FINITE GROLPS HiTH LARGE CENTRALIZERS

Edward A. Bertram and Fiarcel Herzog

Abstract

It is known that a finite non-abelian group G has a proper centralizer of order $>|G|^{\frac{1}{3}}$ if, for example, $|G|$ is even and $|Z(G)|$ is odd, or whenever G is solvable. Of ten the exponent $\frac{1}{3}$ can be improved to $\frac{1}{2}$, for example when G is supersolvable, or metabelian, or $|G|=p^{\alpha} q^{\beta}$. Here we show more generally that this improvement is possible in many situations where G is factorizable into the product of two subgroups. In particular, much more evidence is presented to support the conjecture that some proper centralizer has order $>|G|^{\frac{1}{2}}$ whenever G is a finite non-abelian solvable group.

1. Introduction

In [2] the first author proved that every finite non-abelian solvable group G has a proper centralizer of order $\left|C_{G}(x)\right|>|G|^{\frac{1}{3}}$. Furthermore it was shown that the exponent $\frac{1}{3}$ can be improved to $\frac{1}{2}$

Received 2 April 1985.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/85 $\$ \mathrm{~A} 2.00+0.00$.
when non-abelian G is either supersolvable, metabelian, a solvable A-group, or has order $p^{\alpha} q^{\beta}, p, q$ distinct primes.

Let C denote the collection of all finite non-abelian groups G
which contain a proper (large) centralizer of order $>|G|^{\frac{1}{2}}$. Let S denote the collection of all finite non-abelian solvable groups. In [2] the question was raised as to whether $S \subset C$. In this paper we generalize most of the results in [2] and give much more evidence that $S \subset C$. Along the way we also prove, for example, that every finite group containing a conjugacy class of prime-power cardinality (> 1) belongs to C.

Specifically, in the solvable case we prove: (Theorem 2) If nonabelian $G=N M$ where N and M are nilpotent subgroups of G, then $G \in C$. Thus if G^{\prime} is nilpotent (>1) then $G \in C$. (Theorem 7) If $G \in S$ and $|G|=\pi p_{i}^{\alpha^{i}}$ (distinct primes p_{i}), with each $\alpha_{i} \leq 4$. then $G \in C$. Finally, a few more results of numerical type (some not presented here) have enabled us to prove (Theorem 10); every non-abelian group of odd order $<10^{6}$ belongs to C; every non-abelian solvable group of even order $\leq 10^{4}$ is a member of C. The proof of the last theorem amy be obtained from the authors.

2. Factorizable Groups

THEOREM 1. If G is a finite non-abelion group with the factorization $G=A B$, wbere A and B are nilpotent subgroups of G and $(|A|,|B|)=1$, then $G \in C$.

Proof. By Wielandt's theorem ([4], p. 680) G is solvable. If $Z=Z(G)=\{1\}$, then $G \in C$ by Theorem 1 of [2]. So $\{1\}<Z=A_{1} \times B_{1}$ with $A_{1} \leq A$ and $B_{1} \leq B$. Let $\left|A_{1}\right|=a_{1},\left|B_{1}\right|=b_{1},|A|=a$ and $|B|=b$. Since $|G|=a b=\left(\frac{a b_{1}}{a_{1}}\right)\left(\frac{b a_{1}}{b_{1}}\right)$, either one of the latter factors is larger that $|G|^{\frac{1}{2}}$, or $|Z| \geqq|G|^{\frac{1}{2}}$ and $G \in C$. Suppose without loss
of generality that $\frac{a b_{1}}{a_{1}}>|G|^{\frac{1}{2}}$. If G is nilpotent, then $G \in C$ by Corollary $1.1(b)$ of [2]. So assume G / Z is not nilpotent, and $a_{1} \neq a$. Let $x A_{1} \in Z\left(A / A_{1}\right)$. Then $Z / A_{1}, A / A_{1} \leq C_{G / A_{1}}\left(x A_{1}\right)$, and since they are of coprime orders it follows from Lemma 1 of [2] that
$\left|C_{G}(x)\right| \geq\left|C_{G / A_{1}}\left(x A_{1}\right)\right| \geq\left[z: A_{1}\right]\left[A: A_{1}\right]=\frac{b_{1} a}{a_{1}}>|G|^{\frac{1}{2}}$. Since $x \notin Z$, $G \in C$ and the proof is complete.

THEOREM 2. If G is a finite non-abetian group with the factorization $G=N M$, wbere N and M are nizpotent subgroups of G, then $G \in C$.

Proof. By the theorem of Wielandt and Kegel ([4], p. 674) G is solvable. Our proof is by induction on $k=\min \{|\pi(N)|,|\pi(M)|\}$. Assume without loss of generality that $|\pi(M)|=k$. If $k=0$, then G is nilpotent and $G \in C$. If $k=1$, then M is a p-group. Let $M \leq P=\operatorname{Syl}_{p}(G)$. Then $G=N P$, with $N_{p}=N \cap P$, so $G=N_{p} P$ and $G \in C$ by Theorem 1.

So assume that $k=n \geq 2$ and that Theorem 2 holds for all $k<n$. We may assume without loss of generality that $Z=Z!G$) N (otherwise replace N by the nilpotent subgroup $N Z$), and again by earlier results we may assume that $\{1\}<Z<N$. Hence for some prime $p, Z_{p}<N_{p}$, $p\left|\left|Z\left(N / Z_{p}\right)\right|\right.$ and there exists an $x \in N_{p}-Z_{p}$ such that $\left|C_{G}(x)\right| \geq\left|C_{N}(x)\right| \geq\left|C_{N / Z_{p}}\left(x Z_{p}\right)\right| \geq\left[N: Z_{p}\right]$.

