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SUMMARY

We observed an outbreak of necrotizing fasciitis associated with Streptococcus agalactiae

infection in a group of juvenile saltwater crocodiles (Crocodylus porosus). We undertook

screening of crocodiles and the environment to clarify the source of the outbreak and evaluated

the isolates cultured from post-mortem specimens with molecular methods to assess clonality

and the presence of known group B streptococcal virulence determinants. The isolates were

indistinguishable by pulsed-field gel electrophoresis. They were a typical serotype Ia strain with

the Ca-like protein gene, epsilon (or alp1), the mobile genetic elements IS381 ISSag1 and ISSag2,

and belonged to multi-locus sequence type (ST) 23. All of these characteristics suggest they were

probably of human origin. We review the medical and veterinary literature relating to

S. agalactiae necrotizing fasciitis, epidemiology and virulence determinants.

INTRODUCTION

Necrotizing fasciitis is a severe infection involving

the superficial fascia and subcutaneous tissues, which

is associated with early toxin-mediated, systemic

toxicity, and has a described mortality in humans of

30–60% [1, 2]. The underlying pathogenic process

involves the production of destructive enzymes and

toxins by the bacterial organisms that allow evasion

of the host immune defences and the spread of the

bacteria through the tissue planes resulting in rapid

tissue necrosis [3]. The main causal pathogens are

Lancefield group A streptococci (GAS) and clostridia,

although several other organisms, such as Klebsiella

pneumoniae, Pseudomonas aeruginosa and Vibrio

vulnificus have been described in monomicrobial

infections and polymicrobial necrotizing fasciitis is

also recognized [4]. In 1984, group C and G strepto-

cocci were reported for the first time to cause necro-

tizing fasciitis in humans [5].

Streptococcus agalactiae, a group B streptococcus

(GBS) well known for causing pneumonia, meningitis

and sepsis in human neonates [6], has also been re-

ported as a rare cause of monomicrobial necrotizing

fasciitis, both in infants and adults [4, 7–18]. Whilst

S. agalactiae is one of the most important causes

of bovine mastitis and has been isolated from other

animals including dogs, cats, goats, elephants, fish,

and frogs [19–23], there has previously been only

two reported cases of GBS necrotizing fasciitis in

animals, which occurred in captive bottlenose dol-

phins [24, 25]. The few cases of necrotizing fasciitis

that have been reported in domestic animals have
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mainly involved group G streptococci, with severe

dermal, fascial, and muscular necrosis recognized in

dogs infected with S. canis [26, 27]. Although there

are no specific reports of S. agalactiae-associated

necrotizing fasciitis in reptiles, GBS septicaemia due

to serotype V has been reported in three subadult,

captive bred, emerald monitors (Varanus prasinus)

which died suddenly, after being fed with contami-

nated mice [28].

Although various virulence mechanisms in GAS

are well characterized, those causing invasive disease

in GBS are not as well understood.

It has been noted that the severe manifestations

of GBS disease resemble GAS infection, and one

author managed to isolate a novel pyrogenic exotoxin

from a patient who died with toxic-shock syndrome

associated with S. agalactiae [29]. Despite common

elements defined with recent genome sequencing of

both organisms [30], there has never been reported

transfer of enterotoxin genes from GAS to GBS.

However, variations in the capsular polysaccharide

antigens, variable surface proteins and numerous

mobile genetic elements are known to contribute to

virulence in GBS [31].

We report a clonal outbreak of necrotizing fasciitis

due to S. agalactiae in a group of juvenile saltwater

crocodiles (Crocodylus porosus) and we describe viru-

lence determinants and the molecular typing profile

of the responsible bacterium. We also review both

the literature of GBS infections in animals and the

potential virulence determinants of GBS.

METHODS

Captive-raised male juvenile crocodiles from several

rearing pens at the Darwin Crocodile Farm, 40 km

south of Darwin in the tropical Northern Territory

of Australia, became unwell over a 3-month period

between November 2005 and January 2006. Affected

animals were aged between 6 and 11 months, were

lethargic and displayed necrotic skin lesions involv-

ing either the ventral body wall or limbs or one

or multiple swollen limbs. The majority of affected

crocodiles either died within a few days or became

moribund and were euthanized for post-mortem

examination. Crocodile farming in the Northern

Territory is intensive, with high stocking densities.

