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Abstract
Geometric vertex decomposition and liaison are two frameworks that have been used to produce similar results about
similar families of algebraic varieties. In this paper, we establish an explicit connection between these approaches.
In particular, we show that each geometrically vertex decomposable ideal is linked by a sequence of elementary
G-biliaisons of height 1 to an ideal of indeterminates and, conversely, that every G-biliaison of a certain type gives
rise to a geometric vertex decomposition. As a consequence, we can immediately conclude that several well-known
families of ideals are glicci, including Schubert determinantal ideals, defining ideals of varieties of complexes and
defining ideals of graded lower bound cluster algebras.
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1. Introduction

Determinantal ideals and their generalisations have been explored extensively both in the context of
commutative algebra and in the study of Schubert varieties in flag varieties. This overlap is to be expected
because, for example,

◦ each ideal generated by the 𝑘 × 𝑘 minors of a generic matrix is the defining ideal of an open patch of
a Schubert variety in a Grassmannian;

◦ each one-sided ladder determinantal ideal is a Schubert determinantal ideal for a vexillary (i.e.,
2143-avoiding) permutation (see, e.g., [26]);

◦ each two-sided mixed ladder determinantal ideal is a type A Kazhdan–Lusztig ideal (see, e.g., [10]);
◦ each ideal generated by the 𝑘 × 𝑘 minors of a generic symmetric matrix is the defining ideal of an

open patch of a Schubert variety in a Lagrangian Grassmannian;
◦ each defining ideal of a variety of complexes is a type A Kazhdan–Lusztig ideal, up to some extra

indeterminate generators (see, e.g., [31, Ch. 17]).

While similar results on these families of ideals appear in the Schubert variety and commutative
algebra literatures, it is often different techniques that are used to obtain them.

For example, in [26], A. Knutson, E. Miller and A. Yong introduced geometric vertex decomposition,
a degeneration technique, and used it to study the Gröbner geometry of Schubert determinantal ideals
for vexillary permutations. (See Section 2 for background on geometric vertex decomposition.) Indepen-
dently, liaison-theoretic methods were used by E. Gorla in [16] and E. Gorla, J. Migliore and U. Nagel
in [18] to obtain Gröbner bases for various classes of ladder determinantal ideals (including one-sided
ladder determinantal ideals, also known as Schubert determinantal ideals for vexillary permutations).
Roughly speaking, liaison is a theory that aims to transfer information from one subscheme of projective
space to another in cases when their union is sufficiently nice. (See Section 3 for background on liaison.)

In this paper, we establish an explicit connection between geometric vertex decomposition and liaison,
and we study implications of this connection. We have three main goals, which we now outline.

First goal

The first goal of this paper is to show that it is no coincidence that geometric vertex decomposition and
liaison can be used to obtain similar results for similar classes of ideals. Indeed, we prove the following
explicit connection between the two techniques:

Main Theorem. Under mild hypotheses, every geometric vertex decomposition gives rise to an elemen-
tary G-biliason of height 1. Every sufficiently ‘nice’ elementary G-biliaison of height 1 gives rise to a
geometric vertex decomposition.

The first half of this theorem is stated precisely and proved as Corollary 4.3. The second half is stated
precisely and proved as Theorem 6.1.

Second goal

The second motivation for our work comes from a long-standing open question in liaison theory, which
asks whether subschemes of P𝑛 are arithmetically Cohen–Macaulay if and only if they are in the
Gorenstein liaison class of a complete intersection (often referred to as glicci, shorthand introduced in
[24]). It is a standard homological argument that every glicci subscheme of P𝑛 is arithmetically Cohen–
Macaulay. Hence, the question may be phrased as follows:

Question ([24, Question 1.6]). Is every arithmetically Cohen–Macaulay subscheme of P𝑛 glicci?

For more background on why this question emerges naturally from the history of liaison, and for a
summary of partial results already in the literature, see Section 3.
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By combining our main theorem with some straightforward consequences of geometric vertex
decomposition, we arrive at the following, which is stated precisely as Corollary 5.1:

Corollary. Let I be a homogenous ideal in a polynomial ring. If the Lex-initial ideal of I is the Stanley–
Reisner ideal of a vertex decomposable simplicial complex and the vertex decomposition is compatible
with the order of the variables, then I is glicci.

From this corollary, one can quickly deduce that certain well-known classes of varieties are glicci. We
discuss three such classes in Section 5: matrix Schubert varieties, varieties of complexes and varieties
of graded lower bound cluster algebras.

Using the first half of our main theorem, we recover a result of U. Nagel and T. Römer from
[34], namely that the Stanley–Reisner ideal of a vertex decomposable simplicial complex is glicci.
In fact, Nagel and Römer showed, more generally, that the Stanley–Reisner ideal of a weakly vertex
decomposable simplicial complex is glicci [34, Theorem 3.3]. Taking this as motivation, we define
the class of weakly geometrically vertex decomposable ideals (Definition 4.6), which includes both the
geometrically vertex decomposable ideals and the Stanley–Reisner ideals of weakly vertex decomposable
complexes. We show the following, labeled Corollary 4.8 in the main body of the paper:

Theorem. Weakly geometrically vertex decomposable ideals are glicci.

Third goal

In [18, Lemma 1.12], it is shown that one can use liaison to compare Hilbert functions when the degrees
of the isomorphisms of the G-biliaisons involved in an inductive argument are known. This approach is
used in many of the determinantal cases treated in the literature ([16, 17, 18, 11]). It is worth noticing
that the isomorphisms used in these papers all have a similar form. We explain via Theorem 4.1 why
this similarity is not a coincidence but, rather, is to be expected. In that theorem, we associate an explicit
isomorphism of degree 1 to a geometric vertex decomposition.

In addition to the expository work of describing a unifying structure underlying examples already in
the literature, Theorem 4.1 also provides a candidate isomorphism in the style of G-biliaison that, in
good cases, allows one to use the framework of [18] to prove that a conjectured Gröbner basis is, indeed,
a Gröbner basis. Some consequences of Theorem 4.1 on Gröbner bases and degenerations appear in
Subsection 4.3.

The structure of the paper

In Section 2, we review definitions and key lemmas from [26] on geometric vertex decomposition in
the unmixed case and record some additional observations about the structure of a geometrically vertex
decomposable ideal. In Section 3, we briefly review background material on Gorenstein liaison. In
Sections 4 and 6, we provide a proof of our main theorem and related results and examples. In Section
5, we prove that certain well-known classes of combinatorially defined ideals are glicci, via the material
in Section 4. Finally, we devote Section 7 to the not necessarily unmixed case, which we relate to vertex
decomposition in the not necessarily pure case.

Notational conventions

Throughout the paper, we let 𝜅 be a field, which can be chosen arbitrarily except in Sections 4, 5 and 7,
where we require that 𝜅 be infinite.

2. Geometric vertex decomposition

In this section we discuss geometric vertex decomposition, introduced by A. Knutson, E. Miller and
A. Yong in [26]. In the first subsection, we recall the basics of vertex decomposition of simplicial
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complexes and Stanley–Reisner ideals. In the second subsection, we move beyond the monomial-ideal
case and recall the basics of geometric vertex decomposition from [26]. In the third subsection, we
define and study geometrically vertex decomposable ideals. Although the material in this last subsection
is not known to the authors to be explicitly in the literature, the results that appear will not be surprising
to experts.

2.1. Vertex decomposition and Stanley–Reisner ideals

Let Δ be a simplicial complex on vertex set [𝑛] = {1, 2, . . . , 𝑛} (without an insistence that every 𝑣 ∈ [𝑛]
necessarily be a face of Δ). Given a vertex 𝑣 ∈ Δ , define the following three subcomplexes:

◦ the star of v is the set starΔ (𝑣) := {𝐹 ∈ Δ | 𝐹 ∪ {𝑣} ∈ Δ};
◦ the link of v is the set lkΔ (𝑣) := {𝐹 ∈ Δ | 𝐹 ∪ {𝑣} ∈ Δ , 𝐹 ∩ {𝑣} = ∅};
◦ the deletion of v is the set delΔ (𝑣) := {𝐹 ∈ Δ | 𝐹 ∩ {𝑣} = ∅}.

Recall that the cone from v on a simplicial complex Δ is the smallest simplicial complex that contains
the set {𝐹 ∪ {𝑣} | 𝐹 ∈ Δ}. Then starΔ (𝑣) is the cone from v on lkΔ (𝑣) and

Δ = starΔ (𝑣) ∪ delΔ (𝑣). (2.1)

The decomposition of Δ in equation (2.1) is called a vertex decomposition.
A simplicial complex is called pure if all of its facets (i.e., maximal faces) are of the same dimension.

A simplicial complex Δ is vertex decomposable if it is pure and if Δ = ∅, Δ is a simplex or there is a
vertex 𝑣 ∈ Δ such that lkΔ (𝑣) and delΔ (𝑣) are vertex decomposable.

Given a simplicial complex Δ on vertex set [𝑛], one defines the Stanley–Reisner ideal 𝐼Δ ⊆
𝜅 [𝑥1, . . . , 𝑥𝑛] associated to Δ as 𝐼Δ := 〈x𝐹 | 𝐹 ⊆ [𝑛], 𝐹 ∉ Δ〉, where x𝐹 :=

∏
𝑖∈𝐹 𝑥𝑖 . The association

Δ ↦→ 𝐼Δ determines a bijection between simplicial complexes on [𝑛] and square-free monomial ideals
in 𝜅 [𝑥1, . . . , 𝑥𝑛]. We write Δ (𝐼) for the simplicial complex associated to a square-free monomial ideal I.

Notice that if Δ = Δ1 ∪Δ2 is a union of simplicial complexes on [𝑛], then F is a nonface of Δ if and
only if it is a nonface of both Δ1 and Δ2. Thus, 𝐼Δ = 𝐼Δ1 ∩ 𝐼Δ2 . In particular, if v is a vertex of Δ , we
may decompose Δ as in equation (2.1) to get

𝐼Δ = 𝐼starΔ (𝑣) ∩ 𝐼delΔ (𝑣) .

The following is immediate from the definitions. We record it as a lemma for easy reference.

Lemma 2.2. Let 𝑣 ∈ [𝑛] be a vertex of Δ . Write 𝐼Δ =
〈
𝑥𝑑𝑖𝑣 𝑞𝑖 | 1 ≤ 𝑖 ≤ 𝑚

〉
, where 𝑞𝑖 is a square-free

monomial that is not divisible by 𝑥𝑣 and 𝑑𝑖 = 0 or 1. Then

𝐼starΔ (𝑣) = 〈𝑞𝑖 | 1 ≤ 𝑖 ≤ 𝑚〉, 𝐼lkΔ (𝑣) = 𝐼starΔ (𝑣) + 〈𝑥𝑣〉, 𝐼delΔ (𝑣) = 〈𝑞𝑖 | 𝑑𝑖 = 0〉 + 〈𝑥𝑣〉.

2.2. Geometric vertex decomposition

In this subsection, we discuss geometric vertex decomposition, introduced by A. Knutson, E. Miller and
A. Yong in [26].

Let 𝑅 = 𝜅 [𝑥1, . . . , 𝑥𝑛] be a polynomial ring in n indeterminates and let 𝑦 = 𝑥 𝑗 for some 1 ≤ 𝑗 ≤ 𝑛.
Define the initial y-form in𝑦 𝑓 of a polynomial 𝑓 ∈ 𝑅 to be the sum of all terms of f having the highest
power of y. That is, if 𝑓 =

∑𝑛
𝑖=0 𝛼𝑖𝑦

𝑖 , where each 𝛼𝑖 ∈ 𝜅 [𝑥1, . . . , 𝑦̂, . . . , 𝑥𝑛] and 𝛼𝑛 ≠ 0, then define
in𝑦 𝑓 := 𝛼𝑛𝑦

𝑛, which is usually not a monomial. Given an ideal 𝐽 ⊆ 𝑅, define in𝑦𝐽 to be the ideal
generated by the initial y-forms of the elements of J – that is, in𝑦𝐽 :=

〈
in𝑦 𝑓 | 𝑓 ∈ 𝐽

〉
. We say that a

monomial order < on R is y-compatible if it satisfies in< 𝑓 = in<
(
in𝑦 𝑓

)
for every 𝑓 ∈ 𝑅. In this case,

we have in<
(
in𝑦𝐽

)
= in<𝐽 for any ideal 𝐽 ⊆ 𝑅.
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Let 𝐼 ⊆ 𝑅 be an ideal and < a y-compatible monomial order. With respect to <, let G ={
𝑦𝑑𝑖𝑞𝑖 + 𝑟𝑖 | 1 ≤ 𝑖 ≤ 𝑚

}
be a Gröbner basis of I where y does not divide any 𝑞𝑖 and in𝑦

(
𝑦𝑑𝑖𝑞𝑖 + 𝑟𝑖

)
=

𝑦𝑑𝑖𝑞𝑖 . One easily checks that the ideal in𝑦 𝐼 is generated by in𝑦G :=
{
𝑦𝑑𝑖𝑞𝑖 | 1 ≤ 𝑖 ≤ 𝑚

}
. That is,

in𝑦 𝐼 =
〈
𝑦𝑑𝑖𝑞𝑖 | 1 ≤ 𝑖 ≤ 𝑚

〉
.

Definition 2.3 ([26, Section 2.1]). Define 𝐶𝑦,𝐼 := 〈𝑞𝑖 | 1 ≤ 𝑖 ≤ 𝑚〉 and 𝑁𝑦,𝐼 := 〈𝑞𝑖 | 𝑑𝑖 = 0〉. When
in𝑦 𝐼 = 𝐶𝑦,𝐼 ∩

(
𝑁𝑦,𝐼 + 〈𝑦〉

)
, this decomposition is called a geometric vertex decomposition of I with

respect to y.

The ideals 𝐶𝑦,𝐼 and 𝑁𝑦,𝐼 do not depend on the choice of Gröbner basis, and in particular do not
depend on the choice of y-compatible term order <. This follows from the facts that 𝐶𝑦,𝐼 =

(
in𝑦 𝐼 : 𝑦∞

)
by [26, Theorem 2.1(d)] and that 𝑁𝑦,𝐼 + 〈𝑦〉 = in𝑦 𝐼 + 〈𝑦〉 by [26, Theorem 2.1 (a)], together with the
observation that y does not appear in the generators of 𝑁𝑦,𝐼 given in its definition.

We say that a geometric vertex decomposition is degenerate if
√
𝐶𝑦,𝐼 =

√
𝑁𝑦,𝐼 or if 𝐶𝑦,𝐼 = 〈1〉, and

nondegenerate otherwise. As we will see through Lemma 2.6, if 𝐶𝑦,𝐼 = 〈1〉, then some polynomial
whose initial y-form is a unit multiple of y is an element of I, in which case 𝑅/𝐼 � 𝑅/

(
𝑁𝑦,𝐼 + 〈𝑦〉

)
. If√

𝐶𝑦,𝐼 =
√
𝑁𝑦,𝐼 , then

√
in𝑦 𝐼 =

√
𝐶𝑦,𝐼 ∩

√
𝑁𝑦,𝐼 + 〈𝑦〉 =

√
𝐶𝑦,𝐼 , in which case in𝑦 𝐼, 𝐶𝑦,𝐼 and 𝑁𝑦,𝐼 all

determine the same variety. In both of these cases, we may often prefer to study 𝑁𝑦,𝐼 in the smaller
polynomial ring that omits y. This is especially true when I is radical, for the following reason:

Proposition 2.4. If I is radical and has a degenerate geometric vertex decomposition in𝑦 𝐼 = 𝐶𝑦,𝐼 ∩(
𝑁𝑦,𝐼 + 〈𝑦〉

)
with

√
𝑁𝑦,𝐼 =

√
𝐶𝑦,𝐼 , then the reduced Gröbner basis of I does not involve y and 𝐼 = in𝑦 𝐼 =

𝐶𝑦,𝐼 = 𝑁𝑦,𝐼 .

