BULL. AUST. MATH. SOC. VOL. 32 (1985), 399-414. 20D10 (20D40, 20D60)

FINITE GROUPS WITH LARGE CENTRALIZERS

EDWARD A. BERTRAM AND MARCEL HERZOG

It is known that a finite non-abelian group G has a proper centralizer of order > $|G|^{\frac{1}{3}}$ if, for example, |G| is even and |Z(G)| is odd, or whenever G is solvable. Often the exponent $\frac{1}{3}$ can be improved to $\frac{1}{2}$, for example when G is supersolvable, or metabelian, or $|G| = p^{\alpha} q^{\beta}$. Here we show more generally that this improvement is possible in many situations where G is factorizable into the product of two subgroups. In particular, much more evidence is presented to support the conjecture that some proper centralizer has order > $|G|^{\frac{1}{2}}$ whenever G is a finite non-abelian solvable group.

1. Introduction

In [2] the first author proved that every finite non-abelian solvable group G has a proper centralizer of order $|C_G(x)| > |G|^{\frac{1}{3}}$. Furthermore it was shown that the exponent $\frac{1}{3}$ can be improved to $\frac{1}{2}$

Received 2 April 1985.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/85 \$A2.00 + 0.00. 399

Let C denote the collection of all finite non-abelian groups G

when non-abelian G is either supersolvable, metabelian, a solvable A-group, or has order $p^{\alpha}q^{\beta}$, p, q distinct primes.

400

which contain a proper (large) centralizer of order $> |G|^{\frac{1}{2}}$. Let S denote the collection of all finite non-abelian solvable groups. In [2] the question was raised as to whether $S \,\subseteq\, C$. In this paper we generalize most of the results in [2] and give much more evidence that $S \,\subseteq\, C$. Along the way we also prove, for example, that every finite group containing a conjugacy class of prime-power cardinality (> 1) belongs to C.

Specifically, in the solvable case we prove: (Theorem 2) If nonabelian G = NM where N and M are nilpotent subgroups of G, then $G \in C$. Thus if G' is nilpotent (> 1) then $G \in C$. (Theorem 7) If $G \in S$ and $|G| = \prod p_i^{\alpha^i}$ (distinct primes p_i), with each $\alpha_i \leq 4$, then $G \in C$. Finally, a few more results of numerical type (some not presented here) have enabled us to prove (Theorem 10); every non-abelian group of odd order $< 10^6$ belongs to C; every non-abelian solvable group of even order $\leq 10^4$ is a member of C. The proof of the last theorem any be obtained from the authors.

2. Factorizable Groups

THEOREM 1. If G is a finite non-abelian group with the factorization G = AB, where A and B are nilpotent subgroups of G and (|A|, |B|) = 1, then $G \in C$.

Proof. By Wielandt's theorem ([4], p. 680) *G* is solvable. If $Z = Z(G) = \{1\}$, then $G \in C$ by Theorem 1 of [2]. So $\{1\} < Z = A_1 \times B_1$ with $A_1 \leq A$ and $B_1 \leq B$. Let $|A_1| = a_1$, $|B_1| = b_1$, |A| = a and |B| = b. Since $|G| = ab = \left(\frac{ab_1}{a_1}\right) \left(\frac{ba_1}{b_1}\right)$, either one of the latter factors is larger that $|G|^{\frac{1}{2}}$, or $|Z| \geq |G|^{\frac{1}{2}}$ and $G \in C$. Suppose without loss of generality that $\frac{ab_1}{a_1} > |G|^{\frac{1}{2}}$. If *G* is nilpotent, then $G \in C$ by Corollary 1.1(b) of [2]. So assume G/Z is not nilpotent, and $a_1 \neq a$. Let $xA_1 \in Z(A/A_1)^{\#}$. Then Z/A_1 , $A/A_1 \leq C_{G/A_1}(xA_1)$, and since they are of coprime orders it follows from Lemma 1 of [2] that

 $|C_{G}(x)| \ge |C_{G/A_{1}}(xA_{1})| \ge [Z:A_{1}][A:A_{1}] = \frac{b_{1}a}{a_{1}} > |G|^{\frac{1}{2}}.$ Since $x \notin Z$, $G \in C$ and the proof is complete.

THEOREM 2. If G is a finite non-abelian group with the factorization G = NM, where N and M are nilpotent subgroups of G, then $G \in C$.

Proof. By the theorem of Wielandt and Kegel ([4], p. 674) G is solvable. Our proof is by induction on $k = \min \{ |\pi(N)|, |\pi(M)| \}$. Assume without loss of generality that $|\pi(M)| = k$. If k = 0, then G is nilpotent and $G \in C$. If k = 1, then M is a p-group. Let $M \leq P = \operatorname{Syl}_p(G)$. Then G = NP, with $N_p = N \cap P$, so $G = N_p, P$ and $G \in C$ by Theorem 1.

