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1. Introduction. Let N ≥ 2 be a positive integer and ω = exp(2π i/N) a primitive
Nth root of unity. Take a pair of linear operators X , Z ∈ End(CN) that satisfies the
following commutation relation and the normalisation condition:

ZX = ωXZ, XN = ZN = id.

The superintegrable chiral Potts Hamiltonian (see for example [1], [2]) on a chain
of length L is a linear operator on (CN)⊗L defined by

H(k′) = −
L∑

l=1

N−1∑
n=1

2
1 − ω−n

(
Xn

l + k′Zn
l ZN−n

l+1

)
,

where k′ is a real parameter and Xl denotes the operator acting on the lth component
as X and for other components as identity.

Note that if we write

H(k′) = H0 + k′H1,

H0 and H1 satisfy the Dolan–Grady relation

[Hi, [Hi, [Hi, Hj]]] = 4N2[Hi, Hj], i, j = 0, 1

and give a representation of the so-called Onsager algebra, which can also be viewed
as either a deformation of the nilpotent part of the affine Lie algebra of type A(1)

1 or a
quotient of the loop algebra of sl2.

The principal problem in statistical mechanics defined by this operator is to find
eigenvalues and eigenvectors. Bethe Ansatz affords us a method for such purpose.

https://doi.org/10.1017/S001708950800476X Published online by Cambridge University Press

https://doi.org/10.1017/S001708950800476X


44 ETSURO DATE

It is known that ground state eigenvalues and eigenvectors are described by zeroes
of polynomials Fj (cf. [1, 2, 3, 4, 6]) defined by the relation

(
tN − 1
t − 1

)L

=
N−1∑
j=0

tjFj+1(s), s = tN .

In [3, 4, 6] von Gehlen and Roan derived a system of first-order differential equation
for Fj.

The vector of polynomials

F = t (F1, F2, . . . , FN)

satisfy

Ns(s − 1)
dF
ds

= BF,

B =

⎛
⎜⎜⎜⎝

d0 −Ls · · · −Ls

−L d1
. . .

...
...

. . .
. . . −Ls

−L · · · −L dN−1

⎞
⎟⎟⎟⎠ ,

dj = L(N − 1)s − j(s − 1).

When N = 2 (the Ising case) each polynomial satisfies Gauß hypergeometric
differential equation. Further by a suitable change of variable the polynomials turn
out to be Chebyshev polynomials, and this was convenient for the description of
eigenvalues.

Proceeding further they also derived third-order differential equations for the case
N = 3. One of them takes the following form:

27s2(s − 1)2F
′′′
1 − 27s(s − 1)((2L − 4)s + 2)F

′′
1

+ 3(3L2s(4s − 1) − 3Ls(10s − 7) + 2(s − 1)(10s − 1))F
′
1

− (L − 1)(L(L(8s + 1) − 4(s − 1))F1 = 0.

These equations have regular singular points only at s = 0, 1,∞, although this in
not explicitly mentioned in [3, 4, 6]. They also studied the zeroes of polynomials in the
case of N = 3 numerically.

Based on such calculations they conjectured that each of Fj satisfies an Nth-order
ordinary differential equations of the form that follows.

CONJECTURE 1.

NNsN−1(s − 1)N−1 dNFj

dsN

+
N−1∑
k=1

Nksk−1(s − 1)k−1Djk(s)
dkFj

dsk
+ Dj0(s)Fj = 0,

where Djk are polynomials in s.

In this paper we show that after a simple transformation the scalar differential
equations in question are generalised hypergeometric differential equations, which
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form a special class of Fuchsian differential equations which have regular singular
points only at three points 0, 1, ∞ and no accessory parameters (rigid system).

We find that defining G by G(s) = (s − 1)−LF(s) the differential equations for Gj

become a special kind of generalised hypergeometric differential equations.
For a given generalised differential equation, there corresponds a system of first-

order differential equations of Okuba type. The explicit relationship is given for
example in [5]. However the converse direction seems not to be known. In fact as
we will see in our case each Gj satisfies different generalised differential equations.

The detailed proof will appear elsewhere.

2. A normal form of differential equations. The differential equations for G takes
the following form:

N
dG
ds

=
(

− L
s − 1

A1 + 1
s

A0

)
G,

A1 =
⎛
⎝ 1 · · · 1

...
. . .

...
1 · · · 1

⎞
⎠ , A0 =

⎛
⎜⎜⎜⎝

0 0 · · · 0

L −1
. . .

...
...

. . .
. . . 0

L · · · L −N + 1

⎞
⎟⎟⎟⎠ .

First we look for an Nth-order matrix P and numbers aj, bj which satisfy the
following relations:

1
N

LPA1 =

⎛
⎜⎜⎝

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0
a0 a1 − b1 · · · aN−2 − bN−2 aN−1 − bN−1

⎞
⎟⎟⎠ P, (1)

1
N

PA0 =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
...

. . .
. . .

. . .
...