Proof. Throughout this argument, we will refer to the reduced Gröbner basis of I as the Gröbner
generators of I and the generators of 𝑁𝑦,𝐼 obtained in Definition 2.3 from the reduced Gröbner basis of
I as the Gröbner generators of 𝑁𝑦,𝐼 .

We claim first that 𝑁𝑦,𝐼 must also be radical. Fix some 𝑔𝑡 ∈ 𝑁𝑦,𝐼 for 𝑡 ≥ 1. Because 𝑁𝑦,𝐼 has a
generating set that does not involve y, we may assume without loss of generality that g does not involve y.
Because 𝑔𝑡 ∈ 𝑁𝑦,𝐼 ⊆ 𝐼 =

√
𝐼, we also have 𝑔 ∈ 𝐼, and so g must have a Gröbner reduction by elements of

the reduced Gröbner basis of I. Because g does not involve y, this reduction must use only those Gröbner
generators that do not involve y, which are exactly the Gröbner generators of 𝑁𝑦,𝐼 , and so 𝑔 ∈ 𝑁𝑦,𝐼 .

Hence,
√
𝐶𝑦,𝐼 =

√
𝑁𝑦,𝐼 = 𝑁𝑦,𝐼 ⊆ 𝐶𝑦,𝐼 , and so 𝑁𝑦,𝐼 = 𝐶𝑦,𝐼 . Suppose now that the reduced Gröbner

basis of I has some element of the form 𝑦𝑑𝑞 + 𝑟 for 𝑑 > 0. Then 𝑞 ∈ 𝐶𝑦,𝐼 = 𝑁𝑦,𝐼 , and so the lead term
of q must be divisible by the lead term of one of the Gröbner generators of 𝑁𝑦,𝐼 . But any such generator
is also an element of the reduced Gröbner basis of I and so cannot divide the lead term of q, since then
it would divide the lead term of 𝑦𝑑𝑞 + 𝑟 . Hence, the reduced Gröbner basis of I has no term involving
y, from which it follows that 𝐼 = in𝑦 𝐼 = 𝐶𝑦,𝐼 = 𝑁𝑦,𝐼 . �

Remark 2.5. Let Δ be a simplicial complex on vertex set [𝑛], and let v be a vertex of Δ . The geometric
vertex decomposition of 𝐼Δ ⊆ 𝑅 with respect to variable 𝑥𝑣 agrees with the decomposition

𝐼Δ = 𝐼starΔ (𝑣) ∩ 𝐼delΔ (𝑣) .

Indeed, in𝑥𝑣 𝐼Δ = 𝐼Δ , 𝐼starΔ (𝑣) = 𝐶𝑥𝑣 ,𝐼Δ , and 𝐼delΔ (𝑣) = 𝑁𝑥𝑣 ,𝐼Δ +〈𝑥𝑣〉 (see the end of Section 2.1). Observe
that since 𝑣 ∈ Δ , we have 𝐶𝑥𝑣 ,𝐼Δ ≠ 〈1〉. Thus, the geometric vertex decomposition is degenerate if and
only if Δ is a cone from v on lkΔ (𝑣).

If an ideal 𝐼 ⊆ 𝑅 has a generating set G in which 𝑦2 does not divide any term of g for any 𝑔 ∈ G,
then we say that I is square-free in y. It is easy to see (for example, by considering S-pair reductions)
that every ideal that is square-free in y has a Gröbner basis, with respect to any y-compatible term order,
such that 𝑦2 does not divide any term of any element of the Gröbner basis.

Lemma 2.6. If 𝐼 ⊆ 𝑅 possesses a geometric vertex decomposition with respect to a variable 𝑦 = 𝑥 𝑗 of
R, then I is square-free in y, and the reduced Gröbner basis of I with respect to any y-compatible term
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order has the form {𝑦𝑞1 + 𝑟1, . . . , 𝑦𝑞𝑘 + 𝑟𝑘 , ℎ1, . . . , ℎℓ }, where y does not divide any term of any 𝑞𝑖 or
𝑟𝑖 for any 1 ≤ 𝑖 ≤ 𝑘 nor any ℎ 𝑗 for any 1 ≤ 𝑗 ≤ ℓ.

Proof. Fix a y-compatible term order <, and let G =
{
𝑦𝑑1𝑞1 + 𝑟1, . . . , 𝑦

𝑑𝑚𝑞𝑚 + 𝑟𝑚
}

be the reduced
Gröbner basis of I with respect to <, where 𝑦𝑑𝑖𝑞𝑖 = in𝑦

(
𝑦𝑑𝑖𝑞𝑖 + 𝑟𝑖

)
and y does not divide any term

of 𝑞𝑖 for any 1 ≤ 𝑖 ≤ 𝑚. Observe that 𝑦𝑞𝑖 ∈ 𝐶𝑦,𝐼 ∩
(
𝑁𝑦,𝐼 + 〈𝑦〉

)
for each 1 ≤ 𝑖 ≤ 𝑚, so in𝑦 𝐼 =

𝐶𝑦,𝐼 ∩
(
𝑁𝑦,𝐼 + 〈𝑦〉

)
implies 𝑦𝑞𝑖 ∈ in𝑦 𝐼 for each 1 ≤ 𝑖 ≤ 𝑚. Hence, we may assume 𝑑𝑖 ≤ 1 for each

1 ≤ 𝑖 ≤ 𝑚. The remaining statements now follow easily. �

2.3. Geometrically vertex decomposable ideals

A geometric vertex decomposition of an ideal is analogous to a vertex decomposition of a simplicial
complex into a deletion and star (see Remark 2.5). In this subsection, we extend this analogy by
considering geometrically vertex decomposable ideals, which are analogous to vertex decomposable
simplicial complexes. We again let 𝑅 = 𝜅 [𝑥1, . . . , 𝑥𝑛] throughout this subsection. Recall that an ideal
𝐼 ⊆ 𝑅 is unmixed if dim(𝑅/𝑃) = dim(𝑅/𝐼) for all 𝑃 ∈ Ass(𝐼).

Definition 2.7. An ideal 𝐼 ⊆ 𝑅 is geometrically vertex decomposable if I is unmixed and if

1. 𝐼 = 〈1〉 or I is generated by indeterminates in R or
2. for some variable 𝑦 = 𝑥 𝑗 of R, in𝑦 𝐼 = 𝐶𝑦,𝐼 ∩

(
𝑁𝑦,𝐼 + 〈𝑦〉

)
is a geometric vertex decomposition and

the contractions of 𝑁𝑦,𝐼 and 𝐶𝑦,𝐼 to 𝜅 [𝑥1, . . . , 𝑦̂, . . . , 𝑥𝑛] are geometrically vertex decomposable.

We take case (1) to include the zero ideal, whose (empty) generating set vacuously consists only
of indeterminates. We will soon need observations about the relative heights of the ideals I, 𝐶𝑦,𝐼

and 𝑁𝑦,𝐼 in the circumstances of condition (2). The degenerate cases are clear: if 𝐶𝑦,𝐼 = 〈1〉, then
ht(𝐼) = ht

(
𝑁𝑦,𝐼

)
+ 1 and, if

√
𝐶𝑦,𝐼 =

√
𝑁𝑦,𝐼 , then ht(𝐼) = ht

(
in𝑦 𝐼

)
= ht

(
𝐶𝑦,𝐼

)
= ht

(
𝑁𝑦,𝐼

)
. The

nondegenerate case is handled by Lemma 2.8.
We say that the ring 𝑅/𝐼 is equidimensional if dim(𝑅/𝑃) = dim(𝑅/𝐼) for all minimal primes

P of I or, equivalently, if all irreducible components of the variety of I have the same dimension.
Equidimensionality does not preclude the possibility that I might have embedded primes, and so is
weaker than unmixedness.

Lemma 2.8. If 𝐼 ⊆ 𝑅 is an ideal so that 𝑅/𝐼 is equidimensional and in𝑦 𝐼 = 𝐶𝑦,𝐼 ∩
(
𝑁𝑦,𝐼 + 〈𝑦〉

)
is a nondegenerate geometric vertex decomposition with respect to some variable 𝑦 = 𝑥 𝑗 of R, then
ht

(
𝐶𝑦,𝐼

)
= ht(𝐼) = ht

(
𝑁𝑦,𝐼

)
+ 1. Moreover, 𝑅/𝐶𝑦,𝐼 is equidimensional.

Proof. By Lemma 2.6, I has a reduced Gröbner basis of the form {𝑦𝑞1 + 𝑟1, . . . , 𝑦𝑞𝑘 + 𝑟𝑘 , ℎ1, . . . , ℎℓ },
where y does not divide any term of any 𝑞𝑖 or 𝑟𝑖 , 1 ≤ 𝑖 ≤ 𝑘 , nor any ℎ 𝑗 , 1 ≤ 𝑗 ≤ ℓ. Let 𝐼 ⊆ 𝑅[𝑡] be
the ideal 𝐼 = 〈𝑦𝑞1 + 𝑡𝑟1, . . . , 𝑦𝑞𝑘 + 𝑡𝑟𝑘 , ℎ1, . . . , ℎℓ〉. Using [9, Theorem 15.17], 𝑅[𝑡]/𝐼 ⊗𝜅 [𝑡 ] 𝜅

[
𝑡, 𝑡−1] �

(𝑅/𝐼)
[
𝑡, 𝑡−1] . Clearly, 𝑅/𝐼 being equidimensional implies that (𝑅/𝐼)

[
𝑡, 𝑡−1] is equidimensional, and

so 𝑅[𝑡]/𝐼 ⊗𝜅 [𝑡 ] 𝜅
[
𝑡, 𝑡−1] is equidimensional. By [9, Theorem 15.17], 𝑅[𝑡]/𝐼 is flat as a 𝜅 [𝑡]-module.

By this flatness, t is not a zero-divisor on 𝑅[𝑡]/𝐼, and so no minimal prime of 𝑅[𝑡]/𝐼 contains t. Then
because the primes of 𝑅[𝑡]/𝐼 ⊗𝜅 [𝑡 ] 𝜅

[
𝑡, 𝑡−1] are in correspondence with the primes of 𝑅[𝑡]/𝐼 that do not

contain t, 𝑅[𝑡]/𝐼 is equidimensional as well. Finally, because 𝑅[𝑡]/
〈
𝐼, 𝑡

〉
� 𝑅/in𝑦 𝐼, it suffices to note

that every minimal prime over 〈𝑡〉 in 𝑅[𝑡]/𝐼 has height exactly 1 as a consequence of Krull’s principal
ideal theorem and the fact that t is not a zero-divisor on 𝑅[𝑡]/𝐼. Hence 𝑅/in𝑦 𝐼 is equidimensional.

Because in𝑦 𝐼 = 𝐶𝑦,𝐼 ∩
(
𝑁𝑦,𝐼 + 〈𝑦〉

)
, each minimal prime of in𝑦 𝐼 is a minimal prime either of 𝐶𝑦,𝐼 or

of 𝑁𝑦,𝐼 + 〈𝑦〉. Conversely, each minimal prime of 𝑁𝑦,𝐼 + 〈𝑦〉 either is a minimal prime of in𝑦 𝐼 or contains
some minimal prime of 𝐶𝑦,𝐼 . (Because 𝑦 ∉ 𝐶𝑦,𝐼 , no minimal prime of 𝐶𝑦,𝐼 can contain any minimal
prime of 𝑁𝑦,𝐼 + 〈𝑦〉.) Hence, because ht

(
in𝑦 𝐼

)
= ht(𝐼), we will have ht

(
𝐶𝑦,𝐼

)
= ht(𝐼) = ht

(
𝑁𝑦,𝐼

)
+ 1

so long as some minimal prime of 𝑁𝑦,𝐼 + 〈𝑦〉 does not contain a minimal prime of 𝐶𝑦,𝐼 – that is, so long
as

√
𝐶𝑦,𝐼 �

√
𝑁𝑦,𝐼 + 〈𝑦〉. Because 𝐶𝑦,𝐼 and 𝑁𝑦,𝐼 have generating sets that do not involve y, we cannot
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have
√
𝐶𝑦,𝐼 ⊆

√
𝑁𝑦,𝐼 + 〈𝑦〉 unless

√
𝐶𝑦,𝐼 ⊆

√
𝑁𝑦,𝐼 . But 𝑁𝑦,𝐼 ⊆ 𝐶𝑦,𝐼 , so

√
𝐶𝑦,𝐼 ⊆

√
𝑁𝑦,𝐼 would imply√

𝐶𝑦,𝐼 =
√
𝑁𝑦,𝐼 , contradicting the assumption of nondegeneracy.

Finally, because every minimal prime of
√
𝐶𝑦,𝐼 is a minimal prime of in𝑦 𝐼, equidimensionality of

𝑅/𝐶𝑦,𝐼 follows from the equidimensionality of 𝑅/in𝑦 𝐼. �

As already noted, the definition of a geometrically vertex decomposable ideal is analogous to the
definition of a vertex decomposable simplicial complex. In particular, we have the following proposition,
whose proof we leave as an exercise:

Proposition 2.9. Let Δ be a simplicial complex on vertex set [𝑛]. Its Stanley–Reisner ideal 𝐼Δ ⊆ 𝑅 is
geometrically vertex decomposable if and only if Δ is vertex decomposable.

In the remainder of this section, we discuss some properties of geometrically vertex decomposable
ideals and further connections to vertex decomposable simplicial complexes.

Proposition 2.10. A geometrically vertex decomposable ideal is radical.

Proof. Let 𝐼 ⊆ 𝑅 be a geometrically vertex decomposable ideal. We proceed by induction on 𝑛 =
dim(𝑅). We note first that if 𝐼 = 〈0〉, 𝐼 = 〈1〉 or I is generated by indeterminates, the result is immediate.
Otherwise, there exists some variable 𝑦 = 𝑥 𝑗 such that in𝑦 𝐼 = 𝐶𝑦,𝐼 ∩

(
𝑁𝑦,𝐼 + 〈𝑦〉

)
is a geometric vertex

decomposition and the contractions of 𝐶𝑦,𝐼 and 𝑁𝑦,𝐼 to 𝜅 [𝑥1, . . . , 𝑦̂, . . . , 𝑥𝑛] are geometrically vertex
decomposable. These contracted ideals are radical by induction, thus so are 𝐶𝑦,𝐼 and 𝑁𝑦,𝐼 . Hence,
in𝑦 𝐼 = 𝐶𝑦,𝐼 ∩

(
𝑁𝑦,𝐼 + 〈𝑦〉

)
is radical. Finally, because in𝑦 𝐼 is radical, I must also be radical. �

We remark briefly that Proposition 2.10 does not require the unmixedness assumptions on I, 𝐶𝑦,𝐼 or
𝑁𝑦,𝐼 .

We next consider geometrically vertex decomposable ideals that have a certain compatibility with
a given lexicographic monomial order. The main result in our discussion of these ideals is Proposition
2.14, which we will need in Section 5 on applications.