So assume that $k = n \ge 2$ and that Theorem 2 holds for all k < n. We may assume without loss of generality that $Z = Z(G) \le N$ (otherwise replace N by the nilpotent subgroup NZ), and again by earlier results we may assume that $\{1\} < Z < N$. Hence for some prime $p, Z_p < N_p$, $p \mid |Z(N/Z_p)|$ and there exists an $x \in N_p - Z_p$ such that $|C_G(x)| \ge |C_N(x)| \ge |C_{N/Z_p}| \ge [N:Z_p]$.

Since $n \ge 2$, there exists a prime $q \in \pi(M)$, $q \ne p$. If $M_q \le Z(<N)$, then $G = NM_q$, and $G \in C$ by induction. So we may assume that $M_q > M_q \cap Z$. Considering MZ/Z_q , we conclude (again using Lemma l of [2]) that there exists an element $y \in M_q - Z$ such that $|C_G(y)| \ge [MZ:Z_q]$. Thus

$$\begin{split} |C(x)| \cdot |C(y)| &\geq \frac{|N|}{|Z_p|} \cdot \frac{|M||Z|}{|M \cap Z||Z_q|} - \frac{|N||M|}{|N \cap M|} \cdot \frac{|Z|}{|Z_p||Z_q|} \geq |G| \\ \text{since } p \neq q. \quad \text{If } |C(x)||C(y)| > |G| \quad \text{or } |C(x)| \neq |C(y)| \quad \text{then } G \in C, \\ \text{since } x, y \notin Z. \quad \text{Otherwise } |C(x)| &= |C(y)| = |G|^{\frac{1}{2}}, \text{ whence } Z = Z_p \times Z_q. \\ \text{Since } Z > \{1\}, \quad \text{either } |\pi(Z)| = 1 \quad \text{or } |\pi(Z)| = 2. \quad \text{If } |\pi(Z)| = 1 \quad \text{then,} \\ \text{in view of } |\pi(N)| \geq |\pi(M)| = n \geq 2 \quad \text{there exist } x_1 \in N - Z \quad \text{and} \\ y_1 \in M - Z \quad \text{such that } C(x_1) \geq N \quad \text{and } C(y_1) \geq MZ. \quad \text{Then we have} \\ |C(x_1)| \quad |C(y_1)| \geq |N| \quad |MZ| \geq \frac{|N||M|}{|N \cap M|} \cdot |Z| > |G|, \quad \text{since } \{1\} < Z < N. \\ \text{Since } x_1, y, y, \notin Z, G \in C. \end{split}$$

Finally, consider the case $|\pi(Z)| = 2$. If $\pi(N) = \pi(M) = \pi(Z)$, then $|\pi(G)| = 2$ and $G \in C$ by Theorem 1. If $\pi(N) \neq \pi(Z)$, then $|\pi(N)| \ge 2$ implies that there exists $x_2 \in N - Z$ such that $C(x_2) \ge N$. Thus

$$\begin{split} |C_{G}(x)| & |C_{G}(y_{2})| \geq \frac{|N|}{|Z_{p}|} \cdot |MZ| = \frac{|N||M||Z|}{|Z_{p}||M| \cap Z|} \geq \frac{|N||M|}{|M| \cap N|} \cdot \frac{|Z|}{|Z_{p}|} > |G|. \\ \text{Since } x, y_{2} \notin Z, \quad G \in C \text{ and the proof of Theorem 2 is complete.} \end{split}$$

COROLLARY 2.1. Suppose $G \in S$, and G contains a nilpotent, maximal subgroup M. Then $G \in C$.

Proof. Every maximal subgroup of a solvable group has prime-power index. Thus (considering the prime-power factorization of |G|) we have G = M P where $P \in Syl_p(G)$ for some prime p. Since M is nilpotent Theorem 2 applies, and $G \in C$.

COROLLARY 2.2. Let G be a finite non-abelian group with G' nilpotent. Then $G \in C$.

402

Proof. Since G' is nilpotent, G is solvable and we know (see for example [4], p. 271) that G = G'U for some nilpotent subgroup $U \leq G$. Again Theorem 2 applies, and $G \in C$.

THEOREM 3. Suppose the finite group G contains an element $g \in G - Z$ such that $G = C_G(g)N$ for some nilpotent subgroup N. Then $|C_G(x)| \ge |G|^{\frac{1}{2}}$ for some $x \in G - Z$.

Proof. Since $g \notin Z$, $N > N \cap Z$. Let $M = C_{G}(g)$ and $\overline{y} \in Z(N/N \cap Z)^{\#}$. Then $y \in N - Z$ and

 $|C_{G}(g)| \cdot |C_{G}(y)| \geq |M| |C_{N/N \cap Z}(\overline{y})| = \frac{|M||N|}{|N \cap Z|} \geq \frac{|M||V|}{|M \cap N|} = G .$

Thus either $|C_{\mathcal{G}}(g)| \ge |G|^{\frac{1}{2}}$ or $|C_{\mathcal{G}}(y)| \ge |G|^{\frac{1}{2}}$.