Since $n \geq 2$, there exists a prime $q \in \pi(M), q \neq p$. If $M_{q} \leq Z(<N)$, then $G=N M_{q}$, and $G \in C$ by induction. So we may assume that $M_{q}>M_{q} \cap Z$. Considering $M Z / Z_{q}$, we conclude (again using Lemma 1 of [2]) that there exists an element $y \in M_{q}-Z$ such that $\left|C_{G}(y)\right| \geq\left[M Z: Z_{q}\right] . \quad$ Thus
$|C(x)| \cdot|C(y)| \geq \frac{|N|}{\left|z_{p}\right|} \cdot \frac{|M||z|}{|M \cap Z|\left|z_{q}\right|}-\frac{|N||M|}{|N \cap M|} \cdot \frac{|z|}{\left|z_{p}\right| z_{q} \mid} \geq|\sigma|$
since $p \neq q$. If $|C(x) \| C(y)|>|G|$ or $|C(x)| \neq|C(y)|$ then $G \in C$, since $x, y \notin z$. otherwise $|C(x)|=|C(y)|=|G|^{\frac{1}{2}}$, whence $z=z_{p} \times z_{q}$. Since $Z>\{1\}$, either $|\pi(Z)|=1$ or $|\pi(Z)|=2$. If $|\pi(Z)|=1$ then, in view of $|\pi(N)| \geq|\pi(M)|=n \geq 2$ there exist $x_{1} \in N-2$ and $y_{1} \in M-Z$ such that $C\left(x_{1}\right) \geq N$ and $C\left(y_{1}\right) \geq M Z$. Then we have $\left|C\left(x_{1}\right)\right|\left|C\left(y_{1}\right)\right| \geq|N| \quad|M Z| \geq \frac{|N||M|}{|N \cap M|} \cdot|z|>|G|$, since $\{1\}<z<N$. Since $x_{1}, y, \not \subset Z, G \in C$.

Finally, considex the case $|\pi(Z)|=2$. If $\pi(N)=\pi(M)=\pi(Z)$, then $|\pi(G)|=2$ and $G \in C$ by Theorem 1. If $\pi(N) \neq \pi(Z)$, then $|\pi(N)| \geq 2$ implies that there exists $x_{2} \in N-2$ such that $C\left(x_{2}\right) \geq N$. Thus
$\left|C\left(x_{2}\right)\right||C(y)| \geq|N| \cdot \frac{|M||z|}{|M \cap Z| Z_{q} \mid}-\frac{|N||M|}{|N \cap M|} \cdot \frac{|Z|}{\left|Z_{q}\right|}>|G|$ (since $|\pi(z)|=2$). Again $G \in C$ since $x_{2}, y \notin z$. Otherwise, $\pi(M) \neq \pi(Z)$, and $|\pi(M)| \geq 2$ implies that there exists a $y_{2} \in M-Z$ such that $C_{G}\left(y_{2}\right) \geq M$. Thus
$\left|C_{G}(x)\right|\left|c_{G}\left(y_{2}\right)\right| \geq \frac{|N|}{\left|z_{p}\right|} \cdot|M Z|-\frac{|N||M||z|}{\left|z_{p}\right||M \cap Z|} \geq \frac{|M||M|}{|M \cap N|} \cdot \frac{|Z|}{\left|Z_{p}\right|}>|G|$. Since $x, y_{2} \notin z, G \in C$ and the proof of Theorem 2 is complete.

COROLLARY 2.1. Suppose $G \in S$, and G contains a nilpotent, maximal subgroup M. Then $G \in C$.

Proof. Every maximal subgroup of a solvable group has prime-power index. Thus (considering the prime-power factorization of $|G|$) we have $G=M P$ where $P \in \mathrm{Sy}_{p}$ (G) for some prime p. Since M is nilpotent Theorem 2 applies, and $G \in C$.

COROLLARY 2.2. Let G be a finite non-abelian group with G^{\prime} nilpotent. Then $G \in C$.

Proof. Since G^{\prime} is nilpotent, G is solvable and we know (see for example [4] , p. 271) that $G=G^{\prime} U$ for some nilpotent subgroup $U \leq G$. Again Theorem 2 applies, and $G \in C$.

THEOREM 3. Suppose the finite group G contains an element $g \in G-Z$ such that $G=C_{G}(g) N$ for some nilpotent subgrow N. Then $\left|C_{G}(x)\right| \geq|G|^{\frac{1}{2}}$ for some $x \in G-Z$.

Proof. Since $g \notin Z, N>N \cap 2$. Let $M=C_{G}(g)$ and $\bar{y} \in Z(N / N \cap Z)^{\#}$. Then $y \in N-Z$ and

$$
\left|C_{G}(g)\right| \cdot\left|C_{G}(y)\right| \geq|M|\left|C_{N / N \cap Z}(\bar{y})\right|=\frac{|M||N|}{|\bar{N} \cap Z|} \geq \frac{|M| W \mid}{|M \cap \bar{N}|}=G
$$

Thus either $\left|C_{G}(g)\right| \geq|G|^{\frac{1}{2}}$ or $\left|C_{G}(y)\right| \geq|G|^{\frac{1}{2}}$.
COROLLARY 3.1. If $|\pi(N)| \leq 2, N$ as in Theorem 3, then $G \in C$.
Proof. If equality holds, in the proof of the theorem, then $|\pi(G)| \geq 2$ and we may apply Theorem 1.

