ON DIFFERENTIAL EQUATIONS OF VON GEHLEN AND ROAN

ETSURO DATE
Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University
e-mail:date@ist.osaka-u.ac.jp

Abstract

Polynomials appearing in the description of ground states of superintegrable chiral Potts models are shown to satisfy a special class of generalised hypergeometric differential equations after a simple modification. This proves a conjecture of von-Gehlen and Roan.

2000 Mathematics Subject Classification. 47E05, 82B23

1. Introduction. Let $N \geq 2$ be a positive integer and $\omega=\exp (2 \pi i / N)$ a primitive N th root of unity. Take a pair of linear operators $X, Z \in \operatorname{End}\left(\mathbf{C}^{N}\right)$ that satisfies the following commutation relation and the normalisation condition:

$$
Z X=\omega X Z, \quad X^{N}=Z^{N}=i d
$$

The superintegrable chiral Potts Hamiltonian (see for example [1], [2]) on a chain of length L is a linear operator on $\left(\mathbf{C}^{N}\right)^{\otimes L}$ defined by

$$
H\left(k^{\prime}\right)=-\sum_{l=1}^{L} \sum_{n=1}^{N-1} \frac{2}{1-\omega^{-n}}\left(X_{l}^{n}+k^{\prime} Z_{l}^{n} Z_{l+1}^{N-n}\right)
$$

where k^{\prime} is a real parameter and X_{l} denotes the operator acting on the l th component as X and for other components as identity.

Note that if we write

$$
H\left(k^{\prime}\right)=H_{0}+k^{\prime} H_{1},
$$

H_{0} and H_{1} satisfy the Dolan-Grady relation

$$
\left[H_{i},\left[H_{i},\left[H_{i}, H_{j}\right]\right]\right]=4 N^{2}\left[H_{i}, H_{j}\right], \quad i, j=0,1
$$

and give a representation of the so-called Onsager algebra, which can also be viewed as either a deformation of the nilpotent part of the affine Lie algebra of type $A_{1}^{(1)}$ or a quotient of the loop algebra of $\mathfrak{s t}_{2}$.

The principal problem in statistical mechanics defined by this operator is to find eigenvalues and eigenvectors. Bethe Ansatz affords us a method for such purpose.

It is known that ground state eigenvalues and eigenvectors are described by zeroes of polynomials $F_{j}(\mathrm{cf} .[\mathbf{1}, \mathbf{2}, \mathbf{3}, 4, \mathbf{6}])$ defined by the relation

$$
\left(\frac{t^{N}-1}{t-1}\right)^{L}=\sum_{j=0}^{N-1} t^{j} F_{j+1}(s), \quad s=t^{N} .
$$

In $[\mathbf{3}, \mathbf{4}, \mathbf{6}]$ von Gehlen and Roan derived a system of first-order differential equation for F_{j}.

The vector of polynomials

$$
F={ }^{t}\left(F_{1}, F_{2}, \ldots, F_{N}\right)
$$

satisfy

$$
\begin{gathered}
N s(s-1) \frac{d F}{d s}=B F, \\
B=\left(\begin{array}{cccc}
d_{0} & -L s & \cdots & -L s \\
-L & d_{1} & \ddots & \vdots \\
\vdots & \ddots & \ddots & -L s \\
-L & \cdots & -L & d_{N-1}
\end{array}\right), \\
d_{j}=L(N-1) s-j(s-1) .
\end{gathered}
$$

When $N=2$ (the Ising case) each polynomial satisfies Gauß hypergeometric differential equation. Further by a suitable change of variable the polynomials turn out to be Chebyshev polynomials, and this was convenient for the description of eigenvalues.

Proceeding further they also derived third-order differential equations for the case $N=3$. One of them takes the following form:

$$
\begin{aligned}
& 27 s^{2}(s-1)^{2} F_{1}^{\prime \prime \prime}-27 s(s-1)((2 L-4) s+2) F_{1}^{\prime \prime} \\
& \quad+3\left(3 L^{2} s(4 s-1)-3 L s(10 s-7)+2(s-1)(10 s-1)\right) F_{1}^{\prime} \\
& \quad-(L-1)\left(L(L(8 s+1)-4(s-1)) F_{1}=0\right.
\end{aligned}
$$

These equations have regular singular points only at $s=0,1, \infty$, although this in not explicitly mentioned in $[\mathbf{3}, \mathbf{4}, \mathbf{6}]$. They also studied the zeroes of polynomials in the case of $N=3$ numerically.