The diet at the time of the outbreak consisted of

kangaroo, horse and buffalo meat, supplied frozen

from a local pet meat supplier, with a vitamin/mineral

supplement. The first cases occurred following an

inventory count on the farm (stressful to the croco-

diles), and there was a recent history of what were

assumed to be traumatic skin lesions due to fighting

in the affected tanks.

There were 29 deaths recorded during the outbreak

and full post-mortem examinations were performed

on seven animals. Skin, muscle and internal organ

tissues were prepared for histological examination,

Gram stains and bacterial culture. In December 2005,

mouth swabs from five crocodiles from pens contain-

ing affected animals, water samples from two affected

pens, and two bores and a water heater supplying

the pens were cultured using enrichment media for

streptococcal species. In January 2006, at the end of

the outbreak, ten more mouth swabs were taken for

culture.

Streptococcal isolates from the crocodiles were

observed for haemolysis on tryptone soy agar with

sheep blood and catalase reaction. Lancefield sero-

grouping was performed with a latex agglutination

test system (Streptococcal Grouping Reagent, Oxoid,

Basingstoke, Hants, UK) and identification was

completed with rapid ID 32 Strep (bioMérieux,

Marcy l’Etoile, France). Antibiotic susceptibility

testing was performed by agar disc diffusion accord-

ing to the method of the Clinical Laboratory

Standards Institute (CLSI).

Macrorestriction analysis of the chromosomal

DNA of isolates was performed using the enzyme

SmaI and subsequent separation of the fragments

by pulsed-field gel electrophoresis (PFGE). Chromo-

somal DNA was prepared using a modification of

published methods [32, 33]. Slices of DNA-containing

agarose plugs were digested overnight with 20 U

SmaI (New England BioLabs, Genesearch, Arundel,

Queensland, Australia) at 25 xC, then electrophoresed

on a CHEF DRIII system (Bio-Rad Laboratories,

Hercules, CA, USA) for 25 h at 6 V/cm, with ramped

pulse times of 5–40 s in a 1.2% SeaKem Gold agarose

gel (BioWhittaker Molecular Applications, Rock-

land, ME, USA) and 0.5r TBE electrophoresis buffer

containing 100 mM thiourea. Lambda DNA con-

catemer PFGE markers (Promega, Madison, WI,

USA) were used as DNA size standards. The gel was

stained with ethidium bromide (0.5 mg/ml, Sigma,

Castle Hill, NSW, Australia) for 45 min, destained in

0.5r TBE for 45 min, and photographed under UV

illumination.

Genotyping was performed, using a GBS molecular

typing system which identifies serotype, protein anti-

gens, mobile genetic elements and seven antibiotic
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resistance genes (including three erythromycin, two

tetracycline and two aminoglycoside resistance genes)

[31, 34, 35]. Three of nine representative S. agalactiae

isolates from three of seven different crocodiles were

assessed. Multi-locus sequence typing (MLST) using

the seven house-keeping genes that define the GBS

MLST scheme was performed on one isolate as pre-

viously described [36], after DNA had been extracted

using the Qiagen DNeasy kit (Qiagen, Doncaster,

Victoria, Australia).

RESULTS

Gross lesions varied from swelling of one or multiple

limbs and/or the ventral or lateral body wall to

sloughing of the skin of these regions to reveal

underlying necrotic subcutaneous tissue and skeletal

muscle (Fig. 1). Histopathological lesions of affected

body wall and limbs generally revealed large regions

of muscle and subcutaneous tissue that had under-

gone coagulation necrosis, classically with wave-like

margins of abundant Gram-positive cocci surrounded

by variable numbers of inflammatory cells, includ-

ing phagocytes containing abundant Gram-positive

cocci. Histopathological findings in other organs were

limited to subtle lesions suggestive of septicaemia,

including mild mixed inflammatory cell infiltrates

associated with the epicardium and multifocal acute

splenic necrosis. Mixed Gram-negative rods and

Gram-positive cocci were visible in internal organs of

some affected crocodiles.

S. agalactiae was isolated from all seven crocodiles ;

in six from the skin or affected subcutaneous tissue

and in one from the liver. Two additional isolates

were obtained from one crocodile from the lung

and spleen. In addition to S. agalactiae, various

Gram-negative bacteria including Salmonella spp.,

Providencia rettgeri, Pseudomonas aeruginosa and

Edwardsiella tarda were also recovered from internal

organs as well as in some of the body wall and limb

lesions. These were considered secondary invaders.