COROLLARY 3.2. Suppose the finite group G contains a conjugacy class of cardinality $|[g]|=p^{r}>1$, where p is a prime. Then $G \in C$.

Proof. Let $P \in \operatorname{Syl}_{p}(G)$. Then consideration of the prime-power factorization of $|G|$ shows that $G=C_{G}(g) P$. The result follows from Corollary 3.1 , since $g \notin Z(G)$.

COROLLARY 3.3. If $G \in S$, and $C_{G}(g)$ is a (proper) maximal subgroup of G, then $G \in C$.

Proof. Every maximal subgroup of a solvable group has prime-power index in G. The conclusion now follows from Corollary 3.2.

COROLLARY 3.4. Suppose $G \in S$, and G has "abelian centralizers", that is $C_{G}(g)$ is abelian for all $g \in G-2(G)$. Then $G \in C$.

Proof. It follows from the work of R. Baer [1] on normal nontrivial partitions of finite groups that one of the following holds
(see [5] or [6]):
(a) $\quad G / 2 \cong \operatorname{Sym}(4)$;
(b) G / Z is a Frobenius group, with $C_{G}(x) / Z$ an (abelian) Frobenius complement, for some $x \in G-Z$. If N / Z is the Frobenius kernel, then either N / Z is a p-group, or N is abelian;
(c) G / Z is a p-group;
(d) there is an $x \in G$ such that $C_{G}(x)$ is the subgroup generated by
$Z(G)$ and all $g \in G$ such that $g^{p} \& Z$. Here $\left[G: C_{G}(x)\right]=p$.
In case (a), $(G / Z)^{\prime}=G^{\prime} Z / Z \cong G^{\prime} / G^{\prime} \cap Z$ is abelian. By Theorem 1 of [2] we may assume that $G^{\prime} \cap Z \neq\{1\}$, in which case $G^{\prime} \cap Z=Z\left(G^{\prime}\right)$ by Lemma 2 b of [2]. Thus $G^{\prime} / Z\left(G^{\prime}\right)$ is abelian and G^{\prime} is nilpotent (of class 2). The conclusion now follows by Corollary 2.2. In case (b) $(G / Z) /(N / Z) \cong G / N \cong C_{G}(x) / Z$ is abelian in which case $G^{\prime} \leq N$ and again G^{\prime} is nilpotent. In case (c) G is nilpotent, and the result follows. In case $(d), C_{G}(x)$ is a maximal subgroup and the conclusion follows from Corollary 3.3.

LEMMA 4.1. Let G be a finite group and $G=A B, A, B \leq G$ with $Z(A), Z_{2}(B) \in Z(G)$. Then there exists an element $x \in G-Z$ such that $\left|C_{G}(x)\right| \geq|G|^{\frac{1}{2}}$.

Proof. Clearly $G=(A Z) B$. Let $a \in Z(A)-Z(G)$. If there exists an element $b \in Z(B)-2(G)$, then $\left|C_{G}(a)\right|\left|C_{G}(b)\right| \geq|A||\dot{B}| \geq|G|$, and either $\left|C_{G}(a)\right| \geq|G|^{\frac{1}{2}}$ or $\left|C_{G}(b)\right| \geq|G|^{\frac{1}{2}}$. Otherwise $Z(B)=Z(G)$ so $Z(G) \cap B=Z(B)$. Let $c \in Z_{2}(B)-Z(G)$. Then $\left|C_{G}(a)\right| \cdot\left|C_{G}(c)\right| \geq$ $|A Z| \cdot\left|C_{B}(c)\right| \geq|A Z| \cdot\left|C_{B / Z(B)}(c Z(B))\right|=\frac{|A Z| \cdot|B|}{|Z(B)|}=\frac{|A Z| \cdot|B|}{|Z(G) n B|}$ $\geq \frac{|A Z| \cdot|B|}{|A Z \cap B|}=|G|$. So either $\left|C_{G}(a)\right| \geq|G|^{\frac{1}{2}}$ or $\left|C_{G}(c)\right| \geq|G|^{\frac{1}{2}}$.

LEMMA 4.2. Suppose, in addition to the hypotheses of the above Lemma, that $|A| \nmid B \mid$. Then there exists an $x \in G-2$ with $\left|C_{G}(x)\right|>|G|^{\frac{1}{2}}$.

Proof. In the case that $\left|C_{G}(a)\right| \cdot\left|C_{G}(b)\right| \geq|A| \cdot|B|=|G|$ with $a \in Z(A), b \in Z(B)$ and $a, b \notin Z(G)$, clearly now $|A|>|G|^{\frac{1}{2}}$ or $|B|$ $>|G|^{\frac{1}{2}}$. In the case that $\left|C_{G}(a)\right| \cdot\left|C_{G}(c)\right| \geq \frac{|A Z| \cdot|B|}{|B \cap Z(G)|} \geq|G|$, with $Z(B)=Z(G)$ and $c \in Z_{2}(B)-Z(B)$, suppose
$\left|C_{G}(\alpha)\right|=\left|C_{G}(c)\right|=|G|^{\frac{1}{2}}$. Then also $|A Z|=\frac{|B|}{|B \cap Z(G)|}$, so $|B|=|A| \cdot[Z: Z \cap A]|B \cap Z|$ a contradiction.