COROLLARY 3.1. If $|\pi(N)| \leq 2$, N as in Theorem 3, then $G \in C$.

Proof. If equality holds, in the proof of the theorem, then $|\pi(G)| \ge 2$ and we may apply Theorem 1.

COROLLARY 3.2. Suppose the finite group G contains a conjugacy class of cardinality $|[g]| = p^r > 1$, where p is a prime. Then $G \in C$.

Proof. Let $P \in \text{Syl}_p(G)$. Then consideration of the prime-power factorization of |G| shows that $G = C_G(g)P$. The result follows from Corollary 3.1, since $g \notin Z(G)$.

COROLLARY 3.3. If $G \in S$, and $C_G(g)$ is a (proper) maximal subgroup of G, then $G \in C$.

Proof. Every maximal subgroup of a solvable group has prime-power index in *G*. The conclusion now follows from Corollary 3.2.

COROLLARY 3.4. Suppose $G \in S$, and G has "abelian centralizers", that is $C_{C}(g)$ is abelian for all $g \in G - Z(G)$. Then $G \in C$.

Proof. It follows from the work of R. Baer [1] on normal nontrivial partitions of finite groups that one of the following holds Π

Ο

(see [5] or [6]):

(a) $G/Z \cong \text{Sym}(4)$;

(b) G/Z is a Frobenius group, with $C_G(x)/Z$ an (abelian) Frobenius complement, for some $x \in G - Z$. If N/Z is the Frobenius kernel, then either N/Z is a *p*-group, or *N* is abelian;

(c) G/Z is a p-group;

(d) there is an $x \in G$ such that $C_{C}(x)$ is the subgroup generated by

Z(G) and all $g \in G$ such that $g^p \notin Z$. Here $[G: C_G(x)] = p$.

In case (a), $(G/Z)' = G'Z/Z \cong G'/G' \cap Z$ is abelian. By Theorem 1 of [2] we may assume that $G' \cap Z \neq \{1\}$, in which case $G' \cap Z = Z(G')$ by Lemma 2b of [2]. Thus G'/Z(G') is abelian and G' is nilpotent (of class 2). The conclusion now follows by Corollary 2.2. In case (b) $(G/Z)/(N/Z) \cong G/N \cong C_G(x)/Z$ is abelian in which case $G' \leq N$ and again G' is nilpotent. In case (c) G is nilpotent, and the result follows. In case (d), $C_G(x)$ is a maximal subgroup and the conclusion follows from Corollary 3.3.

LEMMA 4.1. Let G be a finite group and G = AB, $A, B \leq G$ with $Z(A), Z_2(B) \leq Z(G)$. Then there exists an element $x \in G - Z$ such that $|C_G(x)| \geq |G|^{\frac{1}{2}}$.

Proof. Clearly G = (AZ)B. Let $a \in Z(A) - Z(G)$. If there exists an element $b \in Z(B) - Z(G)$, then $|C_G(a)| |C_G(b)| \ge |A| |\dot{B}| \ge |G|$, and either $|C_G(a)| \ge |G|^{\frac{1}{2}}$ or $|C_G(b)| \ge |G|^{\frac{1}{2}}$. Otherwise Z(B) = Z(G) so $Z(G) \cap B = Z(B)$. Let $c \in Z_2(B) - Z(G)$. Then $|C_G(a)| \cdot |C_G(c)| \ge$

$$\begin{split} |AZ| \cdot |C_B(c)| \ge |AZ| \cdot |C_{B/Z(B)}(cZ(B))| &= \frac{|AZ| \cdot |B|}{|Z(B)|} = \frac{|AZ| \cdot |B|}{|Z(G) \cap B|} \\ \ge \frac{|AZ| \cdot |B|}{|AZ \cap B|} &= |G|. \text{ So either } |C_G(a)| \ge |G|^{\frac{1}{2}} \text{ or } |C_G(c)| \ge |G|^{\frac{1}{2}}. \end{split}$$

 $|C_{G}(x)| > |G|^{\frac{1}{2}}.$

Proof. In the case that $|C_{G}(a)| \cdot |C_{G}(b)| \ge |A| \cdot |B| = |G|$ with $a \in Z(A)$, $b \in Z(B)$ and a, $b \notin Z(G)$, clearly now $|A| > |G|^{\frac{1}{2}}$ or $|B| > |G|^{\frac{1}{2}}$. In the case that $|C_{G}(a)| \cdot |C_{G}(c)| \ge \frac{|AZ| \cdot |B|}{|B \cap Z(G)|} \ge |G|$, with Z(B) = Z(G) and $c \in Z_{2}(B) - Z(B)$, suppose

$$|C_{G}(a)| = |C_{G}(c)| = |G|^{\frac{1}{2}}.$$
 Then also $|AZ| = \frac{|B|}{|B \cap Z(G)|},$ so
$$|B| = |A| \cdot [Z; Z \cap A] |B \cap Z| \text{ a contradiction.}$$

THEOREM 4. Let G be a finite group, G = AB for A, $B \leq G$ and (|A|, |B|) = 1. If $Z_2(A)$, $Z_2(B) \notin Z(G)$, then $|C_G(x)| > |G|^{\frac{1}{2}}$ for some $x \in G - Z(G)$.