Definition 2.11. Fix a lexicographic monomial order < on R. We say that an ideal 𝐼 ⊆ 𝑅 is <-compatibly
geometrically vertex decomposable if I satisfies Definition 2.7 upon replacing condition (2) with

(2.*) for the <-largest variable y in R, in𝑦 𝐼 = 𝐶𝑦,𝐼 ∩
(
𝑁𝑦,𝐼 + 〈𝑦〉

)
is a geometric vertex decomposition

and the contractions of 𝑁𝑦,𝐼 and 𝐶𝑦,𝐼 to 𝜅 [𝑥1, . . . , 𝑦̂, . . . , 𝑥𝑛] are <-compatibly geometrically
vertex decomposable for the naturally induced monomial order on 𝜅 [𝑥1, . . . , 𝑦̂, . . . , 𝑥𝑛] (which
we also call <).

Let Δ be a simplicial complex on a vertex set [𝑛], and let < be a total order on [𝑛]. We say that a
simplicial complex Δ is <-compatibly vertex decomposable if either Δ = ∅ or Δ is a simplex or, for the
<-largest vertex 𝑣 ∈ Δ , delΔ (𝑣) and lkΔ (𝑣) are <-compatibly vertex decomposable.

The following is an easy consequence of [26, Theorem 2.1]:

Lemma 2.12. Suppose that 𝐼 ⊆ 𝑅 is square-free in 𝑦 = 𝑥 𝑗 , and suppose that < is a y-compatible
monomial order on R. Then in< 𝐼 = in<𝐶𝑦,𝐼 ∩

(
in<𝑁𝑦,𝐼 + 〈𝑦〉

)
.

Proof. Since I is square-free in y, I has a Gröbner basis {𝑦𝑞1+𝑟1, . . . , 𝑦𝑞𝑘+𝑟𝑘 , ℎ1, . . . , ℎℓ }, where y does
not divide any term of 𝑞𝑖 , 𝑟𝑖 , 1 ≤ 𝑖 ≤ 𝑘 , nor ℎ 𝑗 , 1 ≤ 𝑗 ≤ ℓ. Let𝑚𝑖 = in<𝑞𝑖 , 1 ≤ 𝑖 ≤ 𝑘 , and𝑚𝑘+𝑖 = in<ℎ𝑖 ,
1 ≤ 𝑖 ≤ ℓ. By [26, Theorem 2.1(a)], {𝑞1, . . . , 𝑞𝑘 , ℎ1, . . . , ℎℓ } and {ℎ1, . . . , ℎℓ } are Gröbner bases for
𝐶𝑦,𝐼 and 𝑁𝑦,𝐼 , respectively, so in<𝐶𝑦,𝐼 = 〈𝑚𝑖 | 1 ≤ 𝑖 ≤ 𝑘 + ℓ〉 and in<𝑁𝑦,𝐼 = 〈𝑚𝑘+𝑖 | 1 ≤ 𝑖 ≤ ℓ〉. It is
then straightforward to check

in< 𝐼 = 〈𝑦𝑚1, . . . , 𝑦𝑚𝑘 , 𝑚𝑘+1, . . . , 𝑚𝑘+ℓ〉 = in<𝐶𝑦,𝐼 ∩
(
in<𝑁𝑦,𝐼 + 〈𝑦〉

)
. (2.13)

�

We are now ready to prove the main result of our discussion on <-compatibly geometrically vertex
decomposable ideals:
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Proposition 2.14. An ideal 𝐼 ⊆ 𝑅 is <-compatibly geometrically vertex decomposable for the lexi-
cographic monomial order 𝑥1 > 𝑥2 > · · · > 𝑥𝑛 if and only if in< 𝐼 is the Stanley–Reisner ideal of a
<-compatibly vertex decomposable simplicial complex on [𝑛] for the vertex order 1 > 2 > · · · > 𝑛.

Proof. If 𝐼 = 〈1〉 or 〈0〉, there is nothing to show. So suppose that I is nontrivial and proceed by
induction on 𝑛 = dim(𝑅). The base case 𝑛 = 1 is straightforward.

Suppose that 𝑛 ≥ 2 is arbitrary. First assume that I is <-compatibly geometrically vertex decompos-
able and let 𝑦 = 𝑥1. If I is generated by indeterminates, there is nothing to show. Otherwise, we have that
in𝑦 𝐼 = 𝐶𝑦,𝐼 ∩

(
𝑁𝑦,𝐼 + 〈𝑦〉

)
is a geometric vertex decomposition, and the contractions 𝑁𝑐 and𝐶𝑐 of 𝑁𝑦,𝐼

and 𝐶𝑦,𝐼 to 𝜅 [𝑥2, . . . , 𝑥𝑛] are <-compatibly geometrically vertex decomposable. There are two cases.
The first case is when 𝐶𝑦,𝐼 = 〈1〉, which implies that in< 𝐼 = in<𝑁𝑦,𝐼 + 〈𝑦〉. By induction, in<𝑁𝑐

is the Stanley–Reisner ideal of a <-compatibly vertex decomposable simplicial complex. Thus, in< 𝐼,
which is equal to in<𝑁𝑦,𝐼 + 〈𝑦〉, is too. Indeed, the complexes Δ (in<𝑁𝑐) and Δ

(
in<𝑁𝑦,𝐼 + 〈𝑦〉

)
are the

same (though on different ambient vertex sets).
Now assume 𝐶𝑦,𝐼 ≠ 〈1〉. By induction, in<𝑁𝑐 and in<𝐶𝑐 are the Stanley–Reisner ideals of <-

compatibly vertex decomposable simplicial complexes, thus so are in<𝑁𝑦,𝐼 + 〈𝑦〉 and in<𝐶𝑦,𝐼 + 〈𝑦〉. By
Lemma 2.12, we have

in< 𝐼 = in<𝐶𝑦,𝐼 ∩
(
in<𝑁𝑦,𝐼 + 〈𝑦〉

)
. (2.15)

Thus, in< 𝐼 is a square-free monomial ideal. Define Δ := Δ (in< 𝐼). Equation (2.13) and Lemma 2.2
imply that in<𝐶𝑦,𝐼 and in<𝑁𝑦,𝐼 + 〈𝑦〉 are the Stanley–Reisner ideals of starΔ (1) and delΔ (1). Thus
in<𝐶𝑦,𝐼 + 〈𝑦〉 and in<𝑁𝑦,𝐼 + 〈𝑦〉 are the Stanley–Reisner ideals of lkΔ (1) and delΔ (1). Hence lkΔ (1)
and delΔ (1) are <-compatibly vertex decomposable. Thus, Δ is too.

For the converse, assume that Δ = Δ (in< 𝐼) is <-compatibly vertex decomposable.
Since 𝑦 = 𝑥1 is <-largest, and in< 𝐼 is a square-free monomial ideal by assumption, the reduced

Gröbner basis of I with respect to < is square-free in y, and so has the form G = {𝑦𝑞1 + 𝑟1, . . . , 𝑦𝑞𝑘 +
𝑟𝑘 , ℎ1, . . . , ℎℓ }, with y not dividing any term of any 𝑞𝑖 , 𝑟𝑖 , ℎ 𝑗 , 1 ≤ 𝑖 ≤ 𝑘 , 1 ≤ 𝑗 ≤ ℓ. So, by [26, Theorem
2.1(b)], in𝑦 𝐼 = 𝐶𝑦,𝐼 ∩

(
𝑁𝑦,𝐼 + 〈𝑦〉

)
is a geometric vertex decomposition. Again, we have two cases.

If 𝐶𝑦,𝐼 = 〈1〉, then in< 𝐼 = in<𝑁𝑦,𝐼 + 〈𝑦〉. The complex Δ
(
𝑁𝑦,𝐼 + 〈𝑦〉

)
is the same as Δ (𝑁𝑐). Thus,

Δ (𝑁𝑐) is <-compatibly vertex decomposable. So, by induction, 𝑁𝑐 is <-compatibly geometrically
vertex decomposable. Hence, so too is I.

If 𝐶𝑦,𝐼 ≠ 〈1〉, then we have that 1 is a vertex of Δ and, as discussed before, in<𝐶𝑦,𝐼 + 〈𝑦〉 and
in<𝑁𝑦,𝐼 + 〈𝑦〉 are the Stanley–Reisner ideals of lkΔ (1) and delΔ (1). Since Δ is <-compatibly vertex
decomposable, so are lkΔ (1) and delΔ (1). Thinking of these complexes as complexes on the vertex
set {2, 3, . . . , 𝑛}, their Stanley–Reisner ideals are in<𝐶𝑐 and in<𝑁𝑐 . So, by induction, 𝐶𝑐 and 𝑁𝑐 are
<-compatibly geometrically vertex decomposable. Hence, so too is I. �

We end this section with an example that shows that there exist geometrically vertex decomposable
ideals that are not geometrically vertex decomposable compatible with any lexicographic monomial
order.

Example 2.16. Let 𝐼 =
〈
𝑦
(
𝑧𝑠 − 𝑥2) , 𝑦𝑤𝑟, 𝑤𝑟 (𝑧2 + 𝑧𝑥 + 𝑤𝑟 + 𝑠2)〉 ⊆ 𝜅 [𝑥, 𝑦, 𝑧, 𝑤, 𝑟, 𝑠]. Observe that

I is square-free in y, and we have a geometric vertex decomposition with 𝐶𝑦,𝐼 =
〈
𝑧𝑠 − 𝑥2, 𝑤𝑟

〉
and

𝑁𝑦,𝐼 =
〈
(𝑤𝑟)

(
𝑧𝑥 + 𝑠2 + 𝑧2 + 𝑤𝑟

)〉
. Furthermore, the contractions of𝐶𝑦,𝐼 and 𝑁𝑦,𝐼 to 𝜅 [𝑥, 𝑧, 𝑤, 𝑟, 𝑠] are

geometrically vertex decomposable. (To see this, let 𝐶𝑐 and 𝑁𝑐 denote these contracted ideals. Then
𝐶𝑐 and 𝑁𝑐 are square-free in s and x, respectively, and in𝑠𝐶𝑐 = 〈𝑧𝑠, 𝑤𝑟〉 and in𝑥𝑁

𝑐 = 〈𝑤𝑟𝑧𝑥〉.) Hence
I is geometrically vertex decomposable.

Next, we observe that I has no square-free initial ideals, hence cannot be <-compatibly geometrically
vertex decomposable for any order < by Proposition 2.14. To prove this, we first note that the given
generating set

{
𝑔1 := 𝑦

(
𝑧𝑠 − 𝑥2) , 𝑔2 := 𝑦𝑤𝑟, 𝑔3 := 𝑤𝑟

(
𝑧2 + 𝑧𝑥 + 𝑤𝑟 + 𝑠2)} of I is a universal Gröbner

basis. Indeed, fix an arbitrary monomial order, and observe that each S-polynomial 𝑆
(
𝑔𝑖 , 𝑔 𝑗

)
, 𝑖 ≠ 𝑗 ,

is divisible by 𝑔2 = 𝑦𝑤𝑟 and thus reduces to 0 under division by {𝑔1, 𝑔2, 𝑔3}. Consequently, if I has
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a square-free initial ideal, there exists a monomial order < such that 〈in<𝑔1, in<𝑔2, in<𝑔3〉 is a square-
free monomial ideal. Noting that none of the monomials of 𝑔𝑖 are divisible by any of the monomials in
𝑔 𝑗 , it follows that in<𝑔1, in<𝑔2, in<𝑔3 are minimal generators for 〈in<𝑔1, in<𝑔2, in<𝑔3〉. Hence, the only
way for 〈in<𝑔1, in<𝑔2, in<𝑔3〉 to be a square-free monomial ideal is if each of in<𝑔1, in<𝑔2, in<𝑔3 is a
square-free monomial, which would force (i) in<

(
𝑧𝑠 − 𝑥2) = 𝑧𝑠 and (ii) in<

(
𝑧2 + 𝑧𝑥 + 𝑤𝑟 + 𝑠2) = 𝑧𝑥.

So suppose there is some monomial order < that satisfies (i) and (ii). Then we have 𝑧𝑥 > 𝑧2 (by (ii)) and
hence 𝑥 > 𝑧. We also have 𝑧𝑠 > 𝑥2 (by (i)). So since 𝑥 > 𝑧, we have 𝑧𝑠 > 𝑥2 > 𝑧𝑥 and so 𝑠 > 𝑥. Finally,
𝑧𝑥 > 𝑠2 (by (ii)) together with 𝑠 > 𝑥 implies that 𝑧𝑥 > 𝑠2 > 𝑥2. Hence 𝑧 > 𝑥, which is impossible, as we
have already concluded that 𝑥 > 𝑧. Thus no monomial order < that satisfies both (i) and (ii) exists, and
there is no square-free initial ideal of I.

3. Background on liaison

In this section, we recall some background on liaison theory. The first subsection concerns terminology
and results relevant to our work. The second subsection provides further context for our second goal
from the introduction.

3.1. Liaison-theory basics

Here we review standard definitions and lemmas on Gorenstein liaison theory that we will need in this
paper. For a more thorough introduction, see [30]. We follow definitions and some notation from [18],
which provides a careful discussion of how liaison theory can be used to make inferences about Gröbner
bases. Throughout this subsection, we let 𝑅 = 𝜅 [𝑥0, 𝑥1, . . . , 𝑥𝑛] with the standard grading.

Definition 3.1. Let 𝑉1, 𝑉2, 𝑋 ⊆ P𝑛 be subschemes defined by saturated ideals 𝐼𝑉1 , 𝐼𝑉2 and 𝐼𝑋 of R,
respectively, and assume that X is arithmetically Gorenstein. If 𝐼𝑋 ⊆ 𝐼𝑉1 ∩ 𝐼𝑉2 and [𝐼𝑋 : 𝐼𝑉1] = 𝐼𝑉2 and
[𝐼𝑋 : 𝐼𝑉2 ] = 𝐼𝑉1 , then 𝑉1 and 𝑉2 are directly algebraically G-linked by X, and we write 𝐼𝑉1 ∼ 𝐼𝑉2 .

One may generate an equivalence relation using these direct links.

Definition 3.2. If there is a sequence of links 𝑉1 ∼ · · · ∼ 𝑉𝑘 for some 𝑘 ≥ 2, then we say that 𝑉1 and 𝑉𝑘

are in the same G-liaison class (or Gorenstein liaison class) and that they are G-linked in 𝑘 − 1 steps.
Of particular interest is the case in which 𝑉𝑘 is a complete intersection, in which case we say that 𝑉1 is
in the Gorenstein liaison class of a complete intersection (abbreviated glicci).

We will say that a homogeneous, saturated, unmixed ideal of R is glicci if it defines a glicci subscheme
of P𝑛. It is because liaison was developed to study subschemes of projective space that the restriction
to homogeneous, saturated ideals is natural. Throughout this paper, we will be interested in G-links
coming from elementary G-biliaisons. Indeed, it is through elementary G-biliaisons that we connect
geometric vertex decomposition to liaison theory.

Let S be a ring. If 𝑆𝑃 is Gorenstein for all prime ideals P of height 0, then we say that S is 𝐺0.

Definition 3.3. Let I and C be homogeneous, saturated, unmixed ideals of 𝑅 with ht(𝐼) = ht(𝐶).
Suppose there exist ℓ ∈ Z, a homogeneous Cohen–Macaulay ideal 𝑁 ⊆ 𝐼 ∩ 𝐶 of height ht(𝐼) − 1 and
an isomorphism 𝐼/𝑁 � [𝐶/𝑁] (−ℓ) as graded 𝑅/𝑁-modules. If N is 𝐺0, then we say that I is obtained
from C by an elementary G-biliaison of height ℓ.