THEOREM 4. Let G be a finite group, $G=A B$ for $A, B \leq G$ and $(|A|,|B|)=1$. If $Z_{2}(A), Z_{2}(B) \ddagger Z(G)$, then $\left|C_{G}(x)\right|>|G|^{\frac{1}{2}}$ for some $x \in G-Z(G)$.

Proof. If either $Z(A) \ddagger Z(G)$ or $Z(B) \ddagger Z(G)$ we are done by the previous lemma. So we may assume that $Z(A)=Z(G) \cap A$ and $Z(B)=Z(G) \cap B$. Our hypotheses imply $Z(G)=(Z \cap A) \times(Z \cap B)=$ $Z(A) \times Z(B)$. If $a \in Z_{2}(A)-Z(G)$ and $b \in Z_{2}(B)-Z(G)$, then $\left|C_{G}(a)\right| \geq\left|C_{G / Z(A)}(a Z(A))\right| \geq[A Z: Z(A)]=[A: Z(A)][Z(G): Z(A)]$, and $\left|C_{G}(b)\right| \geq[B: Z(B)][Z(G): Z(B)]$. Thus $\left|C_{G}(a)\right| \cdot\left|C_{G}(b)\right| \geq|A| \cdot|B|=|G|$. If $\left|c_{G}(a)\right| \neq\left|c_{G}(b)\right|$ we are done; if
$\left|C_{G}(a)\right|=\left|C_{G}(b)\right|=|G|^{\frac{1}{2}}$ then $|A| \cdot|Z(B)|^{2}=|B| \cdot|Z(A)|^{2}$ and $(|A|,|B|)=1$ give $|Z|=|G|^{\frac{1}{2}}$, a contradiction.

COROLLARY 4.1. If G is a non-abelion group, $G=G_{p} G_{p}$, and
$Z_{2}\left(G_{p},\right) \ddagger Z(G)$ for some prime p, then $\left|C_{G}(x)\right|>|G|^{\frac{1}{2}}$ for some $x \in G-2(G)$. (In particular, the conclusion holds if G is solvable and $z_{2}\left(G_{p},\right) \nmid Z(G)$ for some prime $\left.p\right)$

Proof. If $Z_{2}\left(G_{p}\right) \neq Z(G)$ then the previous theorem gives the conclusion. If $Z_{2}\left(G_{p}\right) \leq Z(G)$, then $G_{p} \leq Z(G)$ and $Z_{2}\left(G_{p},\right) \leq Z_{2}(G)$. Now $Z_{2}(G)=Z(G)$ would yield $G_{p^{\prime}} \leq Z(G)$ and G abelian, so $Z_{2}(G)>Z(G)$ and the conclusion follows by Lemma $2(c)$ of [2].

THEOREM 5. Let $G \in S-C$. Then the following properties hold:
(a) if $N \nexists G$ and $N \neq 2$, then $|N|>|G|^{\frac{1}{2}}$ and $N \cap Z=Z(N) \neq\{1\}$;
(b) for exactly one prime $p\left||G|, F(G)=20_{p}>2\right.$ and $| O_{p}\left|>|G|^{\frac{1}{2}}\right.$. AZso $\{I\}<Z_{p}=Z\left(O_{p}\right)=Z\left(G_{p}\right)$.
If p is the special prime in (b), then
(c) $O_{p^{\prime}}=Z_{p^{\prime}}$, and $F(G)=O_{p^{\prime}}{ }^{(G)}$;
(d) O_{p} is non-abelion of class 2, $F^{\prime} \leq 2$, and
$\left|O_{p}: z_{p}\right| \leq\left|G_{p}: z_{p}\right|<|G|^{\frac{1}{2}}<\left|O_{p}\right| ;$
(e) $\left[C_{G}\left(O_{p} / Z_{p}\right)\right]_{p},=Z_{p}$ '•

Proof. (a) Suppose $|N| \leq|G|^{\frac{1}{2}}$ and $x \in N-2(G)$. Then $|[x]| \leq|N|-1<|G|^{\frac{1}{2}}$ so $\left|C_{G}(x)\right|>|G|^{\frac{1}{2}}$, contradicting $G \notin C$. Also, if $y \in Z(N)-Z(G)$, then $\left|C_{G}(y)\right| \geq|N|>|G|^{\frac{1}{2}}$, again a contradiction.
(b) Since G is solvable but not nilpotent, $Z(G)<F(G)<G$, so $O_{p}>Z_{p}$ for at least one prime p. If prime $q \neq p$ and $O_{q}>Z_{q}$ then $\left|O_{p} O_{q}\right|>|G|$ by (a), a contradiction. Thus for exactly one prime
$p, F=2 O_{p}>Z$ and $\left|O_{p}\right|>|G|^{\frac{1}{2}}$.
Also $\{Z\}<Z\left(G_{p}\right) \leq Z\left(O_{p}\right)=O_{p} \cap Z(G) \leq Z_{p} \leq Z\left(G_{p}\right)$.
(c) Let $R=O_{p},(G)$. Then $z_{p}, \leq R \forall G$.

