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SOME SEPARABLE SPACES AND REMOTE POINTS 

ALAN DOW 

0. Introduction. A point p Ç PX\X is called a remote point of X if 
P $. c\pxA for each nowhere dense subset A of X. If X is a topological sum 
E {Xn : n G o>} we c a l l ^ C ^ (*) mce if {n : 7? H Xn = 0} is finite for 
each F £ J^. We call J ^ remote if for each nowhere dense subset 4̂ of X 
there is an .F Ç ̂  with F C\ A = 0 and n-linked if each intersection of 
at most w elements of J ^ is non-empty. 

For a space -X" = X XTn, remote points have been constructed in a 
variety of cases and under varying set-theoretic assumptions. Assuming 
CH, there are remote points if |C*(X)| = c (cf. [5]). Van Douwen, and 
independently Chae and Smith, constructed remote points if X has count
able 7r-weight and van Mill did so if each Xn is a product of at most a>i 
spaces with countable 7r-weight. In [3], I extend van Mill's result to 
products of arbitrarily many factors. In [2], assuming MA, remote points 
are constructed if X is ccc and of weight at most c. In each of the above 
constructions, not only are remote points constructed, but so are nice 
remote filters. In [6], van Mill requires that he can construct nice remote 
filters on certain spaces to construct special points in @o)\œ. It is unknown 
if every ccc (or separable) nonpseudocompact space has remote points. 
We present our examples for two major reasons. Firstly, in each of the 
above constructions which take place in ZFC, a remote filter^ on X = 
J2 Xn can be found which is not only nice but also w-linked on Xn. 
Secondly, in the constructions using special set-theoretic a s sumpt ions^ 
can always be found to be nice. We give an example of a compact separ
able space K which does not have any remote 2-linked collections of 
closed sets but co X K has remote points. It is shown that it is consistent 
that there is a K so that œ X K has no nice remote filters. Also K may be 
chosen so that it is unknown if co X K has remote points. 

We hope that these examples are getting close to settling the question 
of there being a ccc space without remote points. The proof of the non
existence of nice remote filters is more difficult than the rest because it 
requires a new consistency result. We defer the proof of this result until 
the last section. Our notation and terminology is standard. We identify 
cardinals with initial ordinals and an ordinal is the set of its predecessors. 
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For sets A, B AB is the set of functions from A to B. For a cardinal X and 
a set A, 

[AY = {B CA:\B\ = \}; 

[A]-x and [^4]<x have the obvious meanings. 
Let M be a filter on co and / , g 6 wco, define f <u g if and only if 

{w :/(w) < g(n)} £ u. U u is the cofinite filter we shall often suppress 
the subscript u. For a filter u on co, we shall let XM denote the least cardinal 
of a cofinal subset of (wco, < u ) . The cardinals 

d = Xcofimte and 

b = min {\B\ : B Cuu is unbounded in ("co, <COf.)} 

are well known. We shall define the cardinal K to be the smallest cardinal 
such that \u < K for all u Ç co*. It is well known that K > coi. We shall call 
D C wco a u-scale if .D is cofinal in (wco, < J and (Z), < t t) is of order type XM. 
Note that if u € co*, a w-scale always exists. 

1. The examples. We construct many examples with the same con
struction. We shall need special subsets of wco for this purpose. 

1.1 Definition. A subset F C "co is admissable if F contains the constant 
functions, F is a V-subsemilattice of wco 

(f V g(n) = max (/(**), g("))) 

and countable subsets of Fare bounded in (F, <COf)-
Let 5 = Un€« w<o, i.e., S is the set of finite sequences of integers. For 

s £ Sy let dom(s) be the domain of s and l(s) = |dom(s)|. For each 
s £ S and / £ wco define 

£/(*»/) = {' € 5 : 5 C / and for l(s) ^ n < /(/), /(») > f(n)\. 