Theorem 3.4 ([20, Theorem 3.5]). Let I and C be homogeneous, saturated, unmixed ideals defining
subschemes 𝑉𝐼 and 𝑉𝐶 , respectively, of P𝑛. If I is obtained from C by an elementary G-biliaison, then
𝑉𝐼 is G-linked to 𝑉𝐶 in two steps.

Remark 3.5. Even G-liaison classes are equivalence classes of subschemes of P𝑛 of a fixed codimension
that are G-linked to one another in an even number of steps. Two subschemes in the same even G-liaison
class are more closely related to one another than are two subschemes that can be linked to one another
but only in an odd number of steps (see [33, Section 3]). This provides some intuition for why various
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classes of generalised determinantal varieties can be linked to one another in an even number of steps,
via elementary G-biliaisons, yet there is no reason to expect that the intermediate links share a similar
form or are at all easy to describe.

3.2. Further context on a question in liaison theory

The purpose of this subsection is to recall the motivation for the following question:

Question 3.6 ([24, Question 1.6]). Is every arithmetically Cohen–Macaulay subscheme of P𝑛 glicci?

Because all complete intersections of a fixed codimension are in the same liaison class, an equivalent
formulation of the question is the following:

Question 3.7. For each codimension, is there exactly one Gorenstein liaison class containing any (or
all) Cohen–Macaulay subschemes of P𝑛?

This question arises by analogy to the special case of complete intersection liaison in codimension
2, where all arithmetically Cohen–Macaulay subschemes are in the (complete intersection and so also
Gorenstein) liaison class of a complete intersection [35, Theorem 3.2]. The same is not true in higher
codimensions, however. In fact, in higher codimensions there are infinitely many complete intersection
liaison classes containing arithmetically Cohen–Macaulay schemes (see [24, Chapter 7] and, for related
ideas, [23]). Complete intersection liaison is a well-understood and very satisfying theory in codimension
2, and this failure to generalise to higher codimensions suggests that it is worth searching for a theory
that reduces to complete intersection liaison in codimension 2 and also preserves many of its desirable
properties in higher codimension. This is one of the motivations for studying Gorenstein liaison, where
better control of the liaison classes containing arithmetically Cohen–Macaulay schemes may still be
hoped for in all codimensions. In particular, an affirmative answer to Question 3.6 would serve, at least
in the eyes of some, as an endorsement of the structure of Gorenstein liaison.

There are partial results in the direction of an affirmative answer to Question 3.6, including the results
that standard determinantal schemes [24, Theorem 1.1], mixed ladder determinantal schemes from two-
sided ladders [16, Corollary 2.2], schemes of Pfaffians [8, Theorem 2.3], wide classes of arithmetically
Cohen–Macaulay curves in P4 [6, 7] and arithmetically Cohen-Macaulay schemes defined by Borel-
fixed monomial ideals [28, Theorem 3.5] are all glicci. For more results, see [4, 21].

There have also been some quite general discoveries. M. Casanellas, E. Drozd and R. Hartshorne [5]
gave a general characterisation of when two subschemes of a normal arithmetically Gorenstein scheme
are in the same Gorenstein liaison class, and showed that every arithmetically Gorenstein subscheme
of P𝑛 is glicci. In [17, Theorem 3.1], E. Gorla obtained the very broad result that every determinantal
scheme is glicci, generalising the results of [24, Theorem 1.1] and [20, Theorem 4.1]. Later, J. Migliore
and U. Nagel [29] showed that every arithmetically Cohen–Macaulay subscheme of P𝑛 that is generically
Gorenstein is actually glicci when viewed as a subscheme of P𝑛+1.

One can find both encouragement and cause for trepidation in [19]: R. Hartshorne gave positive
results for many sets of points in P3 and curves in P4 but also produced still-viable candidates for
a source of a negative answer. The precision required to study Hartshorne’s examples highlights the
complexity of Question 3.6.

By connecting geometric vertex decomposition and liaison, we provide more evidence in favor of an
affirmative answer to this question and give a framework for assessing membership in the Gorenstein
liaison class of a complete intersection for some arithmetically Cohen–Macaulay schemes arising
naturally from combinatorial data.

4. (Weakly) geometrically vertex decomposable ideals are glicci

In Section 4.1, we show that under mild hypotheses a geometric vertex decomposition gives rise to
an elementary G-biliaison of height 1 (Corollary 4.3). We use this result in Subsection 4.2 to prove
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that every geometrically vertex decomposable ideal is glicci (Theorem 4.4). We also define the class
of weakly geometrically vertex decomposable ideals, a class that contains the geometrically vertex
decomposable ideals, and we prove that each weakly geometrically vertex decomposable ideal is glicci
(Corollary 4.8). Finally, in Section 4.3, we obtain some consequences on Gröbner bases and Gröbner
degenerations. Throughout this section, we assume that the field 𝜅 is infinite, and we let R denote the
standard graded polynomial ring 𝜅 [𝑥1, . . . , 𝑥𝑛].

4.1. An elementary G-biliaison arising from a geometric vertex decomposition

We begin by using a geometric vertex decomposition to construct the isomorphism that will constitute
an elementary G-biliaison when the setting is appropriate.

Theorem 4.1. Suppose that 𝐼 ⊆ 𝑅 is an unmixed ideal possessing a nondegenerate geometric vertex
decomposition with respect to some variable 𝑦 = 𝑥 𝑗 of R. If 𝑁𝑦,𝐼 is unmixed, then there is an isomorphism
𝐼/𝑁𝑦,𝐼 � 𝐶𝑦,𝐼 /𝑁𝑦,𝐼 as 𝑅/𝑁𝑦,𝐼 -modules. If 𝑁𝑦,𝐼 , 𝐶𝑦,𝐼 and I are homogeneous, then the same map is
an isomorphism 𝐼/𝑁𝑦,𝐼 �

[
𝐶𝑦,𝐼 /𝑁𝑦,𝐼

]
(−1) in the category of graded 𝑅/𝑁𝑦,𝐼 -modules.

Proof. Fix a y-compatible term order <. From Lemma 2.6, we know that the reduced Gröbner basis
of I has the form G = {𝑦𝑞1 + 𝑟1, . . . , 𝑦𝑞𝑘 + 𝑟𝑘 , ℎ1, . . . , ℎℓ }, where y does not divide any term of 𝑞𝑖
or of 𝑟𝑖 for any 1 ≤ 𝑖 ≤ 𝑘 nor any ℎ 𝑗 for 1 ≤ 𝑗 ≤ ℓ. Let 𝐶 = 𝐶𝑦,𝐼 = 〈𝑞1, . . . , 𝑞𝑘 , ℎ1, . . . , ℎℓ〉 and
𝑁 = 𝑁𝑦,𝐼 = 〈ℎ1, . . . , ℎℓ〉.

We first observe that 𝑁 ⊆ 𝐼 ∩ 𝐶. To build the desired isomorphism, we will need to find regular
elements of 𝑅/𝑁 . Toward that end, we claim that 〈𝑞1, . . . , 𝑞𝑘〉 � 𝑄 for any minimal prime Q of N.
If 〈𝑞1, . . . , 𝑞𝑘〉 were contained in any such 𝑄, then we would also have 𝐶 ⊆ 𝑄, which is impossible
because ht(𝑄) = ht(𝑁) < ht(𝐶) by Lemma 2.8. Similarly, 〈𝑦𝑞1 + 𝑟1, . . . , 𝑦𝑞𝑘 + 𝑟𝑘〉 � 𝑄 ′ for any
minimal prime 𝑄 ′ of N, since otherwise we would have 𝐼 ⊆ 𝑄 ′, in violation of Lemma 2.8. Because
𝜅 is infinite, we may choose scalars 𝑎1, . . . , 𝑎𝑘 ∈ 𝜅 such that neither 𝑢 := 𝑎1𝑞1 + · · · + 𝑎𝑘𝑞𝑘 nor
𝑣 := 𝑎1 (𝑦𝑞1+𝑟1)+· · ·+𝑎𝑘 (𝑦𝑞𝑘+𝑟𝑘 ) is an element of any minimal prime of N. Because min(𝑁) = Ass(𝑁),
neither u nor v is a zero-divisor on 𝑅/𝑁 .

We may now define a map 𝜙 : 𝐶 → 𝐼/𝑁 given by 𝑓 ↦→ 𝑓 𝑣

𝑢
. To see that 𝜙 is well defined, we

claim that, for each 𝑓 ∈ 𝐶, there exists a unique 𝑔 ∈ 𝐼/𝑁 so that 𝑓 𝑣 − 𝑔𝑢 ∈ 𝑁 (where 𝑔 is the class
of 𝑔 in 𝐼/𝑁). Suppose that 𝑓 𝑣 − 𝑔1𝑢 = 𝑛1 ∈ 𝑁 and 𝑓 𝑣 − 𝑔2𝑢 = 𝑛2 ∈ 𝑁 for some 𝑔1, 𝑔2 ∈ 𝐼. Then
(𝑔1 −𝑔2)𝑢 = 𝑛2 −𝑛1 ∈ 𝑁 , and so, because 𝑢 is not a zero-divisor on 𝐼/𝑁 , 𝑔1 −𝑔2 ∈ 𝑁 . Hence, there is at
most one such 𝑔 ∈ 𝐼/𝑁 . To see that there is at least one such 𝑔 ∈ 𝐼/𝑁 , we note that 𝑔 = 0 is a satisfying
choice if 𝑓 ∈ 𝑁 and claim that 𝑔 = 𝑦𝑞𝑖 + 𝑟𝑖 is a satisfying choice if 𝑓 = 𝑞𝑖 for each 1 ≤ 𝑖 ≤ 𝑘 . Indeed,

(𝑦𝑞𝑖 + 𝑟𝑖)𝑢 − 𝑞𝑖𝑣 = (𝑦𝑞𝑖 + 𝑟𝑖) (𝑎1𝑞1 + · · · + 𝑎𝑘𝑞𝑘 ) − 𝑞𝑖 (𝑎1 (𝑦𝑞1 + 𝑟1) + · · · + 𝑎𝑘 (𝑦𝑞𝑘 + 𝑟𝑘 ))
= 𝑟𝑖 (𝑎1𝑞1 + · · · + 𝑎𝑘𝑞𝑘 ) − 𝑞𝑖 (𝑎1𝑟1 + · · · + 𝑎𝑘𝑟𝑘 ).

Because 𝑦𝑞𝑖 + 𝑟𝑖 ∈ 𝐼 and 𝑣 ∈ 𝐼, we have 𝑟𝑖 (𝑎1𝑞1 + · · · + 𝑎𝑘𝑞𝑘 ) − 𝑞𝑖 (𝑎1𝑟1 + · · · + 𝑎𝑘𝑟𝑘 ) ∈ 𝐼. But 𝑦 does
not divide any term of any 𝑞 𝑗 or any 𝑟 𝑗 for 1 ≤ 𝑗 ≤ 𝑘 , and so the leading term of 𝑟𝑖 (𝑎1𝑞1 + · · · +𝑎𝑘𝑞𝑘 ) −
𝑞𝑖 (𝑎1𝑟1 + · · · + 𝑎𝑘𝑟𝑘 ) is not divisible by the leading term of any 𝑦𝑞𝑖 + 𝑟𝑖 . By the assumptions that G is a
Gröbner basis of 𝐼 and that < is 𝑦-compatible, it must be that 𝑟𝑖 (𝑎1𝑞1+· · ·+𝑎𝑘𝑞𝑘 )−𝑞𝑖 (𝑎1𝑟1+· · ·+𝑎𝑘𝑟𝑘 )
has a Gröbner basis reduction using only the elements of G not involving 𝑦, i.e., using only ℎ1, . . . , ℎℓ ,
which implies that 𝑟𝑖 (𝑎1𝑞1 + · · · + 𝑎𝑘𝑞𝑘 ) − 𝑞𝑖 (𝑎1𝑟1 + · · · + 𝑎𝑘𝑟𝑘 ) ∈ 𝑁 . Hence, 𝜙 is indeed a map from
𝐶 to 𝐼/𝑁 . Because 𝐼 is generated over 𝑁 by the 𝑦𝑞𝑖 + 𝑟𝑖 , we have also shown that 𝜙 is surjective.
Having established that 𝜙(ℎ𝑖) = 0 ∈ 𝐼/𝑁 , we have 𝑁 ⊆ ker(𝜙). And ker(𝜙) ⊆ 𝑁 because 𝑣 is a
non-zero-divisor on 𝑅/𝑁 . Therefore, 𝜙 induces an isomorphism 𝜙 : 𝐶/𝑁 → 𝐼/𝑁 . It is clear that
whenever 𝑁 is homogeneous so that discussion of degrees makes sense, 𝜙 increases degree by 1 and so
𝜙 : [𝐶/𝑁] (−1) → 𝐼/𝑁 is an isomorphism of graded 𝑅/𝑁-modules. �
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Notice that if, in this proof, one already knows 𝑞1 and 𝑦𝑞1 + 𝑟1 not to be zero-divisors on 𝑅/𝑁 – for
example, if 𝑅/𝑁 is a domain – one may choose 𝑎1 = 1 and 𝑎𝑖 = 0 for 1 < 𝑖 ≤ 𝑘 . In this case, the map 𝜙
will be of the same form used in [16].

As indicated previously, the primary use of Theorem 4.1 is in the setting of liaison theory (Corollary
4.3). We will need the following straightforward fact about saturation:

Lemma 4.2. If 𝐼 ⊆ 𝑅 is homogeneous and unmixed, then
√
𝐼 is the homogeneous maximal ideal m or I

is saturated.

Proof. Observe that m is an associated prime of I if and only if it is a minimal prime of I if and only if√
𝐼 = 𝑚. �

Corollary 4.3. Let I be a homogeneous, saturated, unmixed ideal of R and in𝑦 𝐼 = 𝐶𝑦,𝐼 ∩
(
𝑁𝑦,𝐼 + 〈𝑦〉

)
a

nondegenerate geometric vertex decomposition with respect to some variable 𝑦 = 𝑥 𝑗 of R. Assume that
𝑁𝑦,𝐼 is Cohen–Macaulay and 𝐺0 and that 𝐶𝑦,𝐼 is also unmixed. Then I is obtained from 𝐶𝑦,𝐼 by an
elementary G-biliaison of height 1.

Proof. The height conditions required by the definition of elementary G-biliaison are given by Lemma
2.8, saturation follows from Lemma 4.2 and the required isomorphism is constructed in Theorem 4.1. �

4.2. Geometrically vertex decomposable ideals and the glicci property

We make two observations about linkage before proceeding. Let 𝑆 = 𝑅[𝑧] for a new variable z.

1. If I is obtained from C via an elementary G-biliaison of height 1 in R, then 𝐼𝑆 is obtained from 𝐶𝑆
via an elementary G-biliaison of height 1 in S.

2. If I is obtained from C via an elementary G-biliaison of height 1 in R, then 𝐼𝑆 + 〈𝑧〉 is obtained from
𝐶𝑆 + 〈𝑧〉 via an elementary G-biliaison of height 1 in S.

Theorem 4.4. If 𝐼 = 𝐼0 ⊆ 𝑅 is a homogeneous, geometrically vertex decomposable proper ideal, then
there is a finite sequence of homogeneous, saturated, unmixed ideals 𝐼1, . . . , 𝐼𝑡 such that 𝐼 𝑗−1 is obtained
from 𝐼 𝑗 by an elementary G-biliaison of height 1 for every 1 ≤ 𝑗 ≤ 𝑡 and 𝐼𝑡 is a complete intersection.
In particular, I is glicci.