Based on such calculations they conjectured that each of F_{j} satisfies an N th-order ordinary differential equations of the form that follows.

Conjecture 1.

$$
\begin{aligned}
& N^{N} s^{N-1}(s-1)^{N-1} \frac{d^{N} F_{j}}{d s^{N}} \\
& \quad+\sum_{k=1}^{N-1} N^{k} s^{k-1}(s-1)^{k-1} D_{j k}(s) \frac{d^{k} F_{j}}{d s^{k}}+D_{j 0}(s) F_{j}=0
\end{aligned}
$$

where $D_{j k}$ are polynomials in s.
In this paper we show that after a simple transformation the scalar differential equations in question are generalised hypergeometric differential equations, which
form a special class of Fuchsian differential equations which have regular singular points only at three points $0,1, \infty$ and no accessory parameters (rigid system).

We find that defining G by $G(s)=(s-1)^{-L} F(s)$ the differential equations for G_{j} become a special kind of generalised hypergeometric differential equations.

For a given generalised differential equation, there corresponds a system of firstorder differential equations of Okuba type. The explicit relationship is given for example in [5]. However the converse direction seems not to be known. In fact as we will see in our case each G_{j} satisfies different generalised differential equations.

The detailed proof will appear elsewhere.
2. A normal form of differential equations. The differential equations for G takes the following form:

$$
\begin{aligned}
& N \frac{d G}{d s}=\left(-\frac{L}{s-1} A_{1}+\frac{1}{s} A_{0}\right) G \\
& A_{1}=\left(\begin{array}{ccc}
1 & \cdots & 1 \\
\vdots & \ddots & \vdots \\
1 & \cdots & 1
\end{array}\right), \quad A_{0}=\left(\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
L & -1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
L & \cdots & L & -N+1
\end{array}\right)
\end{aligned}
$$

First we look for an N th-order matrix P and numbers a_{j}, b_{j} which satisfy the following relations:

$$
\frac{1}{N} L P A_{1}=\left(\begin{array}{cccc}
0 & 0 & \cdots & 0 \tag{1}\\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 \\
a_{0} & a_{1}-b_{1} \cdots & a_{N-2}-b_{N-2} & a_{N-1}-b_{N-1}
\end{array}\right) P
$$

$$
\frac{1}{N} P A_{0}=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \tag{2}\\
\vdots & \ddots & \ddots & \ddots & \vdots \\
& & \ddots & & 0 \\
0 & & \cdots & 0 & 1 \\
0 & -b_{1} & \cdots & -b_{N-2} & -b_{N-1}
\end{array}\right) P
$$

If we can find such non-singular matrix P, then the first component $(P G)_{1}$ of $P G$ is annhilated by the generalised hypergeometric differential operator with the parameters a_{j}, b_{j} :

$$
\begin{equation*}
s\left(\sum_{j=0}^{N} a_{j} \vartheta^{j}\right)-\sum_{j=1}^{N} b_{j} \vartheta^{j}, \quad \vartheta=s \frac{d}{d s}, \quad a_{N}=1, b_{N}=1 \tag{3}
\end{equation*}
$$

Factorising as

$$
\begin{array}{r}
\sum_{j=0}^{N} a_{j} \vartheta^{j}=\prod_{j=1}^{N}\left(\vartheta+\alpha_{j}\right), \\
\sum_{j=1}^{N} b_{j} \vartheta^{j}=\vartheta \prod_{j=1}^{N-1}\left(\vartheta+\beta_{j}-1\right), \tag{5}
\end{array}
$$

we have another form of generalised hypergeometric differential operator.
3. Transformation matrix. Define

$$
c_{i}=(r(N, i-1, x)-s(N, i-1)) /(-N)^{N-i+1}, \quad f_{i}=-s(N, i-1) /(-N)^{N-i+1}
$$

