.) is odd. However,

if n2 ĵ  0 , it is possible for dim N(LQ) to be even and x odd.

With this notation, we obtain the following result

THEOREM 1. The following conditions are equivalent:

Cl. - x is an odd number.

C2. - For all F(z,u) satisfying HF the origin is a bifurcation

point of the equation (2.2).

Observe that, under condition (2.5), our result is optimal. That is,

our multiplicity is optimal and it is given by intrinsic properties of

L(z) .

In particular our result implies the optimality of the result in

Westreich [6],

Moreover, Theorem 1 tell us that, if x is even, it is necessary to

go to the full equation (2.2) in order to obtain conditions for bi-

furcation. This is what Lopez does in [5].

3. Proof of Theorem 1.

Cl = > C2 .

Suppose x is odd. By a Lyapunov-Schmidt reduction, we reduce our

original problem, in general infinite-dimensional, to the one of solving

a finite-dimensional equation.

Let X, Z be subspaces in U such that

N(LQ) = X 9 [NCL^ n N(LQ)1 ,

U = N(L0) $ Z .

Let now P , P . P Q Q Q be continuous projections

: U -»- X , along LN(L1) n N(LQ)1 9 Z ,

: U ->- Nd^ n N(L0) , along X 9 Z ,

y V ->- Z , along N(LQ) ,

https://doi.org/10.1017/S0004972700026277 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700026277


29
Local bifurcation theory

Q : V •+ R(LQ) , along L±(X) 9 L^NiL^ n N(LQ)) ,

Q2: V + L2(N(L1) n N(LQ)) , along L^X) 9 R(LQ) ,

Q3: V->• L1(X) along L^fMLj n N(LQ)) « R(LQ) .

If, for each u e U , we denote

x = PjM, z/ = P2u, z = P3u,

then u = x + y + z and the solutions to (2.2) are given by the solutions

to the system

(3.1a) QxLQz+zQlL1z+z
lQlL2(x+z)+Q1R(z)(x+y+z)+Q1F(z,x+y+z) = 0 ,

(3.1b) zQ2L1z+z
2QzL2(x+y+z)+Q2R(z)(x+y+z)+QzF(z,x+y+z) = 0 ,

(3.1c) zQ3L1(x+z)+z
2Q3L2(x+z)+Q3R(z)(x+y+z)+Q3F(z,x+y+z) = 0 .

The left hand side of (3.1a) defines a (^-mapping (denoted by G(z,x,y,z))

from a neig

satisfying

from a neighbourhood of zero in R x X x LNfL^) n N(L )] x Z into i?(L

G(0,0,0,0) = 0, DzG(0,0,0,0) = QxLQ .

Hence, the implicit function theorem gives the existence of a neighbour-

hood B of the origin in R x X x [N(L.) n N(L )~\ , a neighbourhood
CvCTV J> 0

5 of the origin in Z and an unique function of class two

E: B -»• S .
exy s J

such that 1(0,0,0) = 0 and for all (z,x,y) e B ,

(3.2) G(e.ax,y,z(z,x,y)) = 0 .

Moreover, since G(z,0,0,0) = 0 for sll e in a neighbourhood of zero,

we obtain

(3.3) S(e,0,0) = 0

for e sufficiently small. Now, by differentiating in (3.1a), we obtain

D =.(0,0,0) = 0, D =.(0,0,0) = 0
(3.4) x y

Dzx=\(0,0,0) = 0, D z ( 0 , 0 , 0 ) = 0 .

Thus, we have reduced our general problem to solving the finite-

dimensional system which we shall call bifurcation equation-.
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(3.5a)

(3.5b)

where

(3.6)

z2Q1L2x+z2Q2Lzy+QzR(t)(x+y)+Q7F(zix+y) = 0 ,

zQzLlx+z2Q3L2x+Q3
rR(z)(x+y)-tQ3F'(z,x+y) = 0 ,

Biz) = Oiz )

and F is of order two in ix,y) uniformly in e .

Now since

QZL2: N(L1) n N(LQ) n N(LQ))

and

.- X+

are both isomorphisms, solving (3.5) i s equivalent to solve the system

(3.7a) z2P2(Q2L2)~
1Q2L2X+z2y+P2(Q2L2r

lQ2R~(z) (x+y)+P2iQ2L2)~
1Q2F(z,x+y) = 0,

(3.7b) £X+z2P1(Q3L1)~
1Q3L2x+P1(Q3Lir

1Q3~R(z)(x+y)+P1(Q3L1)~
1Q3F~(z,x+y) = 0.