Streptococcal colonies were b-haemolytic, catalase

negative, grouped to Lancefield serological group B

and showed the typical biochemical properties of

this species in ID 32 Strep test kits. The culture of one

of five mouth swabs from live crocodiles taken in

December yielded S. agalactiae. S. agalactiae was not

recovered from any of the five water samples taken

in December or from ten live crocodile mouth swabs

taken at the end of the outbreak in January. It should

be noted, however, that the mouth swabs and water

samples were taken after a 2-week period of anti-

biotic treatment administered orally in the crocodile’s

food (Sulprim, Ilium Veterinary Products Troy

Laboratories, Smithfield, NSW, Australia).

PFGE of the clinical S. agalactiae isolates demon-

strated that all eight isolates from six of the seven

crocodiles had identical banding patterns (Fig. 2) ; the

ninth isolate from the seventh animal did not resolve

with PFGE. This suggested the cases represented an

outbreak caused by the same strain. Genotyping was

performed on three of nine isolates, from different

crocodiles. All isolates demonstrated a genotype

consistent with serotype Ia, with protein alp1 (or,

epsilon) and insertion sequences IS1381, ISSag1 and

ISSag2 ; tetM was the only antibiotic resistance gene

detected. MLST showed that they belonged to ST 23.

The isolates were all susceptible to penicillin, erythro-

mycin, clindamycin, and vancomycin, but resistant

to tetracycline and oxacillin.

Fig. 1. Post-mortem photograph of an affected crocodile,

showing typical lesions of inflammation, necrosis and
sloughing of the soft tissue of the ventral neck, thorax and
distal right forelimb (arrow, 10 cm length).
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Fig. 2. Composite photograph of SmaI macrorestriction

pattern of GBS isolates from crocodiles and miscellaneous
human clinical specimens. Lanes 2, 9, 17, phage lambda
DNA ladder; lanes 1, 3–8, 10, 13, isolates of crocodile origin
(lane 6 unresolved) ; lanes 11, 12, 14–16, 18 various human

clinical isolates (kb, kilobases).
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DISCUSSION

GBS are increasingly recognized as virulent human

pathogens and 22 human cases of necrotizing fasciitis

associated with this organism have been reported in

the literature [4, 7–18]. Five of these cases occurred

in children and three of these were infants aged <12

weeks [7–10]. Of note, S. agalactiae necrotizing

fasciitis in adults has a tendency to occur in patients

with diabetes and other comorbidities resulting in

relative immunosuppression, with a high mortality

[12, 18]. The virulence of the organism in these cases

has led authors to postulate that it has ‘GAS-like be-

haviour ’. Although no molecular typing or analysis

of virulence factors was reported on isolates from

any of the human cases, one author described the

purification of a novel pyrogenic exotoxin in separate

case of S. agalactiae toxic shock syndrome without

necrotizing fasciitis [29].

The most notable contribution of S. agalactiae to

disease in animals is due to its predilection to colonize

mammary glands of various ruminants, where it can

survive for extended periods, causing clinical and

subclinical mastitis and affecting milk quality [37]. It

is also a major piscine pathogen, causing morbidity

among freshwater, estuarine and marine fishes, such

that a vaccine has been developed and trialled in

this context [38]. In the one previously reported case

of GBS necrotizing fasciitis in animals, from a 15-

year-old female common bottlenose dolphin, the

marine mammal presented with vomiting, renal fail-

ure and liver dysfunction [24]. The only known risk

factor was skin lesions sustained from fighting with a

male. Septicaemia and endotoxic shock, possibly due

to clostridial infection, were suspected and ceftriaxone

and dexamethasone were given. Despite this, the

dolphin died 2 h after the onset of clinical signs.

The cases reported here of necrotizing fasciitis in

C. porosus juveniles represent the first clonal outbreak

of S. agalactiae necrotizing fasciitis described in a

reptile. This is notable because both necrotizing

fasciitis and infection with S. agalactiae are very un-

usual in reptiles. This is despite various bacteria often

being identified in ulcers of crocodiles, subsequent to

bite injuries. However, while Gram-negative bacteria

are common aetiological agents of septicaemia in

juvenile crocodiles, they have generally not been ob-

served to cause lesions of fasciitis. The only potential

suggestion of a possible case of bacterial necrotizing

fasciitis in the reptile literature came from one large

study of skin lesions in crocodiles. A C. porosus

juvenile that died after not eating and being listless

for several days had extensive necrosis of the sub-

cutis with lifting of the entire scales. Extensive

subcutaneous oedema, myolysis and large colonies

of Gram-positive bacteria were seen at necropsy, as

well as organ findings consistent with fulminating

bacterial septicaemia, but no culture findings were

given [39]. Moreover, an earlier study from 1993

noted that b-haemolytic streptococci were isolated

from two of nine frozen tail meat samples from

Nile crocodiles (C. niloticus), but identified these

isolates as S. equisimilis (probably the currently rec-

ognized S. dysgalactiae var. equisimilis [either group C

or G]) [40].