By (a), if $R \not Z Z(G)$, then $|R|>|G|^{\frac{1}{2}}$ from which $\left|R O_{p}\right|>|G|$, a contradiction. Thus $O_{p},(G)<Z(G)$ and so $O_{p},(G)=Z_{p}$, Clearly $F(G)=2 O_{p} \leq O_{p^{\prime} p}(G)$. But $O_{p},(G)<2(G)$, so $O_{p^{\prime} p}(G)$ is nilpotent and thus contained in $F(G)$, so (c) is proved.
(d) As $O_{p}>Z_{p}$ and $\left|O_{p}\right|>|G|^{\frac{1}{2}}, O_{p}$ is non-abelian. By Exercise 3 p. 214 in [3], if the nilpotence class of O_{p} is ≥ 3, then O_{p} contains a characteristic abelian subgroup A, which is not contained in $Z\left(O_{p}\right)$, and hence is not contained in $Z(G)$. But then A char $O_{p} \forall G$, $A \ddagger Z(G)$. This contradicts (a). Thus class $\left(O_{p}\right)=2$. since $O_{q} \leq Z$ whenever $q \neq p$, we have class $(F)=2$, so $F^{\prime} \leq Z(F) \leq Z(G)$ (the latter follows from $|F| \geq\left|O_{p}\right|>|G|^{\frac{1}{2}}$). Finally, let $x \in Z_{2}\left(G_{p}\right)-Z\left(G_{p}\right)=Z_{2}\left(G_{p}\right)-Z_{p}$. Then, if $\bar{x}=x Z_{p}$ $\left|C_{G}(x)\right| \geq\left|C_{G_{p}}(x)\right| \geq\left|C_{G_{p} / Z_{p}}(\bar{x})\right|=\left[G_{p}: Z_{p}\right]$. Since $G \notin C,\left[G_{p}: Z_{p}\right]<|G|^{\frac{1}{2}}$. (e) Clearly $C_{G}\left(O_{p}\right) \leq Z(G)$ (since $\left|O_{p}\right|>|G|^{\frac{1}{2}}$). If $y \in\left[C_{G}\left(O_{p} / Z_{p}\right)\right]_{p}$, then $y \in C_{G}\left(O_{p}\right) \leq Z(G)$. The latter follows from Theorem 5.3.2, p. 178 of [3]. For suppose y is a p^{\prime} element and y satisfies $x^{-1} y^{-1} x y \in Z_{p}$ for all $x \in O_{p}$ (that is $y \in C_{G}\left(O_{p} / Z_{p}\right)$). Then the group $\langle y\rangle$, acting by conjugation on O_{p}, is a p^{\prime}-subgroup of Aut (O_{p} ' which stabilizes the normal series $o_{p} \geq Z_{p} \geq\{1\}$ (Lerma 5.3.1 of [3]), and therefore Theorem 5.3.2 applies. Thus conjugation is the identity automorphism, that is $y \in C_{G}\left(O_{p}\right)$.

THEOREM 6. Let $G \in S-C$, and let p be the unique prime satisfying $p \mid[F(G): Z(G)]$. If $\left|Z_{p}\right|=p$ then G satisfies the following properties:
(i) $G_{p}=O_{p}$ is extraspecial;
(ii) $\left|G_{p}\right|=p^{2 m+1} \geq p^{5}$;
(iii) $Z_{2}\left(G_{p^{\prime}}\right)<Z(G)$, and hence $Z\left(G_{p^{\prime}}\right)=Z(G)_{p}$,

Proof. Property (iii) follows inmediately from Corollary 4.1. By Theorem 5(b), (d) we have that $\left|O_{p}(G)\right|>|G|^{\frac{1}{2}}$ and O_{p} is non-abelian; hence $\left|O_{p}(G)\right| \geq p^{3}$. If either $G_{p}>O_{p}$ or O_{p} / Z_{p} is not elementary abelian, then either $\left[G_{p}: Z_{p}\right] \geq\left|O_{p}\right|>|G|^{\frac{1}{2}}$, contradicting Theorem 5(d), or $\left[O_{p}: Z_{p}\right] \geq|H|$ for some characteristic subgroup of H of $O_{p} \forall G$ such that $Z_{p}=Z\left(O_{p}\right)<H<O_{p}$. From the latter, $H \neq Z, H \nexists G$ and $|H|<|G|^{\frac{1}{2}}$ in contradiction to Theorem $5(\mathrm{a})$. We have thus proved (i), and $\left|G_{p}\right|=p^{2 m+1}>|G|^{\frac{1}{2}}$. As for (ii), suppose $\left|G_{p}\right|=p^{3}$, so G_{p} / Z_{p} is elementary abelian of order p^{2}. By Theorem 5(c) $o_{p},(G)=z_{p},(G)$, and by Theorem 6.3 .4 of [3] $G_{p}, / z_{p}$, is faithfully represented on $O_{p}(G) / \Phi\left(O_{p}(G)\right)=G_{p} / Z_{p}$ regarded as a vector space over Z_{p}. Thus $H=G_{p}, / Z_{p} \leq G L(2, p)$; in face $H \leq \operatorname{PGL}(2, p)$ since (by iii) $Z_{2}\left(G_{p},\right) \leq Z(G) \cap G_{p^{\prime}}=Z_{p},=Z\left(G_{p^{\prime}}\right)$ and $Z(H)=\{1\}$. If $p=2$. then $P G L(2,2)=P S L(2,2)$ has no subgroups H of odd order with $Z(H)=\{1\}$, from which we get $H=\{1\}$ and $G \in C$. If $p>2$, then $[P G L(2, p): \operatorname{PSL}(2, p)]=2$. If $p=3$, then $|\operatorname{PGL}(2,3)|=24$ and has no $3^{\prime}-$ subgroups H with $Z(H)=\{1\}$, so $G \in C$. Thus suppose that $p \geq 5$. Here the only solvable $p^{\prime}-$ subgroups of $\operatorname{PSL}(2, p)$ are, by the theorem of Dickson (see [7], Theorem 3.6.25, p. 412):
(i) dihedral groups of order $p \pm 1$ and their subgroups;
(ii) Alt(4) ; (iii) Sym(4).