Proof. Clearly, it suffices to prove the first claim. We will proceed by induction on 𝑛 = dim(𝑅), noting
that the case of a dimension 0 polynomial ring is trivial.

We now take 𝑛 ≥ 1 to be arbitrary and assume the result for all proper homogeneous ideals I in
polynomial rings of dimension < 𝑛. If I is a complete intersection, then there is nothing to prove.
Otherwise, there exists some variable 𝑦 = 𝑥 𝑗 of R for which in𝑦 𝐼 = 𝐶𝑦,𝐼 ∩

(
𝑁𝑦,𝐼 + 〈𝑦〉

)
is a geometric

vertex decomposition with the contractions of 𝑁𝑦,𝐼 and 𝐶𝑦,𝐼 to 𝑇 = 𝜅 [𝑥1, . . . , 𝑦̂, . . . , 𝑥𝑛] geometrically
vertex decomposable.

Suppose first that𝐶𝑦,𝐼 = 〈1〉, in which case 𝐼 = 𝑁𝑦,𝐼 +〈𝑦〉 (possibly after a linear change of variables).
By induction, with 𝐼0 = 𝑁𝑦,𝐼 ∩𝑇 , there is a sequence of ideals 𝐼1, . . . , 𝐼𝑡 of T such that 𝐼 𝑗−1 is obtained
from 𝐼 𝑗 by an elementary G-biliaison of height 1 for every 1 ≤ 𝑗 ≤ 𝑡 and 𝐼𝑡 is a complete intersection.
Setting 𝐼 𝑗 = 𝐼̃ 𝑗𝑅 + 〈𝑦〉 for every 1 ≤ 𝑗 ≤ 𝑡, the result follows from observation 2. Similarly, the result is
essentially immediate from the inductive hypothesis together with observation 1 in the other degenerate
case

√
𝐶𝑦,𝐼 =

√
𝑁𝑦,𝐼 : indeed, because I is radical by Proposition 2.10, we have 𝐼 = 𝐶𝑦,𝐼 = 𝑁𝑦,𝐼 by

Proposition 2.4.
Finally, assume that the geometric vertex decomposition with respect to I is nondegenerate, in which

case we may apply the inductive hypothesis to 𝐼1 = 𝐶𝑦,𝐼 ∩ 𝑇 . By induction and in parallel with the
previous case, there is a finite sequence of homogeneous, saturated, unmixed ideals 𝐼̃2, . . . , 𝐼̃𝑡 of T such
that 𝐼̃ 𝑗−1 is obtained from 𝐼̃ 𝑗 by an elementary G-biliaison of height 1 in T for every 2 ≤ 𝑗 ≤ 𝑡 and 𝐼̃𝑡 is
a complete intersection. Let 𝐼 𝑗 = 𝐼̃ 𝑗𝑅 for every 2 ≤ 𝑗 ≤ 𝑡. Then with 𝐼1 = 𝐶𝑦,𝐼 , by observation 1, 𝐼 𝑗−1 is
obtained from 𝐼 𝑗 by an elementary G-biliaison of height 1 in R for every 2 ≤ 𝑗 ≤ 𝑡 and 𝐼𝑡 is a complete
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intersection. Hence, it suffices to show that I is obtained from 𝐶𝑦,𝐼 by an elementary G-biliaison of
height 1, but this is Corollary 4.3. Note that the hypotheses of Corollary 4.3 hold, since 𝐶𝑦,𝐼 ∩ 𝑇 and
𝑁𝑦,𝐼 ∩ 𝑇 are geometrically vertex decomposable (hence unmixed and radical, and so 𝐺0) and glicci
(hence Cohen–Macaulay) by induction. �

Corollary 4.5. If 𝐼 ⊆ 𝑅 is a homogeneous, geometrically vertex decomposable proper ideal, then I is
Cohen–Macaulay.

Proof. Since glicci implies Cohen–Macaulay, this is immediate from Theorem 4.4. �

The remainder of this section will concern weakly geometrically vertex decomposable ideals, a direct
generalisation of the monomial ideals associated to weakly vertex decomposable simplicial complexes
in the sense of [34] (see Remark 4.9).

Definition 4.6. An ideal 𝐼 ⊆ 𝑅 is weakly geometrically vertex decomposable if I is unmixed and if any
of the following is true:

1. 𝐼 = 〈1〉 or I is generated by indeterminates in R; or
2. (degenerate case) for some variable 𝑦 = 𝑥 𝑗 of R, in𝑦 𝐼 = 𝐶𝑦,𝐼 ∩

(
𝑁𝑦,𝐼 + 〈𝑦〉

)
is a degenerate geometric

vertex decomposition and the contraction of 𝑁𝑦,𝐼 to 𝜅 [𝑥1, . . . , 𝑦̂, . . . , 𝑥𝑛] is weakly geometrically
vertex decomposable; or

3. (nondegenerate case) for some variable 𝑦 = 𝑥 𝑗 of R, in𝑦 𝐼 = 𝐶𝑦,𝐼 ∩
(
𝑁𝑦,𝐼 + 〈𝑦〉

)
is a nondegenerate

geometric vertex decomposition, the contraction of 𝐶𝑦,𝐼 to 𝜅 [𝑥1, . . . , 𝑦̂, . . . , 𝑥𝑛] is weakly geomet-
rically vertex decomposable and 𝑁𝑦,𝐼 is radical and Cohen–Macaulay.

Notice that it makes no difference whether we require 𝑁𝑦,𝐼 or the contraction of 𝑁𝑦,𝐼 to
𝜅 [𝑥1, . . . , 𝑦̂, . . . , 𝑥𝑛] to be radical and Cohen–Macaulay. We give two corollaries of Theorem 4.4 con-
cerning weakly geometrically vertex decomposable ideals:

Corollary 4.7. A geometrically vertex decomposable ideal is weakly geometrically vertex decomposable.

Proof. We will proceed by induction on dim(𝑅). Suppose that a geometrically vertex decomposable
ideal I has the geometric vertex decomposition in𝑦 𝐼 = 𝐶𝑦,𝐼 ∩

(
𝑁𝑦,𝐼 + 〈𝑦〉

)
with respect to some variable

𝑦 = 𝑥 𝑗 of R. By Proposition 2.10, I is radical, and so if the geometric vertex decomposition is degenerate,
then 𝐼 = 𝑁𝑦,𝐼 + 〈𝑦〉 or 𝐼 = 𝑁𝑦,𝐼 by Proposition 2.4, and the result is immediate by induction. Hence, we
may assume that the geometric vertex decomposition is nondegenerate. From Theorem 4.4, we know that
𝑁𝑦,𝐼 ∩𝜅 [𝑥1, . . . , 𝑦̂, . . . , 𝑥𝑛] is glicci and so Cohen–Macaulay. Hence, so is 𝑁𝑦,𝐼 . Proposition 2.10 tells us
that 𝑁𝑦,𝐼 ∩ 𝜅 [𝑥1, . . . , 𝑦̂, . . . , 𝑥𝑛] is radical. Hence, so is 𝑁𝑦,𝐼 . By induction,𝐶𝑦,𝐼 ∩ 𝜅 [𝑥1, . . . , 𝑦̂, . . . , 𝑥𝑛]
is weakly geometrically vertex decomposable and so, by observation 1, 𝐶𝑦,𝐼 is weakly geometrically
vertex decomposable, completing the proof. �

Corollary 4.8. A weakly geometrically vertex decomposable ideal is both radical and glicci.

Proof. The proofs of Proposition 2.10 and Theorem 4.4 easily adapt to the weakly geometrically vertex
decomposable setting. In particular, in these proofs, we only used that the ideal 𝑁𝑦,𝐼 was geometrically
vertex decomposable to obtain that 𝑁𝑦,𝐼 was Cohen–Macaulay, radical, saturated and unmixed. The
first two of those properties are automatic from the definition of being weakly geometrically vertex
decomposable, and the last two follow because Cohen–Macaulay ideals are always unmixed and always
saturated unless they are the maximal ideal. �

Remark 4.9. Let Δ be a simplicial complex on a vertex set [𝑛]. As with Proposition 2.9, it is a
straightforward exercise to show that Δ is weakly vertex decomposable in the sense of U. Nagel and T.
Römer [34, Definition 2.2] if and only if 𝐼Δ is weakly geometrically vertex decomposable. Furthermore,
by restricting our proofs of Corollary 4.8 and Theorem 4.4 to the case of square-free monomial ideals,
we recover [34, Theorem 3.3], which asserts that 𝐼Δ is square-free glicci whenever Δ is a weakly vertex
decomposable simplicial complex.
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We end by showing that the condition of being weakly geometrically vertex decomposable is strictly
weaker than that of being geometrically vertex decomposable.

Example 4.10. This example is a minor modification of Example 2.16. Take I to be the ideal of
𝜅 [𝑥, 𝑦, 𝑧, 𝑤, 𝑟, 𝑠], generated by

{
𝑦
(
𝑧𝑠 − 𝑥2) , 𝑦𝑤𝑟, 𝑤𝑟 (𝑥2 + 𝑠2 + 𝑧2 + 𝑤𝑟

)}
, which, following the argu-

ment of Example 2.16, is a universal Gröbner basis. Observe that I is square-free only in y, so we must first
degenerate with respect to y, which yields 𝐶𝑦,𝐼 =

〈
𝑧𝑠 − 𝑥2, 𝑤𝑟

〉
and 𝑁𝑦,𝐼 =

〈
(𝑤𝑟)

(
𝑥2 + 𝑠2 + 𝑧2 + 𝑤𝑟

)〉
.

We saw in Example 2.16 that the contraction of 𝐶𝑦,𝐼 to 𝜅 [𝑥, 𝑧, 𝑤, 𝑟, 𝑠] was geometrically vertex decom-
posable. Here the contraction of 𝑁𝑦,𝐼 to 𝜅 [𝑥, 𝑧, 𝑤, 𝑟, 𝑠] is clearly radical and Cohen–Macaulay but has
no geometric vertex decomposition, because it is not square-free in any variable. Hence, I is weakly
geometrically vertex decomposable but not geometrically vertex decomposable.

4.3. Applications to Gröbner bases and degenerations

One cannot in general transfer the Cohen–Macaulay property from an ideal to its initial ideal or from one
component of a variety to the whole variety. However, in the context of geometric vertex decomposition,
we can use the combination of Cohen–Macaulayness of a homogeneous ideal I and of the component
𝑁𝑦,𝐼 + 〈𝑦〉 (equivalently, of 𝑁𝑦,𝐼 ) to infer the same about in𝑦 𝐼.

Corollary 4.11. Suppose that in𝑦 𝐼 = 𝐶𝑦,𝐼 ∩
(
𝑁𝑦,𝐼 + 〈𝑦〉

)
is a nondegenerate geometric vertex decom-

position of the homogeneous ideal 𝐼 ⊆ 𝑅 and that both 𝑁𝑦,𝐼 and I are Cohen–Macaulay. Then 𝐶𝑦,𝐼 and
in𝑦 𝐼 are Cohen–Macaulay as well.

Proof. For convenience, write 𝑁 = 𝑁𝑦,𝐼 and 𝐶 = 𝐶𝑦,𝐼 . Because I and N are Cohen–Macaulay, they are
unmixed. Hence, we may apply Theorem 4.1 to see that 𝐼/𝑁 � 𝐶/𝑁 . It is easy to see that𝐶/𝑁

𝑦
−→ in𝑦 𝐼/𝑁

is also an isomorphism, and so 𝐼/𝑁 � in𝑦 𝐼/𝑁 . Let m denote the homogeneous maximal ideal of R, and
let 𝐻𝑖

𝑚(𝑀) denote the ith local cohomology module of the R-module M with support in m. Because I
being homogeneous implies that in𝑦 𝐼 is homogeneous, it is sufficient to check Cohen–Macaulayness at
m. Let 𝑑 = dim(𝑅/𝐼) = dim(𝑅/𝑁) − 1. The short exact sequence 0 → 𝐼/𝑁 → 𝑅/𝑁 → 𝑅/𝐼 → 0 tells
us that 𝐻𝑖

𝑚(𝐼/𝑁) � 𝐻𝑖−1
𝑚 (𝑅/𝐼) = 0 for all 𝑖 ≤ 𝑑 because 𝐻𝑖

𝑚(𝑅/𝑁) = 0 for all 𝑖 ≤ 𝑑. Then from the
short exact sequence 0 → in𝑦 𝐼/𝑁 → 𝑅/𝑁 → 𝑅/in𝑦 𝐼 → 0 together with the fact that in𝑦 𝐼/𝑁 � 𝐼/𝑁 ,
we have

𝐻𝑖−1
𝑚

(
𝑅/in𝑦 𝐼

)
� 𝐻𝑖

𝑚

(
in𝑦 𝐼/𝑁

)
� 𝐻𝑖

𝑚(𝐼/𝑁) � 𝐻𝑖−1
𝑚 (𝑅/𝐼) = 0

for all 𝑖 − 1 < 𝑑 = dim
(
𝑅/in𝑦 (𝐼)

)
, and so 𝑅/in𝑦 (𝐼) is Cohen–Macaulay.

The argument in the case of C follows the same line using the short exact sequence 0 → 𝐶/𝑁 →
𝑅/𝑁 → 𝑅/𝐶 → 0. �

One consequence of Corollary 4.11 is that we may omit as a hypothesis that 𝐶𝑦,𝐼 is unmixed in
Corollary 4.3 whenever I is Cohen–Macaulay.

We will now describe conditions that allow one to use the map constructed in Theorem 4.1 in order
to conclude that a known set of generators for I forms a Gröbner basis when Gröbner bases for 𝐶𝑦,𝐼 and
𝑁𝑦,𝐼 are known. The result complements the framework of [26], in which one begins with a Gröbner
basis of I and concludes that the resultant generating sets of 𝐶𝑦,𝐼 and 𝑁𝑦,𝐼 are also Gröbner bases. For
convenience, we recall a lemma from [18]:

Lemma 4.12 ([18, Lemma 1.12]). Fix a term order < and homogeneous ideals N, C, I and 𝐼 in a polyno-
mial ring with 𝑁 ⊆ 𝐼∩𝐶 and 𝐼 ⊆ in< (𝐼). If 𝐼/𝑁 � [𝐶/𝑁] (−1) and 𝐼/in< (𝑁) � [in< (𝐶)/in< (𝑁)] (−1),
then 𝐼 = in< 𝐼.

Although the lemma is stated differently in [18], the proof given there also applies to the conditions
as stated here.
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Corollary 4.13. Let 𝐼 = 〈𝑦𝑞1+𝑟1, . . . , 𝑦𝑞𝑘+𝑟𝑘 , ℎ1, . . . , ℎℓ〉 be a homogenous ideal of R with 𝑦 = 𝑥 𝑗 some
variable of R and y not dividing any term of any 𝑞𝑖 for 1 ≤ 𝑖 ≤ 𝑘 nor of any ℎ 𝑗 for 1 ≤ 𝑗 ≤ ℓ. Fix a term
order <, and suppose that G𝐶 = {𝑞1, . . . , 𝑞𝑘 , ℎ1, . . . , ℎℓ } and G𝑁 = {ℎ1, . . . , ℎℓ } are Gröbner bases
for the ideals they generate, which we call C and N, respectively. Assume that in< (𝑦𝑞𝑖 + 𝑟𝑖) = 𝑦 · in<𝑞𝑖
for all 1 ≤ 𝑖 ≤ 𝑘 . Assume also that ht(𝐼), ht(𝐶) > ht(𝑁) and N is unmixed. Let 𝑀 =

(
𝑞1 · · · 𝑞𝑘
𝑟1 · · · 𝑟𝑘

)
. If

the ideal of 2-minors of M is contained in N, then the given generators of I are a Gröbner basis.