where $r(N, i, x)$ is defined by

$$
\sum_{i=0}^{N} r(N, i, x) t^{i}=\prod_{j=1}^{N}(t+x-j+1)
$$

and $s(N, i)$ denotes the Stirling number of the first kind.
We set

$$
p_{i j}=(-1)^{N+j} \sum_{s=0}^{j-1}\binom{N-L-1}{s}\binom{L}{j-1-s}(L+s)^{i-1} /(-N)^{i-1}
$$

and consider the square matrix P of order N with its (i, j) entries $p_{i j}$.
Proposition 1. The matrix P satisfies

$$
\begin{aligned}
\frac{L}{N} P\left(\begin{array}{ccc}
1 & \cdots & 1 \\
\vdots & \ddots & \vdots \\
1 & \cdots & 1
\end{array}\right) & =\left(\begin{array}{ccc}
0 & \cdots & 0 \\
\vdots & & \vdots \\
0 & \cdots & 0 \\
c_{1} & \cdots & c_{N}
\end{array}\right) P, \\
\frac{1}{N} P\left(\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
L & -1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
L & \cdots & L & -N+1
\end{array}\right) & =\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
& & \ddots & & 0 \\
0 & & \cdots & 0 & 1 \\
0 & f_{2} & \cdots & f_{N-1} & f_{N}
\end{array}\right) P .
\end{aligned}
$$

4. Inverse matrix. Define $q_{i j}$ by the relation

$$
\sum_{j=0}^{N-1} q_{i, j+1} t^{j}=\prod_{k=0}^{i-2}(t-L-k) \prod_{k=i}^{N-1}(t-k)
$$

The matrix Q with entries $(-N)^{j-1} q_{i j}$ satisfies the relation

$$
Q P=\prod_{k=1}^{N}(-L+k) I_{N},
$$

where I_{N} is the identity matrix of order N.
5. Scalar differential operator. Assume $L>N$. Then using Proposition 1 we see that the entries in (1), (2) are given by

$$
\begin{aligned}
& b_{j}=-(-N)^{-N+j-1} s(N, j-1), \\
& a_{j}=(-N)^{-N+j-1} N^{-N+j-1} r(N, j-1,-L) .
\end{aligned}
$$

The corresponding N th-order differential operator (3) is expressed as

$$
s \prod_{k=1}^{N}\left(\vartheta+\frac{L+k-1}{N}\right)-\prod_{k=1}^{N}\left(\vartheta+\frac{k-1}{N}\right) .
$$

Defining $H=P G$, we see that the first component H_{1} is annihilated by the above operator.

Further using the inverse matrix Q components of G are given as

$$
\begin{aligned}
G_{i} & =\sum_{j=1}^{N}(-N)^{j-1} q_{i j} H_{j} / \prod_{k=1}^{N}(k-L) \\
& =(-1)^{N-1} \prod_{k=0}^{i-2}(N \vartheta+L+k) \prod_{k=i}^{n-1}(N \vartheta+k) H_{1}
\end{aligned}
$$

Defining

$$
L_{i}=s \prod_{k=1}^{n}(N \vartheta+L+i+k-2)-\prod_{k=1}^{n}(N \vartheta+i-k)
$$

and using

$$
\vartheta s=s(\vartheta+1),
$$

we have the following.
Theorem 1.

$$
L_{i} G_{i}=0, \quad i=1, \ldots, N
$$

Rewriting these differential equations those for F_{j} and assuming that L is a positive integer, we proved the conjecture of von Gehlen and Roan.
6. Power series solutions at $s=0$. Here we assume that L is a positive integer. Let us consider generalised hypergeometric series

$$
\begin{aligned}
& F\left(\begin{array}{cccc}
\alpha_{1}, & \alpha_{2}, & \cdots, & \alpha_{n} \\
\beta_{1}, & \beta_{2}, & \cdots, & \beta_{n-1}, \\
\mid & 1
\end{array}\right) \\
& =\sum_{k=0}^{\infty} \frac{\left(\alpha_{1}\right)_{k}\left(\alpha_{2}\right)_{k} \cdots\left(\alpha_{n}\right)_{k}}{\left(\beta_{1}\right)_{k}\left(\beta_{2}\right)_{k} \cdots\left(\beta_{n-1}\right)_{k} k!} s^{k} \\
& (\alpha)_{k}=\alpha(\alpha+1) \cdots(\alpha+k-1)
\end{aligned}
$$

where $\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{n-1}$ are parameters. The symbols $(\alpha)_{k}$ are sometimes called Pochhammer symbol.