Now, i f we choose b a s e s i n X and N(L^) n N(LQ) 3 we can w r i t e (3.7) i n

coordinates as an equation of the form

(3.8)

' A(z) Biz)

C(z) D(e)

x

_y _

P2(Q2L2)
 1Q2F(zix+y)

where A(z) is a n x n -matrix such that A(z) = 0(E ) , Biz) is a

2 3
n2 x n2~matrix such that B(z) = z I + 0(z ) , C(z) is a n^ x^^-matrix

such that C(z) = zl + 0(z2) and Die) is a n1 x n2-matrix such that

Diz) = Oiz ) . Thus, we have

' Aiz) Biz)

= ±e + Oiz ),(3.9) det

Ciz) Diz)

and, since X = n + 2n i s odd, the following Lemma 1 (Theorem 7 .1 . in

page 201 of Chow-Hale [J]) forces the origin to be a bifurcation point

for (2 .2) .
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LEMMA 1. Suppose fi c m * IT is an open neighbourhood of (zQ,0) ,

F: Q •*• Rd

F(z,v) = BQ(z)v + F^ZyV)

where v e R , BQ(z) is a d*d, CT,m>_2, matrix function of e , F^

is a u vector function of z, v

F^z^O) = 0, DvF1(z,0) = 0 .

If zQ e R is such that

a(BQ(z0)) = {0} ,

det BQ(z) changes sign at e = eQ ,

then (zQ,0) is a bifurcation point for the equation

F(z,v) = 0 .

Also, there is a connected set C <= R * (fr - {0}) of zeros of F with
(e-Q,0) e ~C 3 the closure of C .

C2 =*> c l .

Suppose now x = "j + 2n2 is even; that is, n-^ is even. We shall

find then F^ F21 F3 with values in R(LQ), L^fKL^ n N(LQ)) , L^X) ,

respectively, such that the unique solutions to the following system in a

neighbourhood of (z,x,y,z) = (0,0,0,0) are the trivial ones.

(3.10a) Q1Loz+zQ1L1z+z
2Q1Lz(x+z)+Q1R(z)(x+y+z)+F1(z,x+y+z) = 0 ,

(3.10b) zQ2L1z+z
1Q2L2(x+y+z)+Q1R(z)(x+y+z)+Fz(z,x+y+z) = 0 ,

(3.10c) zQ3L1(x+z)+z
2Q3L2(x+z)+Q3R(z)(x+y+z)+F3(z,x+y+z) = 0 .

First, we shall prove the following result

LEMMA 2. There exists a linear continuous operator

M(z): IjttJ ->- R(LQ)

such that
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for e in a neighbourhood of zero.

Proof. Since the operator

Q3L1+eQ3L2+ Q^Czlz'1: X + L^X)

is invertible for e sufficiently small, if we define

(3.12) M(z) = (eQ1L2+Q1R(z)e~1)P1(Q3L1+zQ3L2+

M(e) s a t i s f i e s r e l a t ion (3.11). D

Let us ca l l now, H^ R^ H the l e f t hand sides of (3.10a), (3.10b),

(3 .10c) , respect ively . Then, by (3.11), we obtain

H1(e,x,y,z)-M(z)H^(z,x,y,z)

= Q^L z+zQlL1s+e
2Q1L2z-zM(z)Q3L1z+Q1R(z)(y+s)

-z2M(z)Q3L2z-M(z)Q3R(z)(y+z)+F1-M(z)F3

= 0 .

Now, supposed F , F have been given, then we can define

(3.14) fj = M(z)F3 .

The choice of F2, F~ will be made below. So, we have

(3.15) F1-M(e)F3 = 0 .

Thus, for this choice, (3.13) is written as

(3.16) -z2M(z)QlL2z-M(z)QjR(z)(y+z)

= 0 .

This equation can be written equivalently as

(3.17) (Q,Ln+zQ.,L,+z*Q,Lo-zM(z)QJi.+Q,R(z) -z M(z)Q.Lo-M(z)Q*R(z))z

= (M(z)Q3R(e)-Q1R(z))y .

Thus, since the operator of the left hand side of (3.17) is invertible for

e sufficiently small, we can solve (3.17) to obtain

(3.18) Z(z3y) = (Q1L0+0(e))~
1(M(s)Q3E(z)-Q3R(e))y .

Now, putting Z(z,y) given by (3.18) in (3.10b) and (3.10c) , we obtain
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(3.19a) E2Q2L2Qc+y)+Q1R(z)(x+y)+F2(z,x+y+Z(z}y)) = 0 ,

(3.19b) zQ3D1x+eZQ3L2x+Q3B(z)(a>f-y)+F3(zJx+y+Z(z}y)) = 0

where ~k~(z) = 0(zZ) .

Mow, we need the following result

LEMMA 3. There exists a linear continuous operator

N(z): L2(®(LX) n N(LQ))

such that

(3.20) N(z)(z2Q2L2y+Q2R(z)y) = Q3~R(z)y

for z in a neighbourhood of zero.

Proof. Since the operator

2 2 2 ^ n N(L0) •* L2(N(L1) n N(LQ))

is invertible for e sufficiently small/ if we define

(3.21) N(z) = z~ZQ3R(z) P2(Q2L2+z~
2Q2R(z))~

l ,

N(z) satisfies relation (3.20).