Since $Z(H)=\{1\}$, it follows (by [4], Theorem $\overline{\underline{V}}$ 8.18(c), p. 506) that some element $x Z_{p}$, of $H^{\#}$ fixes an element $y Z_{p}$ of $\left(G_{p} / Z_{p}\right)^{\#}$ and hence x stabilizes the normal series $\{1\}<Z_{p}<\left\langle Z_{p}, y\right\rangle$. Thus (by [3]. Theorem 5.3.2, p.178) x centralizes $\left\langle z_{p}, y\right\rangle$ and so we have $\left|C_{G}(x)\right| \geq p^{2}\left|C_{G}(x)\right|, x \notin Z$. If $H \cap \operatorname{PSL}(2, p)$ is of type (i), then $|H| \leq 2(p+1)$ and hence:
$\left|C_{G}(x)\right|^{2} \geq p^{4} \cdot 2^{2} \cdot\left|Z_{p^{\prime}}\right|^{2}>p^{3} \cdot 2(p+1) \cdot\left|Z_{p^{\prime}}\right| \geq\left|G_{p}\right|\left|G_{p},|=|G|\right.$, yielding $G \in C$. Suppose that $H \cap P S L(2, p)=A_{4}$ or S_{4}. Since the Sylow 2-subgroups of A_{4} and S_{4} are not cyclic or generalized quaternion, it follows (by [4] , Theorem $\bar{\nabla} 8.18(a)$ p. 506) that some nontrivial 2-element of $H^{\#}$ fixes $y Z_{p} \in\left(G_{p} / Z_{p}\right)^{\#}$. So we may assume that x is a 2-element, $x \notin Z$. If $Z_{p^{\prime}}^{\prime}=\{1\}$, then $\left|C_{G_{p}}(x)\right| \geq 4$, and if $Z_{p^{\prime}} \neq\{1\}$ then $\left|C_{G_{p^{\prime}}}(x)\right| \geq 2\left|Z_{p^{\prime}}\right|$. Thus in both cases, $\left|C_{G_{p^{\prime}}}(x)\right|^{2} \geq 8\left|Z_{p^{\prime}}\right|$, and when $p \geq 7$ we obtain $\left|C_{G}(x)\right|^{2} \geq p^{4}\left|C_{G_{p^{\prime}}}(x)\right|^{2} \geq 8 p^{4}\left|Z_{p^{\prime}}\right|>48 p^{3}\left|Z_{p^{\prime}}\right| \geq|H| p^{3}\left|Z_{p^{\prime}}\right|=|G|$, and $G \in C$. Whenever $\left|Z_{p^{\prime}}\right|>2$, then $\left|C_{G_{p^{\prime}}}(x)\right|^{2} \geq 12 \cdot\left|Z_{p},\right|$ and $G \in C$ since $p>3$. Finally, suppose that $\left|Z_{p}\right|=2, p=5$. If $|H|=24$ then $G \in C$, as above. By [7] Exercise 9, p. 418 $\operatorname{PGL}(2, q)$ contains only solvable p^{\prime}-subgroups of types (i) - (iii), and thus $|H|=48$ is impossible. The proof of the theorem is now complete. \square THEOREM 7. If $G \in S$ and $|G|=\prod_{i=1}^{n} p_{i}{ }_{i}$ where the p_{i} are distinct primes and $\alpha_{i} \leq 4$ for all i, then $G \in C$.

Proof. The proof is by induction on the number of prime factors, n. If $n=1$, then G is nilpotent, so $G \in C$. So assume $n>1$ and the theorem holds for smaller values of n. By Theorem $5(b) \quad O_{p}(G)>Z_{p}(G)$ for a unique prime $p\left||G|\right.$, say $O_{p_{1}}>Z_{p_{1}}$. If $| Z_{p_{1}} \mid=p_{1}$, then $G \in C$ by Theorem 6. If $\left|Z_{p_{1}}\right| \geq p_{1}{ }^{2}$ then either all groups of order $\prod_{i=2}^{n} p_{i}^{\alpha}$ are abelian and, $G \in C$ by Theorem 1 , or by induction there exists a subgroup $H \in C, \quad|H|=\prod_{i=2}^{n} p_{i}{ }^{\alpha}{ }^{i}$. Hence for some $x \in H-Z(H)$ (so $x \notin Z(G)$) we obtain $\left|C_{G}(x)\right| \geq\left|z_{p_{1}}\right|\left|C_{H}(x)\right|>p_{1}^{2}\left(\prod_{i=2}^{n} p_{i}^{\alpha}\right)^{\frac{1}{2}} \geq|G|^{\frac{1}{2}}$, and again $G \in C$.

THEOREM 8. Let $G \in S$, and $|G|=p^{n} q r$ with p, q, r distinet primes. If $S y \tau_{p}(G) \forall G$, then $G \in C$.