Proof. If either $Z(A) \nleq Z(G)$ or $Z(B) \oiint Z(G)$ we are done by the previous lemma. So we may assume that $Z(A) = Z(G) \cap A$ and $Z(B) = Z(G) \cap B$. Our hypotheses imply $Z(G) = (Z \cap A) \times (Z \cap B) = Z(A) \times Z(B)$. If $a \in Z_2(A) - Z(G)$ and $b \in Z_2(B) - Z(G)$, then $|C_G(a)| \ge |C_{(aZ(A))}| \ge [AZ:Z(A)] = [A:Z(A)] [Z(G):Z(A)]$, and $|C_G(b)| \ge [B:Z(B)] [Z(G):Z(B)]$. Thus $|C_G(a)| \cdot |C_G(b)| \ge |A| \cdot |B| = |G|$. If $|C_G(a)| \ne |C_G(b)| \ge |A| \cdot |B| = |G|$.

$$\begin{aligned} |C_{G}(a)| &= |C_{G}(b)| = |G|^{\frac{1}{2}} \text{ then } |A| \cdot |Z(B)|^{2} = |B| \cdot |Z(A)|^{2} \text{ and} \\ (|A|, |B|) &= 1 \text{ give } |Z| = |G|^{\frac{1}{2}}, \text{ a contradiction.} \end{aligned}$$

$$COROLLARY 4.1. If G is a non-abelian group, G = G_{p} G_{p}, and \end{aligned}$$

 $Z_2(G_p,) \notin Z(G)$ for some prime p, then $|C_G(x)| > |G|^{\frac{1}{2}}$ for some $x \in G - Z(G)$. (In particular, the conclusion holds if G is solvable and $Z_2(G_p,) \notin Z(G)$ for some prime p)

Proof. If $Z_2(G_p) \nleq Z(G)$ then the previous theorem gives the conclusion. If $Z_2(G_p) \leq Z(G)$, then $G_p \leq Z(G)$ and $Z_2(G_p,) \leq Z_2(G)$. Now $Z_2(G) = Z(G)$ would yield $G_p, \leq Z(G)$ and G abelian, so $Z_2(G) > Z(G)$ and the conclusion follows by Lemma 2(c) of [2].

П

THEOREM 5. Let $G \in S - C$. Then the following properties hold: (a) if $N \leq G$ and $N \leq Z$, then $|N| > |G|^{\frac{1}{2}}$ and $N \cap Z = Z(N) \neq \{1\}$; (b) for exactly one prime p | |G|, $F(G) = ZO_p > Z$ and $|O_p| > |G|^{\frac{1}{2}}$. Also $\{1\} < Z_p = Z(O_p) = Z(G_p).$ If p is the special prime in (b), then (c) $O_{p} = Z_{p}$, and $F(G) = O_{p'p}(G)$; (d) O_p is non-abelian of class 2, $F' \leq 2$, and $|O_p:Z_p| \leq |G_p:Z_p| < |G|^{\frac{1}{2}} < |O_p|;$ (e) $[C_{G}(O_{p}/Z_{p})]_{p} = Z_{p}$ **Proof.** (a) Suppose $|N| \leq |G|^{\frac{1}{2}}$ and $x \in N - Z(G)$. Then $|[x]| \leq |N| - 1 < |G|^{\frac{1}{2}}$ so $|C_{C}(x)| > |G|^{\frac{1}{2}}$, contradicting $G \notin C$. Also, if $y \in Z(N) - Z(G)$, then $|C_G(y)| \ge |N| > |G|^{\frac{1}{2}}$, again a contradiction. (b) Since G is solvable but not nilpotent, Z(G) < F(G) < G, so $O_p > Z_p$ for at least one prime p. If prime $q \neq p$ and $O_q > Z_q$ then $|O_p O_a| > |G|$ by (a), a contradiction. Thus for exactly one prime

https://doi.org/10.1017/S0004972700002513 Published online by Cambridge University Press

$$\begin{array}{l} p,\ F=ZO_p>Z \quad \text{and} \quad \left|O_p\right|> \left|G\right|^{\frac{1}{2}}.\\ \text{Also } \{1\}< Z(G_p) \leq Z(O_p)=O_p \quad \cap Z(G) \leq Z_p \leq Z(G_p).\\ (c) \quad \text{Let } R=O_p, (G). \quad \text{Then } Z_p, \leq R \triangleleft G.\\ \text{By (a), if } R \not\leq Z(G), \quad \text{then } |R|> \left|G\right|^{\frac{1}{2}} \text{ from which } |RO_p|>|G|, \text{ a contradiction. Thus } O_p, (G) < Z(G) \text{ and so } O_p, (G) = Z_p,. \quad \text{Clearly } F(G) = ZO_p \leq O_p, p(G). \quad \text{But } O_p, (G) < Z(G), \text{ so } O_p, p(G) \text{ is nilpotent and thus contained in } F(G), \text{ so } (c) \text{ is proved.} \end{array}$$