. . . 0
0 · · · 0 1
0 −b1 · · · −bN−2 −bN−1

⎞
⎟⎟⎟⎟⎟⎠ P. (2)

If we can find such non-singular matrix P, then the first component (PG)1 of PG is
annhilated by the generalised hypergeometric differential operator with the parameters
aj, bj:

s

⎛
⎝ N∑

j=0

ajϑ
j

⎞
⎠ −

N∑
j=1

bjϑ
j, ϑ = s

d
ds

, aN = 1, bN = 1. (3)

Factorising as
N∑

j=0

ajϑ
j =

N∏
j=1

(ϑ + αj), (4)

N∑
j=1

bjϑ
j = ϑ

N−1∏
j=1

(ϑ + βj − 1), (5)

we have another form of generalised hypergeometric differential operator.
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3. Transformation matrix. Define

ci = (r(N, i − 1, x) − s(N, i − 1))/(−N)N−i+1, fi = −s(N, i − 1)/(−N)N−i+1,

where r(N, i, x) is defined by

N∑
i=0

r(N, i, x)ti =
N∏

j=1

(t + x − j + 1)

and s(N, i) denotes the Stirling number of the first kind.
We set

pij = (−1)N+j
j−1∑
s=0

(
N − L − 1

s

)(
L

j − 1 − s

)
(L + s)i−1/(−N)i−1

and consider the square matrix P of order N with its (i, j) entries pij.

PROPOSITION 1. The matrix P satisfies

L
N

P

⎛
⎝ 1 · · · 1

...
. . .

...
1 · · · 1

⎞
⎠ =

⎛
⎜⎜⎝

0 · · · 0
...

...
0 · · · 0
c1 · · · cN

⎞
⎟⎟⎠ P,

1
N

P

⎛
⎜⎜⎜⎝

0 0 · · · 0

L −1
. . .

...
...

. . .
. . . 0

L · · · L −N + 1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
...

. . .
. . .

. . .
...

. . . 0
0 · · · 0 1
0 f2 · · · fN−1 fN

⎞
⎟⎟⎟⎟⎟⎠ P.

4. Inverse matrix. Define qij by the relation

N−1∑
j=0

qi,j+1tj =
i−2∏
k=0

(t − L − k)
N−1∏
k=i

(t − k).

The matrix Q with entries (−N)j−1qij satisfies the relation

QP =
N∏

k=1

(−L + k)IN,

where IN is the identity matrix of order N.

5. Scalar differential operator. Assume L > N. Then using Proposition 1 we see
that the entries in (1), (2) are given by

bj = −(−N)−N+j−1s(N, j − 1),

aj = (−N)−N+j−1N−N+j−1r(N, j − 1,−L).
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The corresponding Nth-order differential operator (3) is expressed as

s
N∏

k=1

(
ϑ + L + k − 1

N

)
−

N∏
k=1

(
ϑ + k − 1

N

)
.

Defining H = PG, we see that the first component H1 is annihilated by the above
operator.

Further using the inverse matrix Q components of G are given as

Gi =
N∑

j=1

(−N)j−1qijHj/

N∏
k=1

(k − L)

= (−1)N−1
i−2∏
k=0

(Nϑ + L + k)
n−1∏
k=i

(Nϑ + k) H1.

Defining

Li = s
n∏

k=1

(Nϑ + L + i + k − 2) −
n∏

k=1

(Nϑ + i − k)

and using

ϑs = s(ϑ + 1),

we have the following.

THEOREM 1.

LiGi = 0, i = 1, . . . , N.

Rewriting these differential equations those for Fj and assuming that L is a positive
integer, we proved the conjecture of von Gehlen and Roan.

6. Power series solutions at s = 0. Here we assume that L is a positive integer.
Let us consider generalised hypergeometric series

F
(

α1, α2, · · · , αn

β1, β2, · · · , βn−1, 1
|s

)

=
∞∑

k=0

(α1)k(α2)k · · · (αn)k

(β1)k(β2)k · · · (βn−1)kk!
sk,

(α)k = α(α + 1) · · · (α + k − 1),

where α1, . . . , αn, β1, . . . , βn−1 are parameters. The symbols (α)k are sometimes called
Pochhammer symbol.

As is known solutions of generalised hypergeometric differential equation (3)
around s = 0 are given by

F
(

α1, α2, · · · , αn

β1, β2, · · · , βn−1, 1
|s

)
,
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with α1, . . . , αN , β1, . . . , βN−1 defined by the relations (4), (5) and also

s1−βj F
(

1 + α1 − βj, · · · , 1 + αj−1 − βj,

1 + β1 − βj, · · · , 1 + βj−1 − βj

1 + αj − βj, 1 + αj+1 − βj, · · · , 1 + αN − βj

2 − βj, 1 + βj+1 − βj, · · · , 1 + βN−1 − βj 1
| s

)
,

for j = 1, . . . , N − 1.
Therefore in our case the power series solutions of Lif = 0 are given by the

following generalised hypergeometric series:

F
( L+i−1

N , L+i
N , · · · , L+N−1

N , · · · , L+i+N−2
N

i
N , i+1

N , · · · , 1, · · · , i+N−1
N

|s
)

.

In our case since the parameters are special, the product of Pochhammer symbols
in the coefficients are simplified. As a result we have the following series:

∞∑
k=0

(L + i − 1)kN

(i)kN
sk.

We see that these are essentially a sum of binominal series in s1/N :

1
N

N∑
j=0

fi(ωjs1/N), ω = exp(2π i/N),

fi(x) =
∞∑

n=0

(L + i − 1)n

(i)n
xn

= 1(−L
i−1

)
(

x1−i(1 − x)−L − x1−i
i−2∑
k=0

(−L
k

)
(−x)k

)
.
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