Let us call now, ¥ , #3 the left hand sides of (3.19a), (3.19b),

respectively. Then by (3.20), we obtain

= zQ3L1x+z
2Q3L2x+Q3E(z)x-z

2N(z)Q2L2x-N(z)Q2R(z)x

(3.22)

+ F3(z,x+y+Z(z,y))-N(z)F2(z,x+y+Z(z,y))

= 0 .

This equation can be written as

(3.23) zx = -(Q3L1+Q3R(z)F
1(F3-N(z)F2)(e,x+y+Z))

where R(z) e L(V,V) satisfies R(z) = 0(e) .

Now, by (3.14), we obtain

F Jzix+y+Z(eJy))-N(e)F2(z,x+y+Z(zJy))

{324) = Q3(I-N(e)Q2)(F2 + Fz)(
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Let us choose bases in X and N(L,) n N(LQ), It is easy to prove

that there exist Fg, JF"3 such that

(3.25) Pl(Q3L1-Kl3R(z))~
1Q3(I-N(z)Q2)(Fz+F3) = -(x\,-x\i...,x^l,-x^i )

and

(3.26) (Q.Lr.+Q^R(z))~
lF0 = (yl,...,y

3 ) .

That is, the system (3.25), (3.26) can be solved in F., i = 2,3 .

By (3.25), equation (3.23) is equivalent to

eXnl = ~xnl-l >

whose unique solution is x = 0 for all values of e (remember that

is an even number).

Now, by substituting x = 0 in equation (3.19a), we obtain

(3.27) z1Q2L2y+Q2R~(z)y+F2(z,y+Z(z,y)) = 0 .

This equation can be written as

(3.28) z2y = -(Q2L2+QzR(z))~
1F2(e,y+Z(z,y)) ,

and, by (3.26), equation (3.28) is equivalent to

2 3

whose unique solution is y = 0 for all values of the parameter. Now,

substituting y = 0 in (3.18) we obtain z = 0 , too. So, for e

sufficiently small the unique solutions are the trivial ones.
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4. An example.

Let us consider the problem

(4.1) L0w+EL1w+£
2L2w+a11iM+a12wo)' '+a22w' 'w' '+f(e,w,w'') = 0 ,

(4.2) w'(O) = w'(l) = w'"(0) = w"'(l) = 0 ,

where

(4.3a) LQW = W''''+5tt w''+4v W ,

(4.3b) LjU = a1w"+b1w ,

(4.3c) L2w = azw"+b2w i

and

(4.4) f(e,w,w") = O(e3)w+O(e3)w"+lw,w"l3+O(z)lw,w"l2 .

Here we denote by Lw3w''l. the terms of order i in (w^W' ') .

Then, (e}w) = (z,0) is a solution of (4.1), (4.2) for all e . We

shall look for nontrivial solutions to (4.1), (4.2) bifurcating from the

origin.

We consider the above operators defined on

U = {u> e Ch(0,l): w'(0) = w'(1) = w'"(0) = w'"(l) = 0}

with values in V = C(0,l) . Then

N(La) = Span [cosirtjCOs2Trt] .

Moreover, LQ is a selfadjoint operator. So, the Fredholm theory assures

us that

P P
R(LQ) = {V 6 V: v(t)cos-nt dt = v(t)cos2-xt dt = 0} .

We have

tjcosirt = (b -ir a.^cosirt ,

2

1 1

= (b -4-n2a )cos2-nt ,
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and, by applying Theorem 1, we obtain the following result concerning

(4.1), (4.2)

THEOREM 2. Suppose a1 / 0 . Then, any of the following conditions

Cl. b1 = •n2a1 , b2 ? TtZa2 ;

C2. b-y = 4ir2a1 , b2 / 4v2a2 ;

is sufficient to have bifurcation from (e,w) = (0,0) .

Proof. Suppose, for instance, Cl is satisfied. Then

L cosiri = 0 ,

2
Sir

i.cosiTt = (b -TX a2)cosirt .

So, we are able to apply theorem 1. 0

Let us observe that the linear part of (4.1) does not give us any

information if

(4.5) b1 / ir2a1 and b1 ? 4-n2a1 .

In fact, if (4.5) holds, then dimL.(N(L )̂) = 2 and theorem 1 forces us

to go to the full equation (4.1) in order to obtain some positive answer

concerning bifurcation of solutions from (e}u>) = (0,0) . Furthermore,

the proof of theorem 1 t e l l us that the terms Lw,w''l^ in (4.1) are

"bad terms" to obtain bifurcation. However, the second order terms are

"good terms" to obtain bifurcation (see Lopez C5D). In fact, with the

techniques in [5], i t is possible to obtain the following result

THEOREM 3. Suppose

(4.6) (2ail-S-n2a12+8-nka22) (b1-4-a2a1) / 0 .

Then, (z,w) = (0,0) is a bifurcation point of (4.1).

Added note• When this work was finished, we found out that our

multiplicity takes the same value as that of Magnus in [6] but in a

different and more explicit way.
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