(d) As $0_p > Z_p$ and $|0_p| > |G|^{\frac{1}{2}}$, 0_p is non-abelian. By Exercise 3 p. 214 in [3], if the nilpotence class of \mathcal{O}_p is \geq 3, then \mathcal{O}_p contains a characteristic abelian subgroup A, which is not contained in $Z(O_p)$, and hence is not contained in Z(G). But then A char $O_p \leq G$, $A \leq Z(G)$. This contradicts (a). Thus class $(O_p) = 2$. Since $O_q \leq Z$ whenever $q \neq p$, we have class(F) = 2, so $F' \leq Z(F) \leq Z(G)$ (the latter follows from $|F| \ge |O_{D}| > |G|^{\frac{1}{2}}$. Finally, let $x \in Z_2(G_p) - Z(G_p) = Z_2(G_p) - Z_p$. Then, if $\overline{x} = xZ_p$ $|C_{g}(x)| \geq |C_{G_{p}}(x)| \geq |C_{G_{p}/Z_{p}}(\overline{x})| = [G_{p}:Z_{p}]. \text{ since } \overline{G \notin C}, [G_{p}:Z_{p}] < |G|^{\frac{1}{2}}.$

(e) Clearly $C_{G}(O_{p}) \leq Z(G)$ (since $|O_{p}| > |G|^{\frac{1}{2}}$). If $y \in [C_{G}(O_{p}/Z_{p})]_{p}$, then $y \in C_{\mathcal{C}}(\mathcal{O}_p) \leq Z(\mathcal{G})$. The latter follows from Theorem 5.3.2, p. 178 of [3]. For suppose y is a p' element and y satisfies $x^{-1} y^{-1} x y \in \mathbb{Z}_p$ for all $x \in \mathcal{O}_p$ (that is $y \in \mathcal{C}_C(\mathcal{O}_p/\mathbb{Z}_p)$). Then the group $\langle y \rangle$, acting by conjugation on \mathcal{O}_p , is a p'-subgroup of Aut(0_p) which stabilizes the normal series $0_p \ge Z_p \ge \{1\}$ (Lemma 5.3.1 of [3]), and therefore Theorem 5.3.2 applies. Thus conjugation is the identity automorphism, that is $y \in C_{\mathcal{G}}(O_p)$. 0

407

a

THEOREM 6. Let $G \in S - C$, and let p be the unique prime satisfying p|[F(G):Z(G)]. If $|Z_p| = p$ then G satisfies the following properties: (i) $G_p = O_p$ is extraspecial; (*ii*) $|G_p| = p^{2m+1} \ge p^5$; (iii) $Z_2(G_p) < Z(G)$, and hence $Z(G_p) = Z(G)_p$. Proof. Property (iii) follows immediately from Corollary 4.1. By Theorem 5(b),(d) we have that $|O_p(G)| > |G|^{\frac{1}{2}}$ and O_p is non-abelian; hence $|O_p(G)| \ge p^3$. If either $G_p > O_p$ or O_p/Z_p is not elementary abelian, then either $[G_n:Z_n] \ge |O_n| > |G|^{\frac{1}{2}}$, contradicting Theorem 5(d), or $[O_p:Z_p] \ge |H|$ for some characteristic subgroup of H of $O_p \triangleleft G$ such that $Z_p = Z(O_p) < H < O_p$. From the latter, $H \not\leq Z$, $H \leq G$ and $|H| < |G|^{\frac{1}{2}}$ in contradiction to Theorem 5(a). We have thus proved (i), and $|G_n| = p^{2m+1} > |G|^{\frac{1}{2}}$. As for (ii), suppose $|G_n| = p^3$, so G_p/Z_p is elementary abelian of order p^2 . By Theorem 5(c) O_p , $(G) = Z_p$, (G), and by Theorem 6.3.4 of [3] G_p , Z_p , is faithfully represented on $O_p(G)/\Phi(O_p(G)) = G_p/Z_p$ regarded as a vector space over Z_p . Thus $H = G_p / Z_p$, $\leq GL(2, p)$; in face $H \leq PGL(2, p)$ since (by iii) $Z_2(G_p,) \leq Z(G) \cap G_p, = Z_p, = Z(G_p,)$ and $Z(H) = \{1\}$. If p = 2. then PGL(2, 2) = PSL(2, 2) has no subgroups H of odd order with $Z(H) = \{1\}$, from which we get $H = \{1\}$ and $G \in C$. If p > 2, then [PGL(2, p) : PSL(2, p)] = 2. If p = 3, then |PGL(2, 3)| = 24 and has no 3'- subgroups H with $Z(H) = \{1\}$, so $G \in C$. Thus suppose that $p \ge 5$. Here the only solvable p'- subgroups of PSL(2, p) are, by the theorem of Dickson (see [7], Theorem 3.6.25, p. 412):