Proof. Following the proof of Theorem 4.1, the conditions that ht(𝐼), ht(𝐶) > ht(𝑁) and that N is
unmixed imply that the elements u and v of Theorem 4.1 are not zero-divisors on 𝑅/𝑁 . The condition
that the ideal of 2-minors of M is contained in N implies that

𝑟𝑖 (𝑎1𝑞1 + · · · + 𝑎𝑘𝑞𝑘 ) − 𝑞𝑖 (𝑎1𝑟1 + · · · + 𝑎𝑘𝑟𝑘 ) = 𝑎1 (𝑟𝑖𝑞1 − 𝑟1𝑞𝑖) + · · · + 𝑎𝑘 (𝑟𝑖𝑞𝑘 − 𝑟𝑘𝑞𝑖) ∈ 𝑁

for every 1 ≤ 𝑖 ≤ 𝑘 . The remainder of the argument from Theorem 4.1 that 𝜑 : [𝐶/𝑁] (−1) → 𝐼/𝑁 is
an isomorphism remains intact in this setting.

Set 𝐼 = 〈𝑦 · in< (𝑞1), . . . , 𝑦 · in< (𝑞𝑘 ), in< (ℎ1), . . . , in< (ℎℓ )〉. Because G𝐶 and G𝑁 are Gröb-
ner bases, we know that in<𝐶 = 〈in< (𝑞1), . . . , in< (𝑞𝑘 ), in< (ℎ1), . . . , in< (ℎℓ)〉 and in<𝑁 =
〈in< (ℎ1), . . . , in< (ℎℓ )〉. Because in< (𝑦𝑞𝑖 + 𝑟𝑖) = 𝑦 · in< (𝑞𝑖) for each 1 ≤ 𝑖 ≤ 𝑘 , the map
[in<𝐶/in<𝑁] (−1)

𝑦
−→ 𝐼/in<𝑁 is also an isomorphism. It follows from Lemma 4.12 that 𝐼 = in< 𝐼. �

Example 4.14 (the Veronese embedding). As an application of Corollary 4.13, we give a concise
inductive proof that the usual set of homogeneous equations defining the image of the dth Veronese
𝜈𝑑 : P1 → P𝑑 forms a Gröbner basis for any 𝑑 ≥ 1. With homogeneous coordinates [𝑠 : 𝑡] on P1 and
[𝑥0 : · · · : 𝑥𝑑] on P𝑑 , recall that the dth Veronese is the map [𝑠 : 𝑡] ↦→

[
𝑠𝑑 : 𝑠𝑑−1𝑡 : · · · : 𝑠𝑡𝑑−1 : 𝑡𝑑

]
.

Let 𝐴𝑑 =

(
𝑥0 𝑥1 · · · 𝑥𝑑−1
𝑥1 𝑥2 · · · 𝑥𝑑

)
, let G𝑑 denote the set of 2 × 2 minors of 𝐴𝑑 and let 𝐼 = 〈G𝑑〉 be the ideal

generated by G𝑑 . The image of the 𝜈𝑑 is defined by I, which is to say that there is a ring isomorphism
𝜅 [𝑥0 ,...,𝑥𝑑 ]

𝐼 → 𝜅
[
𝑠𝑑 , 𝑠𝑑−1𝑡, . . . , 𝑠𝑡𝑑−1, 𝑡𝑑

]
⊆ 𝜅 [𝑠, 𝑡] given by 𝑥𝑖 ↦→ 𝑠𝑑−𝑖𝑡𝑖 for 0 ≤ 𝑖 ≤ 𝑑.

We now show that G𝑑 is a Gröbner basis of I with respect to the lexicographic monomial order with
𝑥𝑑 > 𝑥𝑑−1 > · · · > 𝑥1 > 𝑥0. We proceed by induction on d, noting that 𝑑 = 1 is trivial because in that
case 𝐼 = 〈0〉. For 𝑑 ≥ 2 and with notation as in Corollary 4.13, notice that 𝐶 = 〈𝑥0, . . . , 𝑥𝑑−2〉 and
that 𝑁 = 〈G𝑑−1〉, whose given generators are a Gröbner basis by induction. Because N is a prime ideal
properly contained in 𝐶 ∩ 𝐼, we know both that N is unmixed and that ht(𝐼), ht(𝐶) > ht(𝑁). Lastly,

observe that the ideal generated by the 2 × 2 minors of 𝑀 =

(
𝑥0 𝑥1 · · · 𝑥𝑑−2

𝑥1𝑥𝑑−1 𝑥2𝑥𝑑−1 · · · 𝑥2
𝑑−1

)
is equal to

𝑥𝑑−1 · 𝑁 and so is contained in N. Thus, the result follows from Corollary 4.13.

5. Some well-known families of ideals are glicci

Many well-known classes of ideals Gröbner degenerate to Stanley–Reisner ideals of vertex decomposable
complexes. In this section, we recall a few of these classes and deduce that they are glicci, thus providing
further evidence for an affirmative answer to the question of whether every homogeneous Cohen–
Macaulay ideal is glicci [24, Question 1.6]. As in Section 4, we will assume throughout this section that
the field 𝜅 is infinite.

The main result we need for our applications is as follows. It is immediately obtained by combining
Proposition 2.14 with Corollary 4.8.

Corollary 5.1. Let 𝐼 ⊆ 𝜅 [𝑥1, . . . , 𝑥𝑛] be a homogeneous ideal, and let < denote the lexicographic order
with 𝑥1 > 𝑥2 > · · · > 𝑥𝑛. If in< 𝐼 is the Stanley–Reisner ideal of a <-compatibly vertex decomposable
simplicial complex on [𝑛] for the vertex order 1 > 2 > · · · > 𝑛, then I is glicci.
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We now discuss three classes of ideals which satisfy the hypotheses of Corollary 5.1. We omit many
definitions of the particular ideals in question, and instead provide references.

5.1. Schubert determinantal ideals

Let 𝑋 =
(
𝑥𝑖 𝑗

)
be an 𝑛 × 𝑛 matrix of variables and let 𝑅 = 𝜅

[
𝑥𝑖 𝑗

]
be the polynomial ring in the matrix

entries of X. Given a permutation 𝑤 ∈ 𝑆𝑛, there is an associated generalised determinantal ideal 𝐼𝑤 ⊆ 𝑅,
called a Schubert determinantal ideal. Schubert determinantal ideals and their corresponding matrix
Schubert varieties were introduced by W. Fulton in [15].

Fix the lexicographical monomial order < on R defined by 𝑥𝑖 𝑗 > 𝑥𝑘𝑙 if 𝑖 < 𝑘 or 𝑖 = 𝑘 and 𝑗 > 𝑙. This
monomial order is antidiagonal – that is, the initial term of the determinant of a submatrix Y of X is the
product of the entries along the antidiagonal of Y. For this monomial order, in< 𝐼𝑤 is the Stanley–Reisner
ideal of a simplicial complex, called a subword complex, which is <-compatibly vertex decomposable
(see [25] or [31, Ch. 16.5]). Corollary 5.1 thus immediately implies the following:

Proposition 5.2. Schubert determinantal ideals are glicci.

5.2. Graded lower bound cluster algebras

Cluster algebras are a class of combinatorially defined commutative algebras that were introduced by
S. Fomin and A. Zelevinsky at the turn of the century [12]. Lower bound algebras, introduced in [1],
are related objects: each lower bound algebra is contained in an associated cluster algebra, and this
containment is equality in certain cases (i.e., in the acyclic setting; see [1, Theorem 1.20]).

Each (skew-symmetric) lower bound algebra is defined from a quiver. Indeed, given a quiver Q, there
is an associated polynomial ring 𝑅𝑄 = 𝜅 [𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛] and ideal 𝐾𝑄 ⊆ 𝑅𝑄 such that the lower
bound algebra L𝑄 associated to Q can be expressed as L𝑄 = 𝑅𝑄/𝐾𝑄. Fix the lexicographical monomial
order with 𝑦1 > · · · > 𝑦𝑛 > 𝑥1 > · · · > 𝑥𝑛. By [32, Theorem 1.7] and the proof of [32, Theorem 3.3],
in<𝐾𝑄 is the Stanley–Reisner ideal of a simplicial complex Δ on the vertex set {𝑦1, . . . , 𝑦𝑛, 𝑥1, . . . , 𝑥𝑛},
which has vertex decomposition compatible with <. Consequently, by Proposition 2.14, we have the
following:

Proposition 5.3. The ideal 𝐾𝑄 is geometrically vertex decomposable. When 𝐾𝑄 is homogeneous, it is
glicci.

Remark 5.4. It follows from [32, Theorem 1.7] that 𝐾𝑄 is homogeneous if and only if Q has no frozen
vertices and Q has exactly two arrows entering each vertex and two arrows exiting each vertex.

5.3. Ideals defining equioriented type A quiver loci

Let 𝑑0, 𝑑1, . . . , 𝑑𝑛 be a sequence of positive integers and consider the product of matrix spaces Hom and
the product of a general linear group GL defined as follows:

Hom := ⊕𝑛
𝑖=1Mat𝑑𝑖−1×𝑑𝑖 (𝜅), GL := ⊕𝑛

𝑖=0GL𝑑𝑖 (𝜅).

The group GL acts on Hom on the right by conjugation: (𝑀𝑖)𝑛𝑖=1 • (𝑔𝑖)𝑛𝑖=0 =
(
𝑔−1
𝑖−1𝑀𝑖𝑔𝑖

)𝑛
𝑖=1. Closures

of GL-orbits are called equioriented type A quiver loci. Buchsbaum–Eisenbud varieties of complexes
are special cases of these quiver loci. An introduction to equioriented type A quiver loci and related
combinatorics can be found in [31, Ch. 17].

Proposition 5.5. Equioriented type A quiver loci are glicci. In particular, varieties of complexes are
glicci.

Proof. Let Ω ⊆ Hom be an equioriented type A quiver locus, and let 𝐼 (Ω) be its (homogeneous and
prime) defining ideal in the polynomial ring 𝜅 [Hom]. It follows from results of A. Zelevinsky [40] and
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V. Lakshmibai and P. Magyar [27] that there is a polynomial ring R with 𝜅 [Hom] ⊆ 𝑅, a Kazhdan–Lusztig
ideal 𝐽 ⊆ 𝑅 and an ideal L generated by the indeterminates in 𝑅 \ 𝜅 [Hom] such that 𝐽 = 𝐼 (Ω)𝑅 + 𝐿.
(Here 𝐼 (Ω)𝑅 denotes the extension of the ideal 𝐼 (Ω) to R.) As shown in [38], each Kazhdan–Lusztig
ideal Gröbner degenerates to the Stanley–Reisner ideal of a subword complex, and this degeneration
is compatible with the vertex decomposition of the complex. Consequently, J is geometrically vertex
decomposable. Thus 𝐼 (Ω) is geometrically vertex decomposable, hence glicci. �

6. From G-biliaisons to geometric vertex decompositions

In this section, we give something of a converse to Theorem 4.1. In that theorem, we showed that under
mild assumptions, a geometric vertex decomposition gives rise to an elementary G-biliaison and that
the isomorphism of that elementary G-biliaison has a very particular form. In this section, we show
that every elementary G-biliaison in which the isomorphism has the same form as the ones constructed
in Theorem 4.1 gives rise to a geometric vertex decomposition. The precise statement of the main
theorem of this section follows. As usual, throughout this section we will let R denote the polynomial
ring 𝜅 [𝑥1, . . . , 𝑥𝑛].

Theorem 6.1. Let I, C and 𝑁 ⊆ 𝐼 ∩ 𝐶 be ideals of R, and let < be a y-compatible term order. Suppose
that I is square-free in y and that no term of any element of the reduced Gröbner basis of N is divisible
by y. Suppose further that there exists an isomorphism 𝜙 : 𝐶/𝑁

𝑓 /𝑔
−−−→ 𝐼/𝑁 of 𝑅/𝑁-modules for some

𝑓 , 𝑔 ∈ 𝑅 not zero-divisors on 𝑅/𝑁 and in𝑦 ( 𝑓 )/𝑔 = 𝑦. Then in𝑦 𝐼 = 𝐶 ∩ (𝑁 + 〈𝑦〉) is a geometric vertex
decomposition of I.

Proof. Recall that I must have a Gröbner basis of the form {𝑦𝑞1 + 𝑟1, . . . , 𝑦𝑞𝑘 + 𝑟𝑘 , ℎ1, . . . , ℎℓ } where
y does not divide any term of any 𝑞𝑖 or 𝑟𝑖 for any 1 ≤ 𝑖 ≤ 𝑘 nor any ℎ 𝑗 for any 1 ≤ 𝑗 ≤ ℓ because I is
squarefree in y. Hence, in𝑦 𝐼 = 〈𝑦𝑞1, . . . , 𝑦𝑞𝑘 , ℎ1, . . . , ℎℓ〉, and this generating set is a Gröbner basis of
in𝑦 𝐼.

We claim first that 𝑁 = 〈ℎ1, . . . , ℎℓ〉. Because no term of any element of the reduced Gröbner basis
of 𝑁 ⊆ 𝐼 is divisible by y, each such element must be a polynomial in the ℎ𝑖 for 1 ≤ 𝑖 ≤ ℓ, and so
𝑁 ⊆ 〈ℎ1, . . . , ℎℓ〉, from which it follows that in𝑦 (𝑁) = 𝑁 and that y is not a zero-divisor on R/N.
Conversely, suppose there is some ℎ𝑖 ∈ 𝐼 \ 𝑁 for some 1 ≤ 𝑖 ≤ ℓ. Then there exists some 𝑐 ∈ 𝐶 \ 𝑁
and 𝑛 ∈ 𝑁 such that 𝑐 𝑓 = 𝑔ℎ𝑖 + 𝑛, where c has been chosen to have the smallest possible d for which
𝑦𝑑 divides in𝑦 (𝑐). Taking initial y-forms yields

in𝑦 (𝑐)𝑦𝑔 = in𝑦 (𝑐) · in𝑦 ( 𝑓 ) = in𝑦 (𝑐 𝑓 ) = in𝑦 (𝑔ℎ𝑖 + 𝑛).

Note that in𝑦𝑔 = 𝑔 by the assumption that g divides in𝑦 𝑓 and that, if 𝑔 ∈ 〈𝑦𝑚〉 \ 〈𝑦𝑚+1〉, then 𝑔ℎ𝑖 ∈
〈𝑦𝑚〉 \ 〈𝑦𝑚+1〉 while in𝑦 (𝑐)𝑦𝑔 ∈ 〈𝑦𝑚+1〉. Thus, we see that in𝑦 (𝑐)𝑦𝑔 = in𝑦 (𝑛). Hence, in𝑦 (𝑐)𝑦𝑔 ∈ 𝑁
(as in𝑦𝑁 = 𝑁) and so in𝑦 (𝑐) ∈ 𝑁 (as 𝑁 : 〈𝑦𝑔〉 = 𝑁).