Another major point of interest highlighted by the

cases we have described, is the fact that these cases

occurred when the animals were still aged<1 year. In

the only other reported case of invasive GBS disease

in reptiles, a clonal outbreak of group B septicaemia

in emerald monitors, the animals were also described

as ‘subadult ’, but no further detail was given regard-

ing age [28]. Similar infections in humans have

occurred in both adults and infants, so it is unclear

whether younger age could potentially increase sus-

ceptibility to overwhelming GBS infection in animals.

There may be other factors more important than

age, such as the high stocking densities increasing the

potential for bite wounds and the stress of captivity,

which was also considered a possible predisposing

factor in the reported case of necrotizing fasciitis in a

dolphin [24].

The source of the outbreak reported in emerald

monitors was proven to relate to contamination of

mice used for feeding, when nine of 165 remaining

dead mice had GBS isolated from the gastrointestinal

tract, with an identical banding pattern on PFGE

to that of the infected monitors [28]. In contrast,

although, cutaneous lesions from fighting may have

provided a portal of entry for the organism, the

source of infection in our outbreak remains uncertain.

None of the water samples taken at the time of the

outbreak had positive culture results. Culture of one

of a total of 15 mouth swabs from live crocodiles in

the same pens as affected animals yielded S. agalac-

tiae, suggesting that the organism may inhabit

mucous membranes. The various dietary items fed to

the crocodiles at the time were not cultured, therefore,

the possibility of infection through the feed remains

uninvestigated.

Interestingly, when considering the potential origin

of the GBS, the genotyping results demonstrate a

Necrotizing fasciitis due to S. agalactiae in C. porosus 1251

https://doi.org/10.1017/S0950268807008515 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268807008515


profile more consistent with streptococci of human

rather than bovine origin. Bovine isolates are often

non-typable, but of those that are typable a high

proportion belong to serotype III [41]. Unlike isolates

from humans and unlike the strains reported in this

outbreak, bovine isolates are usually susceptible to

tetracycline [19], and only a minority have mobile

genetic elements, including ISSag1 and ISSag2.

When present, such mobile genetic elements probably

encode a pathogenicity-like island which determines

virulence for humans and possibly other animals such

as crocodiles [42]. GBS adhesin genes scpB, and lmb,

coding for C5a peptidase and laminin-binding pro-

tein, respectively, are part of a 16-kb composite

transposon flanked by the ISSag2 insertion sequences

[43]. These two genes are 98% identical with their

counterparts in GAS and all human GBS isolates

examined to date contain them, whereas they are

present in only 20% of animal GBS isolates, sug-

gesting possibly a specific adaptation to colonization

of the human host [44].

In view of the rarity of necrotizing fasciitis in ani-

mals and indeed, of S. agalactiae as a cause of this

disease in humans, further consideration should be

given to the genotypic characteristics of the aggressive

clone responsible for this outbreak. Of the nine dif-

ferent GBS serotypes, capsular type Ia, although fre-

quently isolated in cases of neonatal sepsis, is not

as significantly associated with invasive human neo-

natal disease as is serotype III [45]. However, reported

serotypes causing necrotizing fasciitis in humans

vary from Ib and III, to VI [7, 9, 13]. Similarly, GAS

necrotizing fasciitis has been shown to occur from a

wide diversity of GAS strains and not just the notably

virulent M1 serotype [46, 47]. Interestingly, S. aga-

lactiae of serotype Ia has previously been isolated

from the inner organs of a monkey which died of

sepsis [21]. Whilst capsular polysaccharide has an

important role in allowing the organism to evade

phagocytosis, other virulence factors are important

including haemolysin, C5a peptidase, superoxide dis-

mutase, lipoteichoic acid and laminin-binding pro-

tein. The surface protein antigen epsilon, identified

in our isolates, is one of a group of variable antigens

that contribute to virulence and elicit protective

immunity [31, 48].