(i) dihedral groups of order $p \pm 1$ and their subgroups; (ii) Alt(4); (iii) Sym(4). Since $Z(H) = \{1\}$, it follows (by [4], Theorem $\overline{\chi}$ 8.18(c), p. 506)

that some element x_p^Z , of $H^{\#}$ fixes an element y_p^Z of $\left(\frac{G}{p}/\frac{Z}{p}\right)^{\#}$ and hence x stabilizes the normal series {1} < Z_p < $\langle Z_p, y \rangle$. Thus (by [3], Theorem 5.3.2, p.178) x centralizes $\langle Z_p, y \rangle$ and so we have $|C_{G}(x)| \ge p^{2} |C_{G_{n}}(x)|$, $x \notin Z$. If $H \cap PSL(2, p)$ is of type (i), then $|H| \leq 2(p+1)$ and hence: $|C_{g}(x)|^{2} \ge p^{4} \cdot 2^{2} \cdot |Z_{p}|^{2} > p^{3} \cdot 2(p+1) \cdot |Z_{p}| \ge |G_{p}| |G_{p}| = |G|,$ yielding $G \in C$. Suppose that $H \cap PSL(2, p) = A_d$ or S_d . Since the Sylow 2-subgroups of A_4 and S_4 are not cyclic or generalized quaternion, it follows (by [4], Theorem ∑ 8.18(a) p. 506) that some nontrivial 2-element of $H^{\#}$ fixes $yZ_p \in (G_p/Z_p)^{\#}$. So we may assume that x is a 2-element, $x \notin Z$. If Z_p , = {1}, then $|C_{G_p}(x)| \ge 4$, and if $Z_p, \neq \{1\}$ then $|C_{G_p}, (x)| \ge 2 |Z_p,|$. Thus in both cases, $|C_{G_{p}}(x)|^2 \ge 8 |Z_p|$, and when $p \ge 7$ we obtain $|C_{G}(x)|^{2} \ge p^{4} |C_{G_{p}}(x)|^{2} \ge \delta p^{4} |Z_{p}| > 4\delta p^{3} |Z_{p}| \ge |H| p^{3} |Z_{p}| = |G|,$ and $G \in C$. Whenever $|Z_{p'}| > 2$, then $|C_{G_{p'}}(x)|^2 \ge 12 \cdot |Z_{p'}|$ and $G \in C$ since p > 3. Finally, suppose that $|Z_p| = 2$, p = 5. If |H| = 24 then $G \in C$, as above. By [7] Exercise 9, p. 418 PGL(2, q) contains only solvable p'-subgroups of types (i) - (iii), and thus |H| = 48 is impossible. The proof of the theorem is now complete.

THEOREM 7. If $G \in S$ and $|G| = \prod_{i=1}^{n} p_i^{\alpha} i$ where the p_i are distinct primes and $\alpha_i \leq 4$ for all *i*, then $G \in C$.

Proof. The proof is by induction on the number of prime factors, *n*. If n = 1, then *G* is nilpotent, so $G \in C$. So assume n > 1 and the theorem holds for smaller values of *n*. By Theorem 5(b) $O_p(G) > Z_p(G)$ for a unique prime p | |G|, say $O_{p_1} > Z_{p_1}$. If $|Z_{p_1}| = p_1$, then $G \in C$ by Theorem 6. If $|Z_{p_1}| \ge p_1^2$ then either all groups of order $\prod_{i=2}^{n} p_i^{\alpha}i$ are abelian and, $G \in C$ by Theorem 1, or by induction there exists a subgroup $H \in C$, $|H| = \prod_{i=2}^{n} p_i^{\alpha}i$. Hence for some $x \in H - Z(H)$ (so $x \notin Z(G)$) we obtain $|C_G(x)| \ge |Z_{p_1}| | |C_H(x)| > p_1^2 (\prod_{i=2}^{n} p_i^{\alpha}i)^{\frac{1}{2}} \ge |G|^{\frac{1}{2}}$, and again $G \in C$.

THEOREM 8. Let $G \in S$, and $|G| = p^n qr$ with p, q, r distinct primes. If $Syl_p(G) \leq G$, then $G \in C$.