Set 𝑐′ = 𝑐 − in𝑦 (𝑐) ∈ 𝐶 \ 𝑁 , which has an initial y-form not divisible by 𝑦𝑑 . But 𝜑(𝑐′ + 𝑁) =
𝜑(𝑐 + 𝑁) = ℎ𝑖 + 𝑁 , contradicting minimality of d. Hence, 𝑁 = 〈ℎ1, . . . , ℎℓ〉.

Next, we claim that 𝐶 = 〈𝑞1, . . . , 𝑞𝑘 , ℎ1, . . . , ℎℓ〉. By assumption, 𝑁 ⊆ 𝐶, and so it suffices to
show that the 𝑞𝑖 for 1 ≤ 𝑖 ≤ 𝑘 generate C over N. In order to establish this, we will show that
𝜓 : 𝐶/𝑁

𝑦
−→ in𝑦 (𝐼)/𝑁 is an isomorphism. For each 1 ≤ 𝑖 ≤ 𝑘 , let 𝑐𝑖 ∈ 𝐶 \ 𝑁 be a representative of the

preimage under 𝜙 of the class of 𝑦𝑞𝑖 + 𝑟𝑖 in I/N with the smallest possible 𝑑𝑖 so that in𝑦 (𝑐𝑖) ∉ 〈𝑦𝑑𝑖 〉.
We will show that the image under 𝜓 of the class of 𝑐𝑖 is the class of 𝑦𝑞𝑖 .

First, we will show that 𝑑𝑖 = 1 for all 1 ≤ 𝑖 ≤ 𝑘 . Suppose, for contradiction, that some 𝑑𝑖 > 1, i.e.,
that some in𝑦 (𝑐𝑖) ∈ 〈𝑦〉. Then in𝑦 (𝑔(𝑦𝑞𝑖 + 𝑟𝑖) + 𝑛𝑖) = 𝑦 · in𝑦 ( 𝑓 𝑐𝑖) ∈ 〈𝑦2〉. Because neither 𝑞𝑖 nor 𝑟𝑖 has
any term divisible by y, we must have

𝑦𝑔in𝑦 (𝑐𝑖) = in𝑦 (𝑔(𝑦𝑞𝑖 + 𝑟𝑖) + 𝑛𝑖) = in𝑦 (𝑛𝑖) ∈ in𝑦 (𝑁) = 𝑁,
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and so in𝑦 (𝑐𝑖) ∈ 𝑁 . Then 𝑐′𝑖 = 𝑐𝑖 − in𝑦 (𝑐𝑖) ∈ 𝐶 \ 𝑁 and in𝑦 (𝑐′𝑖) ∉ 〈𝑦𝑑𝑖 〉. But still 𝑐′𝑖 represents
a preimage of 𝑦𝑞𝑖 + 𝑟𝑖 , contradicting minimality of 𝑑𝑖 . Hence, in𝑦 (𝑐𝑖) ∉ 〈𝑦〉, which establishes that
in𝑦 (𝑐𝑖) = 𝑐𝑖 .

From the former fact and the relationship 𝑦𝑔in𝑦 (𝑐𝑖) = in𝑦 (𝑔(𝑦𝑞𝑖+𝑟𝑖)+𝑛𝑖), we have either 𝑦𝑔𝑐𝑖 = 𝑔𝑦𝑞𝑖
(if in𝑦 (𝑔(𝑦𝑞𝑖 + 𝑟𝑖) + 𝑛𝑖) = in𝑦 (𝑔(𝑦𝑞𝑖 + 𝑟𝑖))) or 𝑦𝑔𝑐𝑖 = 𝑔𝑦𝑞𝑖 + 𝑔𝑦𝑛′𝑖 for some nonzero 𝑛′𝑖 ∈ 𝑁 (using
𝑁 : 〈𝑦𝑔〉 = 𝑁 and in𝑦 (𝑁) = 𝑁). In either case, the 𝜓(𝑐𝑖) is the class of 𝑦𝑞𝑖 in in𝑦 (𝐼)/𝑁 , which is to say
that 𝜓 is surjective. Also, 𝜓 is injective because y is not a zero-divisor on R/N. Now because the 𝑦𝑞𝑖 for
1 ≤ 𝑖 ≤ 𝑘 generate in𝑦 (𝐼) over N and 𝜓 is an isomorphism under which the preimage of the class of
𝑦𝑞𝑖 is the class of 𝑞𝑖 for each 1 ≤ 𝑖 ≤ 𝑘 , it must be that C is generated over N by {𝑞1, . . . , 𝑞𝑘 } and that
𝐶 = 〈𝑞1, . . . , 𝑞𝑘 , ℎ1, . . . , ℎℓ〉.

By [26, Theorem 2.1(a)], the specified generating sets for in𝑦 (𝐼), N, and C are all Gröbner bases for
them, and so it follows from [26, Theorem 2.1(b)] that in𝑦 (𝐼) = 𝐶 ∩ (𝑁 + 〈𝑦〉) is a geometric vertex
decomposition of I. �

Example 6.2. To illustrate this correspondence between elementary G-biliaison and geometric vertex
decomposition, we consider a classical example. If I is the ideal of 2-minors of the matrix 𝑀 =(
𝑥11 𝑥12 𝑥13
𝑥21 𝑥22 𝑥23

)
,𝐶 = 〈𝑥11, 𝑥12〉, 𝑁 = 〈𝑥22𝑥11−𝑥21𝑥12〉, 𝑓 = 𝑥23𝑥12−𝑥22𝑥13 and 𝑔 = 𝑥12 in 𝜅 [𝑥11, . . . , 𝑥23],

then the multiplication-by- 𝑓 /𝑔 map [𝐶/𝑁] (−1)
𝑓 /𝑔
−−−→ 𝐼/𝑁 gives an elementary G-biliaison. Using

any lexicographic order with 𝑥23 largest, we take 𝐶 = 𝐶𝑥23 ,𝐼 and 𝑁 = 𝑁𝑥23 ,𝐼 , and then in𝑥23 (𝐼) =
𝐶 ∩ (𝑁 + 〈𝑥23〉) is a geometric vertex decomposition.

Notice that in Theorem 6.1 we use only the isomorphism that makes up an elementary G-biliaison
to construct a geometric vertex decomposition in the sense of [26]. In this direction, we do not need to
assume that the ideals I, C and N are homogeneous or saturated or even unmixed, nor that N is Cohen–
Macaulay or 𝐺0. Of course, the isomorphism 𝜙 increases degree by deg(𝑦) whenever that makes
sense.

Remark 6.3. In the notation and under the hypotheses of Theorem 4.1, the construction in Theorem

4.1 produces an isomorphism 𝐼/𝑁𝑦,𝐼
𝑣/𝑢
−−−→ 𝐶𝑦,𝐼 /𝑁𝑦,𝐼 with

in𝑦 (𝑣)
𝑢

= 𝑦. In particular, the hypotheses
of Theorem 6.1 are satisfied. It is not hard to see that the geometric vertex decomposition produced by
Theorem 6.1 is the same one assumed before applying Theorem 4.1.

If we begin instead with an isomorphism between 𝐼/𝑁 and 𝐶/𝑁 and accompanying hypotheses of
Theorem 6.1, we may first apply Theorem 6.1 to obtain a geometric vertex decomposition satisfying the
hypotheses of Theorem 4.1. If we then apply the construction in Theorem 4.1, we obtain an isomorphism
between 𝐼/𝑁 and 𝐶/𝑁 , but it need not be the same isomorphism we began with. For example, we may
begin with the multiplication-by- 𝑓 /𝑔 map from Example 6.2 but produce the multiplication-by-𝑣/𝑢
map for 𝑣 = 𝑎1 𝑓 + 𝑎2 (𝑥23𝑥11 − 𝑥21𝑥13) and 𝑢 = 𝑎1𝑥12 + 𝑎2𝑥11 for a generic choice of scalars 𝑎1
and 𝑎2.

One has to be quite careful in tracking the correspondence between a particular biliaison and a
geometric vertex decomposition. In particular, somewhat surprisingly, the condition that the reduced
Gröbner basis of N has no term divisible by y cannot be discarded while preserving the canonical
mapping noted in Remark 6.3. For example, we consider a modification of Example 6.2 by letting
𝐼 ′ = 𝐼 + 〈𝑥23𝑥10 − 𝑥13𝑥20〉, 𝑁 ′ = 𝑁 + 〈𝑥23𝑥10 − 𝑥13𝑥20〉 and 𝐶 ′ = 𝐶 + 〈𝑥23𝑥10 − 𝑥13𝑥20〉. We think of

this example as naturally occurring from the matrix 𝑀 ′ =

(
𝑥10 𝑥11 𝑥12 𝑥13
𝑥20 𝑥21 𝑥22 𝑥23

)
, from which the ideal 𝐼 ′

is generated by all 2-minors involving any two of the last three columns or exactly the first and fourth
columns. Here, taking 𝑓 ′ = 𝑥23𝑥12 − 𝑥22𝑥13 ∈ 𝐼 ′ \ 𝑁 ′ and 𝑔′ = 𝑥12 ∈ 𝐶 ′ \ 𝑁 ′ yields an isomorphism
𝐶 ′/𝑁 ′ 𝑓 ′/𝑔′

−−−−→ 𝐼 ′/𝑁 ′. Taking lexicographic order with respect to 𝑥23 > 𝑥13 > 𝑥22 > · · · > 𝑥10 and noting
that 𝑁 ′ is prime, it is not hard to check that the hypotheses of Theorem 6.1 are satisfied aside from the
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hypothesis that the reduced Gröbner basis of 𝑁 ′ has no term divisible by 𝑥23. However, the geometric
vertex decomposition of 𝐼 ′ with respect to 𝑥23 is

〈𝑥21𝑥13𝑥10 − 𝑥20𝑥13𝑥11, 𝑥22𝑥11 − 𝑥21𝑥12, 𝑥22𝑥13𝑥10 − 𝑥20𝑥13𝑥12, 𝑥23𝑥10, 𝑥23𝑥11, 𝑥23𝑥12〉
= 〈𝑥10, 𝑥11, 𝑥12〉 ∩ (〈𝑥21𝑥13𝑥10 − 𝑥20𝑥13𝑥11, 𝑥22𝑥11 − 𝑥21𝑥12, 𝑥22𝑥13𝑥10 − 𝑥20𝑥13𝑥12〉 + 〈𝑥23〉).

In particular, in𝑥23 𝐼
′ ≠ 𝐶 ′ ∩ (𝑁 ′ + 〈𝑥23〉).

In the other direction, the elementary G-biliaison constructed from Theorem 4.1 yields the isomor-
phism 𝐶 ′/𝑁̃

𝑓 ′/𝑔′
−−−−→ 𝐼 ′/𝑁̃ for

𝑁̃ = (𝑥21𝑥13𝑥10 − 𝑥20𝑥13𝑥11, 𝑥22𝑥11 − 𝑥21𝑥12, 𝑥22𝑥13𝑥10 − 𝑥20𝑥13𝑥12),

which is not the same elementary G-biliaison we began with.
Remark 6.3 gives rise to the question of whether or not there is a sort of moving lemma

applicable to this situation that would allow us to replace the module N with a Cohen–Macaulay and
𝐺0 module 𝑁̃ that also links C to I but does not involve y. More precisely:

Question 6.4. With notation as in Theorem 6.1, suppose that I is square-free in y and that there exists
an elementary G-biliaison given by the isomorphism 𝜙 : 𝐶/𝑁

𝑓 /𝑔
−−−→ 𝐼/𝑁 of 𝑅/𝑁-modules for some

𝑓 ∈ 𝐼, 𝑔 ∈ 𝐶 and in𝑦 ( 𝑓 )/𝑔 = 𝑦. Do not assume that the reduced Gröbner basis of N does not involve
y. From [26, Theorem 2.1(b)], I must have some geometric vertex decomposition with respect to y.
If in𝑦 (𝐼) = 𝐶̃ ∩

(
𝑁̃ + 〈𝑦〉

)
is a geometric vertex decomposition of I, then Theorem 4.1 requires that

there be an isomorphism 𝐶̃/𝑁̃ → 𝐼/𝑁̃ . In particular, though, will multiplication by 𝑓 /𝑔 always be an
isomorphism from 𝐶/𝑁̃ to 𝐼/𝑁̃? Need 𝑁̃ be Cohen–Macaulay and 𝐺0?

7. The mixed case and sequential Cohen–Macaulayness

A nonpure version of vertex decomposition was introduced in [2], in which the authors study nonpure
shellable complexes, including their homotopy types and combinatorially significant direct sum decom-
positions of their Stanley–Reisner rings. It has been shown that if a simplicial complex is nonpure vertex
decomposable, then it is nonpure shellable [2, Theorem 11.3]. And it is not hard to see that a nonpure
shellable simplicial complex is sequentially Cohen–Macaulay (i.e., its associated Stanley–Reisner ring
is sequentially Cohen–Macaulay). For background on sequential Cohen–Macaulayness, introduced by
Stanley, we refer the reader to [36, Section III.2]. This story parallels the well-known history of the pure
case, which is summarised in Section 2. This nonpure version has been applied particularly effectively
in the study of edge ideals (see [14, 37, 13, 39]).

In this section, we compare nonpure vertex decomposition with geometric vertex decomposition
when I is not necessarily unmixed, and we describe how geometric vertex decomposition can transfer
the structure of sequential Cohen–Macaulayness in a manner similar to how G-biliaison transfers
Cohen–Macaulayness in the unmixed case. This result is stated precisely as Theorem 7.5. Throughout
this section, we will assume that 𝜅 is infinite, and we will let 𝑅 = 𝜅 [𝑥1, . . . , 𝑥𝑛] with the standard
grading.

We begin with the definition of a vertex decomposable complex when the complex is not necessarily
pure:

Definition 7.1 ([2, Definition 11.1]). A simplicial complex Δ is vertex decomposable if
1. Δ is a simplex or Δ = {∅}, or
2. there exists a vertex v of Δ such that

(a) delΔ (𝑣) and lkΔ (𝑣) are vertex decomposable and
(b) no facet of lkΔ (𝑣) is a facet of delΔ (𝑣).

A vertex v as in condition (2) is called a shedding vertex.
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Let Δ be a simplicial complex on [𝑛] and 𝐼Δ ⊆ 𝑅 its Stanley–Reisner ideal. While any variable
𝑦 ∈ 𝑅 \ 𝐼Δ that divides a minimal generator of 𝐼Δ gives rise to a nondegenerate geometric vertex
decomposition of 𝐼Δ (see Definition 2.3), y need not correspond to a shedding vertex of Δ . For example,
if 𝐼 = (𝑥𝑦, 𝑥𝑧), then 𝐼 = in𝑦 𝐼 = 𝐶𝑦,𝐼 ∩

(
𝑁𝑦,𝐼 + 〈𝑦〉

)
= 〈𝑥〉 ∩ 〈𝑥𝑧, 𝑦〉 would be a geometric vertex

decomposition, but y is not a shedding vertex of Δ = {{𝑥}, {𝑦, 𝑧}}, because {𝑧} is a facet of delΔ (𝑦) =
{{𝑧}, {𝑥}} that is also a facet of lkΔ (𝑦) = {{𝑧}}. In order to prevent an ideal from being geometrically
vertex decomposable via nondegenerate geometric vertex decompositions at variables that do not
correspond to shedding vertices, we propose an alternative definition of geometric vertex decomposition:

Alternative Definition 7.2. If

1. in𝑦 𝐼 = 𝐶𝑦,𝐼 ∩
(
𝑁𝑦,𝐼 + 〈𝑦〉

)
and

2. either
√
𝐶𝑦,𝐼 =

√
𝑁𝑦,𝐼 or no minimal prime of 𝐶𝑦,𝐼 is a minimal prime of 𝑁𝑦,𝐼 ,

then we say that in𝑦 𝐼 = 𝐶𝑦,𝐼 ∩
(
𝑁𝑦,𝐼 + 〈𝑦〉

)
is a geometric vertex decomposition of I with respect to y.