Other factors previously identified as being in-

volved in the complex virulence mechanisms of GBS

include the CovS/CovR two-component global regu-

latory system, which is involved in regulating the

expression of virulence genes [49]. Sequencing and

comparison of a serotype III and serotype V whole

genome sequence revealed that the genomes were

very similar, with the only major difference being the

capsulation loci and mobile genetic elements. This

suggested that the capsulation loci or pathogenicity

islands are the main determinants of serotype III

strains in causing invasive disease [50]. Further re-

search has focused on the role of insertion sequences.

The IS1548 insertion sequence in the hylB gene has

been associated with strains identified from patients

with endocarditis [51], and from neonatal CSF iso-

lates [45], but was not found in either the S. agalactiae

isolates from the emerald monitors with sepsis [28]

or in our isolates from C. porosus. Ia-alp1-IS1381 is

the commonest protein and mobile genetic element

profile of human isolates of serotype Ia and, based on

a limited comparison between our genotyping method

and MLST, is usually associated with ST 23 [52].

IS1381 is found in most serotypes except the hyper-

virulent type III subtype (typically ST 17), and was

present in our isolates [31, 52]. In addition to factors

related to the organism, host factors may affect the

pathogenesis of GBS infection in both humans and

animals. Crocodiles can be expected to have many

of the same components of the immune system as

mammals. Specifically, they have been shown to have

serum complement activity, with a main difference in

reptiles being temperature dependence of immune

function. [53].

The MLST type ST 23 identified in our outbreak

strain of GBS, can be considered in view of the in-

formation it may provide, both in terms of virulence

and the origin of the organism. Prior attempts to de-

fine correlations between S. agalactiae MLST and

virulence have revealed only that ST 17 appears to

be a hypervirulent lineage associated with neonatal

sepsis, in keeping with the reputed aggressive nature

of serotype III [34, 54]. Despite an initial model pos-

tulating an animal origin of the hypervirulent clone

[55], Brochet et al. compared the genome content of

ST 17 (human) and ST 61 (bovine) strains, which

are closely related by MLST and concluded that the

genome of the common ancestor was probably closer

to that of human ST 17 strains than to that of the

ST 61 strains of bovine origin [56]. A prior study

which performed MLST analysis on human and

bovine isolates also examined four disease-causing

isolates from other animals (one elephant, two dogs

and a goat). Three of the 50 strain types found were

present in both human and bovine isolates, whilst

four unique strain types were present in the other
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animals [55]. In our case, a clonal outbreak was

caused by ST 23. MLST shows that isolates with

the same sequence type can have different capsular

serotypes. Both serotypes Ia and III have been rep-

resented by ST 23, but the majority are Ia, consist-

ent with our genotype findings of Ia in this study

[34, 57]. This sequence type has been reported as

one of two major genotypes from cattle [58]. How-

ever, ST 23 was also found to be a common se-

quence type in a collection of human isolates from

maternal carriage and fetal invasive disease [57].

Although found to be a prevalent sequence type

both in the latter study and in MLST analysis of the

global human S. agalactiae [36], there has been no

specific association demonstrated between this se-

quence type and invasive disease in humans. Another

study found ST 23 to be less commonly represented

among invasive human adult and neonatal iso-

lates of S. agalactiae than ST 17 and ST 19 [59].

Our findings in this clonal outbreak of necrotizing

fasciitis, suggest that the hypervirulent nature of the

GBS involved may not relate to the sequence type,

and the MLST results do not unequivocally confirm

a human source for the outbreak. However, if this

disease outbreak was indeed from a human source,

it has implications for safe husbandry and handling

of such animals under conditions of intensive

farming.

Current approaches to vaccine development in

humans aim to overcome serotype-specificity by

targeting vaccine candidates other than capsular

polysaccharide, including C5a peptidase, Sip and the

B-component of the C protein, which have elicited

protective immunity in mice [60]. In fish, another

species in which the possibility of vaccination against

S. agalactiae is being investigated; a vaccine prepared

by concentrating the extracellular products from

clarified killed S. agalactiae produced a significant

degree of protection against experimental infection

[38].

In conclusion, this is the first clonal outbreak of

necrotizing fasciitis from S. agalactiae described in a

reptile species. Notably, genetic profiling and MLST

suggest this may potentially have been caused by a

strain of human origin, being serotype Ia MLST 23,

with serotype Ia known to be the second most com-

mon invasive serotype in neonates and a capable

pathogen, as demonstrated in this case. Although

necrotizing fasciitis related to S. agalactiae remains a

rare clinical problem in humans and animals, reptile

keepers should be aware of this novel, severe cause

of morbidity and mortality, which potentially has a

predilection for juveniles and occurrence in circum-

stances of intensive husbandry.
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