Proof. If (|Z(G)|, qr) > 1, then G contains an abelian subgroup of order qr and $G \in C$ by Theorem 1. Otherwise, by Theorem 5(b), $Z(G) = Z(G_p) < O_p = G_p$. Thus $Z = Z(G_p) < Z_2(G_p) = Z_2$, so a subgroup H of order qr acts on Z_2/Z . Since H is non-abelian an element h, say of order r, fixes some $xZ \in (Z_2/Z)^{\#}$. Since (r, p) = 1, h centralizes x (using Theorem 5.3.2 of [3]). Thus $|C_G(x)| \ge r \cdot |C_{G_p}(x)| \ge r \cdot |C_{(xZ)}| \ge r \cdot [G_p:Z]$. Also, some element y, of order q, satisfies $|C_G(y)| \ge q \cdot |Z|, y \notin Z$. We obtain $|C_G(x)| \cdot |C_G(y)| \ge q \cdot r \cdot |G_p| = |G|$. Since (q, r) = 1 we must have $|C_G(x)| \ne |C_G(y)|$, so $G \in C$.

COROLLARY 8.1. Let $G \in S$ and $|G| = p^n qr$, where p, q, r are primes with p > q > r. Then $G \in C$.

 $\operatorname{Syl}_{\mathcal{D}}(G) \triangleleft G$, and $G \in C$ by Theorem 8.

COROLLARY 8.2. Let $G \in S$ and $|G| = p^n q r$, where p, q, r are distinct primes and $ord(p) \ge n - 1 \pmod{q}$. Then $G \in C$.

Proof. If $q \mid |Z(G)|$, then $G \in C$ by Theorem 1. If $\operatorname{Syl}_p(G) \leq G$ then $G \in C$ by Theorem 8. So assume that $q \nmid |Z|$ and $\mathcal{O}_p \leq \mathcal{G}_p$. By Theorem 5(b) $Z_p > \{1\}$, so $|\mathcal{O}_p/Z_p| \leq p^{n-2}$. Thus an element $x \notin Z$, xof order q, centralizes \mathcal{O}_p/Z_p . But then $G \in C$ by Theorem 5(e).

COROLLARY 8.3. If $G \in S$ and $|G| = p^5 q r$ with p, q, r distinct primes, then $G \in C$.

Proof. By Theorem 1 we may assume that $|Z(G)| | p^5$. Clearly $G \in C$ if $|Z| \ge p^3$. If |Z| = p then $\operatorname{Syl}_p(G) \triangleleft G$ by Theorem 6, and thus $G \in C$ by Theorem 8. So suppose that $|Z| = p^2$. Since a subgroup of order qr is non-cyclic, we may assume without loss of generality that an element of order r centralizes an element \overline{x} of the abelian group $O_p/Z_p = O_p/Z$, by the theory of Frobenius complements. Thus $|C_G(x)| \ge |C_{O_p}/Z_p(\overline{x})| \cdot r \ge p^3 \cdot r$. Also $|C_G(y)| \ge p^2 \cdot q$, for an element y of order q, and we obtain $|C_G(x)||C_G(y)| \ge |G|$. Since $x, y \notin Z(G)$ and (p, q) = 1 we have $G \in C$.

THEOREM 9. Suppose $G \in S - C$ and $|G| = p^n m$, (p, m) = 1, $O_p > Z_p$. (a) If every non-abelian solvable group of order m is in C, then $n \ge 5$. (b) If p is the minimal prime dividing |G|, then $n \ge 7$.

Proof. (a) By Theorem 5(b), $Z_p = Z(O_p) \neq \{1\}$. If $|Z_p| = p$, then $n \ge 5$ by Theorem 6. Suppose $|Z_p| \ge p^2$ and M < G, |M| = m. Π

If *M* is abelian, then $ZM \ge Z_p^M$ is abelian of order $\ge p^2 m > |G|^{\frac{1}{2}}$, if $n \leq 4$, contradicting $G \notin C$. If $M \in C$, then for some $x \in M - Z(G)$ we have $|C_G(x)| > p^2 m^2 \ge |G|^2$, if $n \le 4$, again contradicting $G \notin C$. (b) If $n \leq 4$ then $G \in C$ by Theorem 7, since p is minimal and (by Theorem 5(b)) $p^n > m$. So assume that $5 \le n \le 6$. Let M < G, |M| = m. By Theorem 1 we may assume $|\pi(M)| \ge 2$. Since p is minimal and $p^n > m$, it follows by Theorem 7 applied to M that either M is abelian or $M \in C$. If M is abelian, then $G \in C$ by Theorem 1. Thus suppose $M \in C$. If $|Z(G_p)| = |Z_p| \ge p^3$, then for some $x \in M - Z$ we find $|C_{\alpha}(x)| > m^{\frac{1}{2}} |Z_{\alpha}(G)| \ge m^{\frac{1}{2}} p^{3} \ge |G|^{\frac{1}{2}}$, and $G \in C$. So assume that $1 < |Z_p| < p^3$.

Case 1. p = 2.