As in the original definition, we will call this geometric vertex decomposition nondegenerate if
𝐶𝑦,𝐼 ≠ 〈1〉 and if

√
𝐶𝑦,𝐼 ≠

√
𝑁𝑦,𝐼 .

In the unmixed case, if I is geometrically vertex decomposable and one step in that decomposition is a
nondegenerate geometric vertex decomposition with respect to y, it is automatic that the minimal primes
of 𝑁𝑦,𝐼 and 𝐶𝑦,𝐼 must be disjoint, because the minimal primes of the former must all have height 1 less
than those of the latter by virtue of Lemma 2.8 and the unmixedness of 𝑁𝑦,𝐼 and 𝐶𝑦,𝐼 . Reinterpreting
Definition 2.7 in terms of Alternative Definition 7.2, it is a straightforward exercise to see that a square-
free monomial ideal is geometrically vertex decomposable exactly when its Stanley–Reisner complex
is vertex decomposable in the sense of Definition 7.1.

We will now describe how geometric vertex decomposition behaves somewhat analogously to G-
biliaison in the not necessarily unmixed case. In particular, we will show in Theorem 7.5 that if I is
homogeneous and 𝑅/𝑁𝑦,𝐼 is Cohen–Macaulay, then 𝑅/𝐼 is sequentially Cohen–Macaulay if and only
if 𝑅/𝐶𝑦,𝐼 is sequentially Cohen–Macaulay. Just as in G-biliaison, in which 𝑅/𝑁𝑦,𝐼 is required to be not
only Cohen–Macaulay but also 𝐺0 in order to transfer the Cohen–Macaulay property between 𝑅/𝐶𝑦,𝐼

and 𝑅/𝐼, we impose a stricter requirement on 𝑅/𝑁𝑦,𝐼 in Theorem 7.5 than the property we hope to pass
between 𝑅/𝐼 and 𝑅/𝐶𝑦,𝐼 . As in the unmixed case, we begin with a lemma concerning the heights of
the ideals involved:

Lemma 7.3. If 𝐼 ⊆ 𝑅 is a homogeneous ideal with nondegenerate geometric vertex decomposition
in𝑦 𝐼 = 𝐶𝑦,𝐼 ∩

(
𝑁𝑦,𝐼 + 〈𝑦〉

)
in the sense of Alternative Definition 7.2, then ht(𝐼) = ht

(
𝑁𝑦,𝐼

)
+ 1 ≤

ht
(
𝐶𝑦,𝐼

)
.

Proof. Because ht(𝐼) = ht
(
in𝑦 𝐼

)
, it suffices to show that ht

(
in𝑦 𝐼

)
= ht

(
𝑁𝑦,𝐼

)
+1. Because every prime

containing in𝑦 𝐼 must contain either 𝐶𝑦,𝐼 or 𝑁𝑦,𝐼 + 〈𝑦〉, we must have

ht
(
in𝑦 𝐼

)
= min

{
ht

(
𝐶𝑦,𝐼

)
, ht

(
𝑁𝑦,𝐼 + 〈𝑦〉

)}
= min

{
ht

(
𝐶𝑦,𝐼

)
, ht

(
𝑁𝑦,𝐼

)
+ 1

}
.

Suppose ht
(
𝐶𝑦,𝐼

)
< ht

(
𝑁𝑦,𝐼

)
+ 1. Then, because 𝑁𝑦,𝐼 ⊆ 𝐶𝑦,𝐼 , we must have ht

(
𝑁𝑦,𝐼

)
= ht

(
𝐶𝑦,𝐼

)
.

Fix 𝑃 ∈ Min
(
𝐶𝑦,𝐼

)
with ht(𝑃) = ht

(
𝐶𝑦,𝐼

)
. Then 𝑁𝑦,𝐼 ⊆ 𝑃, and there cannot be a prime 𝑄 � 𝑃 with

𝑄 ∈ Ass
(
𝑁𝑦,𝐼

)
or else we would have ht

(
𝑁𝑦,𝐼

)
< ht

(
𝐶𝑦,𝐼

)
, so 𝑃 ∈ Min

(
𝑁𝑦,𝐼

)
as well, contradicting

condition (2) of Alternative Definition 7.2. Hence, we must have

ht(𝐼) = ht
(
in𝑦 𝐼

)
= ht

(
𝑁𝑦,𝐼

)
+ 1 ≤ ht

(
𝐶𝑦,𝐼

)
. �

Unlike in the unmixed case, we cannot hope to give an upper bound on the height of 𝐶𝑦,𝐼 in terms
of the heights of I and 𝑁𝑦,𝐼 . For example, if 𝐼 = (𝑦𝑥1, . . . , 𝑦𝑥𝑑) for any 𝑑 ≥ 1, then ht

(
𝐶𝑦,𝐼

)
=

ht(〈𝑥1, . . . , 𝑥𝑑〉) = 𝑑, whereas ht(𝐼) = 1 = ht(0 + 〈𝑦〉) = ht
(
𝑁𝑦,𝐼 + 〈𝑦〉

)
.

Lemma 7.4. Suppose that I is a homogeneous ideal of R and that I possesses a nondegenerate geometric
vertex decomposition (in the sense of Alternative Definition 7.2) with respect to a variable 𝑦 = 𝑥 𝑗 of R.
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If 𝑁𝑦,𝐼 has no embedded primes, then there is an isomorphism 𝐼/𝑁𝑦,𝐼 �
[
𝐶𝑦,𝐼 /𝑁𝑦,𝐼

]
(−1) as graded

𝑅/𝑁𝑦,𝐼 -modules.

Proof. We will modify the proof of Theorem 4.1. As there, we have a reduced Gröbner basis {𝑦𝑞1 +
𝑟1, . . . , 𝑦𝑞𝑘 + 𝑟𝑘 , ℎ1, . . . , ℎℓ } for I, and we let 𝐶 = 𝐶𝑦,𝐼 = 〈𝑞1, . . . , 𝑞𝑘 , ℎ1, . . . , ℎℓ〉 and 𝑁 = 𝑁𝑦,𝐼 =
〈ℎ1, . . . , ℎℓ〉. The modification in the argument comes in the steps showing that neither C nor I is
contained in any minimal prime of N. Suppose first that 〈𝑞1, . . . , 𝑞𝑘〉 ⊆ 𝑄 for some minimal prime Q
of N. Then also 𝐶 ⊆ 𝑄. Because 𝑁 ⊆ 𝐶 and Q is minimal over N, Q must also be minimal over C, and
so N and C share a minimal prime, in violation of Alternative Definition 7.2.

Similarly, suppose 〈𝑦𝑞1 + 𝑟1, . . . , 𝑦𝑞𝑘 + 𝑟𝑘〉 ⊆ 𝑄 ′ for some minimal prime 𝑄 ′ of N. Then 𝐼 ⊆ 𝑄 ′.
But N has a generating set that does not involve y, and so its minimal primes may be viewed as ideals of
the ring 𝜅 [𝑥1, . . . , 𝑦̂, . . . , 𝑥𝑛]. Then 𝐼 ⊆ 𝑄 ′ implies each 𝑦𝑞𝑖 ∈ 𝑄 ′, hence each 𝑞𝑖 ∈ 𝑄 ′. But then again
𝑁 and 𝐶 share a minimal prime, in violation of Alternative Definition 7.2.

Hence, neither 〈𝑞1, . . . , 𝑞𝑘〉 nor 〈𝑦𝑞1 + 𝑟1, . . . , 𝑦𝑞𝑘 + 𝑟𝑘〉 is contained in any minimal prime of
N. Because N has no embedded primes, it follows that neither 〈𝑞1, . . . , 𝑞𝑘〉 nor 〈𝑦𝑞1 + 𝑟1, . . . , 𝑦𝑞𝑘 +
𝑟𝑘〉 is contained in any associated prime of N. We now follow the remainder of the argument of
Theorem 4.1. �

Theorem 7.5. Let 𝐼 ⊆ 𝑅 be a homogeneous ideal and in𝑦 𝐼 = 𝐶𝑦,𝐼 ∩
(
𝑁𝑦,𝐼 + 〈𝑦〉

)
a geometric vertex

decomposition (in the sense of Alternative Definition 7.2). If 𝑅/𝑁𝑦,𝐼 is Cohen–Macaulay, then 𝑅/𝐼 is
sequentially Cohen–Macaulay if and only if 𝑅/𝐶𝑦,𝐼 is.

Proof. Let 𝑁 = 𝑁𝑦,𝐼 and 𝐶 = 𝐶𝑦,𝐼 , both of which are homogeneous because I is. Because the graded
R-submodules of 𝑅/𝐼 (resp., 𝑅/𝐶) are the same as the graded 𝑅/𝑁-submodules of 𝑅/𝐼 (resp., 𝑅/𝐶), it
suffices to show that 𝑅/𝐼 is sequentially Cohen–Macaulay as an 𝑅/𝑁-module if and only if 𝑅/𝐶 is. Let
S denote 𝑅/𝑁 and m the homogeneous maximal ideal of S. Set 𝑑 = dim(𝑆). Let 𝜔𝑆 be the canonical
module of S and 𝑀∨ the S-Matlis dual of a finitely generated graded S-module M. By [22, Theorem
1.4], it suffices to show that 𝐻𝑖

𝑚(𝑅/𝐼)∨ = 0 or 𝐻𝑖
𝑚(𝑅/𝐼)∨ is Cohen–Macaulay of dimension i for all

0 ≤ 𝑖 ≤ dim(𝑅/𝐼) if and only if 𝐻𝑖
𝑚 (𝑅/𝐶)∨ = 0 or 𝐻𝑖

𝑚(𝑅/𝐶)∨ is Cohen–Macaulay of dimension i for
all 0 ≤ 𝑖 ≤ dim(𝑅/𝐶).

We consider the long exact sequences of local cohomology corresponding to the short exact sequences

0 → 𝐼/𝑁 → 𝑆 → 𝑅/𝐼 → 0

and

0 → 𝐶/𝑁 → 𝑆 → 𝑅/𝐶 → 0.

Now 𝐻𝑖
𝑚(𝑆) = 0 for all 𝑖 < 𝑑, because S is Cohen–Macaulay. According to Lemma 7.4, there is an

isomorphism 𝐼/𝑁 � 𝐶/𝑁 . Hence,

𝐻𝑖−1
𝑚 (𝑅/𝐼) � 𝐻𝑖

𝑚(𝐼/𝑁) � 𝐻𝑖
𝑚(𝐶/𝑁) � 𝐻𝑖−1

𝑚 (𝑅/𝐶)

for all 𝑖 < 𝑑.
Hence, 𝐻𝑖

𝑚(𝑅/𝐶)∨ and 𝐻𝑖
𝑚(𝑅/𝐼)∨ are zero or nonzero alike and Cohen–Macaulay of dimension

i or not Cohen–Macaulay of dimension i alike for all 0 ≤ 𝑖 ≤ 𝑑 − 2. By Lemma 7.3, dim(𝑅/𝐶) ≤
dim(𝑅/𝐼) = 𝑑 − 1. For all 𝑖 > dim(𝑅/𝐶), we know 𝐻𝑖

𝑚(𝑅/𝐶) = 0. Hence, it only remains to show
that 𝐻𝑑−1

𝑚 (𝑅/𝐼)∨ is either 0 or Cohen–Macaulay of dimension 𝑑 − 1 if and only if 𝐻𝑑−1
𝑚 (𝑅/𝐶)∨ is

either 0 or Cohen–Macaulay of dimension 𝑑 − 1. Because 𝐻𝑑−1
𝑚 (𝑅/𝐼)∨ is a Noetherian 𝑅/𝐼-module

and 𝐻𝑑−1
𝑚 (𝑅/𝐶)∨ a Noetherian 𝑅/𝐶-module, both have dimension at most 𝑑 − 1, and so it is enough to

show that 𝐻𝑖
𝑚

(
𝐻𝑑−1

𝑚 (𝑅/𝐼)∨
)
= 0 for all 𝑖 < 𝑑 − 1 if and only if 𝐻𝑖

𝑚

(
𝐻𝑑−1

𝑚 (𝑅/𝐶)∨
)
= 0 for all 𝑖 < 𝑑 − 1.

We consider the short exact sequences

0 → 𝐻𝑑−1
𝑚 (𝑅/𝐼) → 𝐻𝑑

𝑚(𝐼/𝑁) → 𝐻𝑑
𝑚(𝑆) → 0

https://doi.org/10.1017/fms.2021.53 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.53


22 Patricia Klein and Jenna Rajchgot

and

0 → 𝐻𝑑−1
𝑚 (𝑅/𝐶) → 𝐻𝑑

𝑚 (𝐶/𝑁) → 𝐻𝑑
𝑚(𝑆) → 0.

By graded local duality over S (see [3, Theorem 3.6.19]), we have

0 → 𝜔𝑆 → 𝐻𝑑
𝑚(𝐼/𝑁)∨ → 𝐻𝑑−1

𝑚 (𝑅/𝐼)∨ → 0

and

0 → 𝜔𝑆 → 𝐻𝑑
𝑚(𝐶/𝑁)∨ → 𝐻𝑑−1

𝑚 (𝑅/𝐶)∨ → 0.

Recalling that 𝜔𝑆 is a Cohen–Macaulay module of dimension d, we have 𝐻𝑖
𝑚 (𝜔𝑆) = 0 for all 𝑖 ≠ 𝑑, and

so

𝐻𝑖
𝑚

(
𝐻𝑑−1

𝑚 (𝑅/𝐼)∨
)
� 𝐻𝑖

𝑚

(
𝐻𝑑

𝑚 (𝐼/𝑁)∨
)
� 𝐻𝑖

𝑚

(
𝐻𝑑

𝑚 (𝐶/𝑁)∨
)
� 𝐻𝑖

𝑚

(
𝐻𝑑−1

𝑚 (𝑅/𝐶)∨
)

for all 𝑖 < 𝑑−1. Therefore, 𝐻𝑖
𝑚

(
𝐻𝑑−1

𝑚 (𝑅/𝐼)∨
)
= 0 for all 𝑖 < 𝑑−1 if and only if 𝐻𝑖

𝑚

(
𝐻𝑑−1

𝑚 (𝑅/𝐶)∨
)
= 0

for all 𝑖 < 𝑑 − 1, as desired. �

Recalling that Cohen–Macaulay is equivalent to sequentially Cohen–Macaulay and unmixed, it is
not hard to see that Theorem 7.5 recovers the Cohen–Macaulayness implied by Corollary 4.8 when all
ideals appearing in all the vertex decompositions throughout the induction are unmixed.

Question 7.6. Using Alternative Definition 7.2 and its appropriate extension to an alternate definition
of geometrically vertex decomposable, is every homogeneous geometrically vertex decomposable ideal
sequentially Cohen–Macaulay? Can we weaken the hypothesis in Theorem 7.5 that 𝑅/𝑁𝑦,𝐼 is Cohen–
Macaulay to the hypothesis that it is merely sequentially Cohen–Macaulay?
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