Proof. If $(|Z(G)|, q r)>1$, then G contains an abelian subgroup of order $q r$ and $G \in C$ by Theorem 1. Otherwise, by Theorem 5(b), $Z(G)=Z\left(G_{p}\right)<O_{p}=G_{p}$. Thus $Z=Z\left(G_{p}\right)<Z_{2}\left(G_{p}\right)=Z_{2}$, so a subgroup H of order $q r$ acts on $2_{2} / 2$. Since H is non-abelian an element h, say of order r, fixes some $x Z \in\left(Z_{2} / Z\right)^{\#}$. Since (r, p) $=1, h$ centralizes x (using Theorem 5.3.2 of [3]). Thus $\left|C_{G}(x)\right| \geq r \cdot\left|C_{G_{p}}(x)\right| \geq r \cdot\left|C_{G_{p} / Z}(x Z)\right| \geq r \cdot\left[G_{p}: Z\right]$. Also, some element y, of order q, satisfies $\left|C_{G}(y)\right| \geq q \cdot|z|, y \notin z$. We obtain $\left|C_{G}(x)\right| \cdot\left|C_{G}(y)\right| \geq q \cdot r \cdot\left|G_{p}\right|=|G|$. Since $(q, r)=1$ we must have $\left|C_{G}(x)\right| \neq\left|C_{G}(y)\right|$, so $G \in C$.

COROLLARY 8.1. Let $G \in S$ and $|G|=p^{n} q r$, where p, q, r are primes with $p>q>r$. Then $G \in C$.

Proof. Due to the ordering of the primes, it is clear that $\operatorname{Syl}_{p}(G) \forall G$, and $G \in C$ by Theorem 8.

COROLLARY 8.2. Let $G \in S$ and $|G|=p^{n} q r$, where p, q, r are distinct primes and ord $(p) \geq n-1(\bmod q)$. Then $G \in C$.

Proof. If $q\left||Z(G)|\right.$, then $G \in C$ by Theorem 1. If $\operatorname{Syl}_{p}(G) \forall G$ then $G \in C$ by Theorem 8. So assume that $q \nmid|2|$ and $O_{p}<G_{p}$. By Theorem $5(\mathrm{~b}) \quad Z_{p}>\{1\}$, so $\left|O_{p} / Z_{p}\right| \leq p^{n-2}$. Thus an element $x \notin Z, x$ of order q, centralizes O_{p} / Z_{p}. But then $G \in C$ by Theorem 5(e).

COROLLARY 8.3. If $G \in S$ and $|G|=p^{5} q r$ with p, q, r distinct primes, then $G \in C$.

Proof. By Theorem 1 we may assume that $|Z(G)| \mid p^{5}$. Clearly $G \in \mathcal{C}$ if $|Z| \geq p^{3}$. If $|z|=p$ then $\operatorname{Syl}_{p}(G) \forall G$ by Theorem 6, and thus $G \in C$ by Theorem 8. So suppose that $|z|=p^{2}$. Since a subgroup of order q^{r} is non-cyclic, we may assume without loss of generality that an element of order r centralizes an element \bar{x} of the abelian group $O_{p} / Z_{p}=O_{p} / Z$, by the theory of Frobenius complements. Tnus $\left|C_{G}(x)\right| \geq\left|C_{O_{p} / Z_{p}}(\bar{x})\right| \cdot r \geq p^{3} \cdot r$. Also $\left|C_{G}(y)\right| \geq p^{2} \cdot q$, for an element y of order q, and we obtain $\left|C_{G}(x) \| C_{G}(y)\right| \geq|G|$. Since $x, y \not 2(G)$ and $(p, q)=1$ we have $G \in C$.

THEOREM 9. Suppose $G \in S-C$ and $|G|=p^{n} m,(p, m)=1, O_{p}>Z_{p}$. (a) If every non-abelion solvable group of order m is in C, then $n \geq 5$.
(b) If p is the minimal prime dividing $|G|$, then $n \geq 7$.

Proof. (a) By Theorem 5(b), $Z_{p}=2\left(O_{p}\right) \neq\{1\} . \quad$ If $\left|Z_{p}\right|=p$, then $n \geq 5$ by Theorem 6. Suppose $\left|Z_{p}\right| \geq p^{2}$ and $M<G,|M|=m$.

If M is abelian, then $Z M \geq Z_{p} M$ is abelian of order $\geq p^{2} m>|G|^{\frac{1}{2}}$, if $n \leq 4$, contradicting $G \notin C$. If $M \in C$, then for some $x \in M-Z(G)$ we have $\left|C_{G}(x)\right|>p^{2} m^{\frac{1}{2}} \geq|G|^{\frac{1}{2}}$, if $n \leq 4$, again contradicting $G \notin C$.
(b) If $n \leq 4$ then $G \in C$ by Theorem 7, since p is minimal and (by Theorem $5(\mathrm{~b})$) $p^{n}>m$. So assume that $5 \leq n \leq 6$. Let $M<G,|M|=m$. By Theorem 1 we may assume $|\pi(M)| \geq 2$. Since p is minimal and $p^{n}>m$, it follows by Theorem 7 applied to M that either M is abelian or $M \in C$. If M is abelian, then $G \in C$ by Theorem 1. Thus suppose $M \in C$. If $\left|Z\left(G_{p}\right)\right|=\left|Z_{p}\right| \geq p^{3}$, then for some $x \in M-Z$ we find $\left|C_{G}(x)\right|>m^{\frac{1}{2}}\left|Z_{p}(G)\right| \geq m^{\frac{1}{2}} p^{3} \geq|G|^{\frac{1}{2}}, \quad$ and $\quad G \in C$. So assume that $1<\left|Z_{p}\right|<p^{3}$.