Since $m \cdot 2^5 \le |G| \le |O_p|^2$, if $|O_p| \le 2^5$ then $m \le 2^5$. As m is odd and m < 32, either every group of order m is nilpotent (and $G \in C$ by Theorem 1) or $m = 3 \cdot 7$. Thus $|G| = 2^5 \cdot 3 \cdot 7$, or $|G| = 2^{6} \cdot 3 \cdot 7$. In either case, $|O_2|^2 > |G|$ yields $|O_2| = |G_2|$, and $G \in C$ by Theorem 8. So suppose that $|\mathcal{O}_p| = 2^6 = |\mathcal{G}_p|$. By Theorem 6, we may assume that $|Z_p| > p$, and since $|Z_p| < p^3$ we have $|Z_n| = p^2$. Also, we may suppose that $|\pi(m)| \ge 2$ and not every group of order *m* is abelian. As m < 64 *m* odd, we have two cases: $m = 3 \cdot 7$ and $m = 3^2 \cdot 7$. This is because if $r \mid m, r > 7$ a prime, then an element x of order r acts trivially on $0_p/Z_p$, of order 16, and $x \in Z$ by Theorem 5(e). But now $\pi(m) = 2$, so every group of order m is abelian, a contradiction. By Theorem 5(d), $\frac{O_p}{p}$ is abelian, and since 7 1 (16-1) an element of order 7 centralizes some element

$$\begin{split} \overline{x} \in \left(0_p/2_p \right)^{\#} & \text{Thus } |C_g(x)| \ge |0_p/2_p| \cdot ? = 16 \cdot ? > |G|^{\frac{1}{2}}, \text{ and } G \in C. \\ \text{Case 2. } p > 2. \\ \text{If } |Z_p| = p \text{ then by Theorem 6 we may assume that } n = 5, \text{ and} \\ |G_p/2_p| = |0_p/2_p| = p^4. \text{ If } r \in \pi(m) \text{ then either every element of order} \\ r \text{ is in } 2(G), \text{ or (by Theorem 5(e)) } r \text{ divides} \\ \overset{\text{fl}}{\pi} (p^i - 1) = (p^2 + 1)(p^2 + p + 1)(p - 1)^4(p + 1)^2. \text{ As } p < r, r \\ i=1 \\ \text{divides either } p^2 + 1 \text{ or } p^2 + p + 1. \text{ Thus there are at most two} \\ \text{primes } r_1 \neq r_2 \in \pi(m) \text{ for which there exist } r_i \text{-elements outside} \\ \mathcal{Z}(G). \text{ Since } p < r_i, r_i^2 \text{ does not divide the above product; but} \\ [G_{r_i}: Z_{r_i}] \text{ does divide } \overset{\text{fl}}{\pi} (p^i - 1), \text{ again by Theorem 5(e), so} \\ [G_{r_i}: Z_{r_i}] \le r_i \text{ and } G_{r_i} \text{ is abelian. If only one such } r_i \text{ exists then} \\ \text{there exists an abelian subgroup of } G, \text{ of order } m, \text{ and } G \in C. \\ \text{since } r_2 \not| p^4 - 1 \text{ there exists an } x \in 0_p - Z_p \text{ such that } r_2 \big| |C_G(x)|. \\ \text{Since } 0_p/2_p \text{ is abelian (Theorem 5), } |C_G(x)| \ge r_2 p^4 > p^5 = |0_p| > |G|^{\frac{1}{2}}. \\ \text{Case 2 is complete and the theorem is proved. \\ \hline \end{array}$$

COROLLARY 9.1. Suppose $G \in S$ and $|G| = p''q'''r^{n}$ where p, q, rare distinct primes. If $p^{n} > |G|^{\frac{1}{2}}$ and $n \le 4$, then $G \in C$.

Finally, using many of the previous theorems and corollaries, together with a few more specialized results, the authors have proved the following:

THEOREM 10. Every non-abelian group of odd order < 10^6 is a member of C. Every non-abelian solvable group of even order $\leq 10^4$ is a member of C.

In the odd order case we rely on the theorem of Feit-Thompson that every group of odd order is solvable.

References

- [1] R. Baer, "Partitionen endlicher Gruppen", Math. Zeit. 75 (1961) 333-372.
- [2] E. A. Bertram, "Large centralizers in finite solvable groups", Israel J. Math. 47 (1984), 335-344.
- [3] D. Gorenstein, "Finite Groups", (Harper and Row, New York, 1968).
- [4] B. Huppert, "Endlicher Gruppen", Vol.I, (Springer-Verlag, Berlin, New York, 1967).
- [5] D. M. Rocke, "Groups with abelian centralizers", Unpub. part of Ph.D. Diss., Univ. of Illinois, 1972.
- [6] R. Schmidt, "Zentralisatorverbände endlicher Gruppen", Sem. Math. de Univ. Padova 44 (1970), 97-111.
- [7] M. Suzuki, "Group Theory I", Springer-Verlag, Berlin-Heidelberg-New York, 1982.

Department of Mathematics University of Hawaii-Manoa Honolulu, Hawaii. 96822.

School of Mathematics Tel-Aviv University Ramat-Aviv, 69978 Tel-Aviv. Israel.