As is known solutions of generalised hypergeometric differential equation (3) around $s=0$ are given by

$$
F\left(\begin{array}{lllc}
\alpha_{1}, & \alpha_{2}, & \cdots, & \alpha_{n} \\
\beta_{1}, & \beta_{2}, & \cdots, & \beta_{n-1}, \\
1
\end{array}\right)
$$

with $\alpha_{1}, \ldots, \alpha_{N}, \beta_{1}, \ldots, \beta_{N-1}$ defined by the relations (4), (5) and also

$$
\left.\begin{array}{rllll}
s^{1-\beta_{j}} F\left(\begin{array}{cccc}
1+\alpha_{1}-\beta_{j}, & \cdots, & 1+\alpha_{j-1}-\beta_{j}, & \\
1+\beta_{1}-\beta_{j}, & \cdots, & 1+\beta_{j-1}-\beta_{j} & \\
1+\alpha_{j}-\beta_{j}, & 1+\alpha_{j+1}-\beta_{j}, & \cdots, & 1+\alpha_{N}-\beta_{j} \\
2-\beta_{j}, & 1+\beta_{j+1}-\beta_{j}, & \cdots, & 1+\beta_{N-1}-\beta_{j}
\end{array} \quad 1\right.
\end{array}\right)
$$

for $j=1, \ldots, N-1$.
Therefore in our case the power series solutions of $L_{i} f=0$ are given by the following generalised hypergeometric series:

$$
F\left(\left.\begin{array}{cccccc}
\frac{L+i-1}{N}, & \frac{L+i}{N}, & \cdots, & \frac{L+N-1}{N}, & \cdots, & \frac{L+i+N-2}{N} \\
\frac{i}{N}, & \frac{i+1}{N}, & \cdots, & 1, & \cdots, & \frac{i+N-1}{N}
\end{array} \right\rvert\, s\right) .
$$

In our case since the parameters are special, the product of Pochhammer symbols in the coefficients are simplified. As a result we have the following series:

$$
\sum_{k=0}^{\infty} \frac{(L+i-1)_{k N}}{(i)_{k N}} s^{k}
$$

We see that these are essentially a sum of binominal series in $s^{1 / N}$:

$$
\begin{aligned}
& \frac{1}{N} \sum_{j=0}^{N} f_{i}\left(\omega^{j} s^{1 / N}\right), \quad \omega=\exp (2 \pi i / N), \\
f_{i}(x)= & \sum_{n=0}^{\infty} \frac{(L+i-1)_{n}}{(i)_{n}} x^{n} \\
= & \frac{1}{\binom{-L}{i-1}}\left(x^{1-i}(1-x)^{-L}-x^{1-i} \sum_{k=0}^{i-2}\binom{-L}{k}(-x)^{k}\right) .
\end{aligned}
$$

Acknowledgement. This work was partially supported by JSPS Grant-in-Aid for Scientific Research B-17340046.

REFERENCES

1. G. Albertini, B. M. McCoy and J. H. H. Perk, Eigenvalue spectrum of the superintegrable chiral Potts model, in Advanced studies in pure mathematics, vol. 19 (Kinokuniya Academic, Tokyo, 1989), 1-55.
2. R. J. Baxter, The superintegrable chiral Potts model, Phys. Lett. A, 133, 185-189.
3. G. von Gehlen, Onsager's algebra and partially orthogonal polynomials, Int. J. Mod. Phys. B, 16 (2002), 2129-2136.
4. G. von Gehlen and S. S. Roan, The superintegrable chiral Potts quantum chain and generalized Chebyshev polynomials, in Integrable structure of exactly solvable two-dimensional models of quantum field theory, vol. 35 (Pakuliak S. and von Gehlen G., Editors) (Kluwer Academic Publisher, Dordrecht, 2001), 155-172.
5. K. Okubo, K. Takano and S. Yoshida, A connection problem for the generalized hypergeometric equation. Funkcial. Ekvac. 31 (1988), 483-495.
6. S. S. Roan, Structure of certain Chebyshev-type polynomials in Onsager's algebra representation, J. Comput. Appl. Math. 202 (2007), 88-1-4.