$$
\text { Case 1. } \quad p=2
$$

Since $m \cdot 2^{5} \leq|G|<\left|O_{p}\right|^{2}$, if $\left|O_{p}\right| \leq 2^{5}$ then $m<2^{5}$. As m is odd and $m<32$, either every group of order m is nilpotent (and $G \in C$ by Theorem 1) or $m=3 \cdot 7$. Thus $|G|=2^{5} \cdot 3 \cdot 7$, or $|G|=2^{6} \cdot 3 \cdot 7$. In either case, $\left|O_{2}\right|^{2}>|G|$ yields $\left|O_{2}\right|=\left|G_{2}\right|$. and $G \in C$ by Theorem 8. So suppose that $\left|O_{p}\right|=2^{6}=\left|G_{p}\right|$. By Theorem 6, we may assume that $\left|z_{p}\right|>p$, and since $\left|z_{p}\right|<p^{3}$ we have $\left|Z_{p}\right|=p^{2}$. Also, we may suppose that $|\pi(m)| \geq 2$ and not every group of order m is abelian. As $m<64 m$ odd, we have two cases: $m=3 \cdot 7$ and $m=3^{2}$. 7. This is because if $r \mid m, r>7$ a prime, then an element x of order r acts trivially on O_{p} / Z_{p}, of order 16 , and $x \in Z$ by Theorem 5(e). But now $\pi(m)=2$, so every group of order m is abelian, a contradiction. By Theorem $5(\mathrm{~d}), O_{p} / Z_{p}$ is abelian, and since $7 \times(16-1)$ an element of order 7 centralizes some element
$\bar{x} \in\left(O_{p} / z_{p}\right)^{\#}$. Thus $\left|C_{G}(x)\right| \geq\left|O_{p} / z_{p}\right| \cdot 7=16 \cdot 7>|G|^{\frac{1}{2}}$, and $G \in C$.
Case 2. $p>2$.
If $\left|z_{p}\right|=p$ then by Theorem 6 we may assume that $n=5$, and $\left|G_{p} / Z_{p}\right|=\left|O_{p} / Z_{p}\right|=p^{4}$. If $r \in \pi(m)$ then either every element of order r is in $2(G)$, or (by Theorem 5(e)) r divides

п ${ }^{4}\left(p^{i}-1\right)=\left(p^{2}+1\right)\left(p^{2}+p+1\right)(p-1)^{4}(p+1)^{2}$. As $p<r, r$ $i=1$
divides either $p^{2}+1$ or $p^{2}+p+1$. Thus there are at most two primes $r_{1} \neq r_{2} \in \pi(m) \quad$ for which there exist $\quad r_{i}$-elements outside 2(G). Since $p<r_{i}, r_{i}{ }^{2}$ does not divide the above product; but [$\left.G_{r_{i}}: Z_{r_{i}}\right]$ does divide $\prod_{i=1}^{4}\left(p^{i}-1\right)$, again by Theorem $5(\mathrm{e})$, so [$\left.G_{r_{i}}: Z_{r_{i}}\right] \leq r_{i}$ and $G_{r_{i}}$ is abelian. If only one such r_{i} exists then there exists an abelian subgroup of G, of order m, and $G \in C$. So suppose that such $r_{1} \neq r_{2}$ exist, $r_{1} \mid p^{2}+1$ and $r_{2} \mid p^{2}+p+1$. Since $r_{2} \nmid p^{4}-1$ there exists an $x \in O_{p}-Z_{p}$ such that $r_{2}| | C_{G}(x) \mid$. Since O_{p} / Z_{p} is abelian (Theorem 5), $\left|C_{G}(x)\right| \geq r_{2} p^{4}>p^{5}=\left|O_{p}\right|>|G|^{\frac{1}{2}}$. Case 2 is complete and the theorem is proved.

COROLLARY 9.1. Suppose $G \in S$ and $|G|=p^{n} q_{q}{ }_{r}{ }^{l}$ where p, q, r are distinct primes. If $p^{n}>|G|^{\frac{1}{2}}$ and $n \leq 4$, then $G \in C$.

Finally, using many of the previous theorems and corollaries, together with a few more specialized results, the authors have proved the following:

THEOREM 10. Every non-abelian group of odd order $<10^{6}$ is a member of C. Every non-abelion solvable group of even order $\leq 10^{4}$ is a member of C.

In the odd order case we rely on the theorem of Feit-Thompson that every group of odd order is solvable.

References

[1] R. Baer, "Partitionen endlicher Gruppen", Math. Zeit. 75 (1961) 333-372.
[2] E.A. Bertram, "Large centralizers in finite solvable groups", Israe 2 J. Math. 47 (1984), 335-344.
[3] D. Gorenstein, "Finite Groups", (Harper and Row, New York, 1968).
[4] B. Huppert, "Endlicher Gruppen", Vol.I, (Springer-Verlag, Berlin, New York, 1967).
[5] D. M. Rocke, "Groups with abelian centralizers", Unpub. part of Ph. D. Diss., Univ. of Illinois, 1972.
[6] R. Schmidt, "Zentralisatorverbände endlicher Gruppen", Sem. Math. de Univ. Padova 44 (1970), 97-111.
[7] M. Suzuki, "Group Theory I", Springer-Verlag, Berlin-HeidelbergNew York, 1982.

Department of Mathematics
University of Hawaii-Manoa
Honolulu,
Hawaii. 96822.

School of Mathematics
Tel-Aviv University
Ramat-Aviv, 69978
Tel-Aviv.
Israel.