Then for each admissable F C "co, 

^F = \u(s,f) isesje F\ 
forms a clopen base for a topology on 5. Let BF' be the boolean algebra 
of subsets of S generated by BF and let KF be the Stone space of BF'. 
We can think of S as being densely embedded in KF and 

\C\KFU(SJ) : S G 5 , / 6 ^} 

forms a ?r-base. 
If F = wco then the topology on 5 obtained from F is homeomorphic to 

the subspace of the box product of countably many copies of the con
verging sequence {l/# : n £ co} W {0} consisting of those elements which 
are eventually 0. Notice that U(s, f) P\ U(t, g) ^ 0 if and only if 5 C t, 
t{n) > f(n) for l(s) ^ n < l{t) or tC 5 and s(n) > g(n) for l(t) Sn<l(s). 

https://doi.org/10.4153/CJM-1982-096-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1982-096-6


1380 ALAN DOW 

2. Remote 2-linked collections. As mentioned in the introduction 
all of the spaces for which there are ZFC constructions of remote points 
points can be constructed from w-linked remote collections. The space KF, 
however, can be chosen so that it does not have a remote 2-linked 
collection. 

2.1 THEOREM. Let F C uw be admissable and unbounded in ("co, <COf)-
There are no remote 2-linked collections of closed subsets of KF. 

Proof. Suppose that J ^ is such a collection on KF = K. For each/ £ F, 
let 

Cf= {U(s,f):l(s) > 0 } ; 

U Cf is dense open in K and is proper as there is no finite dense subcollec
tion. Therefore K\U Cf is nowhere dense so there is a compact Hf Ç £F 
with 

Hf C\ K\KJ Cf = id. 

Hence we may choose a finite set Sf C S, such that 

H,CV{U(s,f) :s£ Sf}. 

Let n(J) = max {l(s) : 5 £ Sf\. Since a countable union of bounded 
subsets of (wco, < ) is bounded, there is an n £ co and an unbounded set 
G C F such that n{g) — n for each g £ G. Therefore there is a j > n 
such that {g(j) : g G G} is infinite. Choose f £ F arbitrarily and let 

C= \U(s,f) :l(s) >j}. 

Notice that for g £ G, s £ 5?, /(s) < j . It is clear that U C is dense in K 
since for each U(s, h) there is a / D s with /(/) > j and / £ £/(s, /*)• There
fore, as above, we may choose H £ &~ and a finite T C 51 so that 

F C W {£/(/,/) : / G T) C U C. 

However, by the finiteness of T, there is an m £ co such that t(j) < m for 
each / G T. So choose g Ç G with g(j) ^ ra, then Hg C\ H = Q. For if 
5 G S„ / e T then Z(s) < /(/), so in order that U(s, g) H C/(/,/) ^ 0 it 
must be true that t(j) > g{j). This contradicts t h a t ^ is 2-linked. 

3. Remote points. In [2], a length c induction was used to construct 
remote filters on ccc spaces with weight c. However it is necessary to 
assume that K = c+ to carry out such an induction. For the spaces 
X F = co X KF we are able to complete such an induction at stage \F\, 
thereby not requiring special set theoretic assumptions. 

3.1 THEOREM. If \F\ < K and F is admissible then X = co X KF has 
remote points. 
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Proof. LetXn = {n\ X KF and £/(», s,f) = [n\ X U(s,f) for n G co, 
s £ S,f £ F. By the definition of K, there is a w G co* and a w-scale Z) C "co 
with X = XM ^ |F | . Let { / « : « < X} be an indexing of F (with possible 
repetitions) and let D = {ha : a < X} be a <M-order preserving indexing. 
Also define 

T = {<r:3f£ F with <r C { U(n, s,f):ntu,seS\ 

and U c is dense in X\. 
Let c G T ; choose a < X so tha t 

(j C ( U(n, s,fa) : » G co, 5 6 5} . 

Fix an ordering {s* : fe £ co} of 5 and define, for n £ co, 

goO) = min {fc : U(n, sk, fa) Ç cr} 

and choose «o ^ OL SO tha t go ^ M / w Now, to s tar t an induction, for each 
13 ^ «o define 

g/s(w) = min {& : for each i ^ hao(n) there is a j ^ fe with 

U(n, Sj,fa) e a and U(n, ^ , / a ) H [/(w, s^fa) j* 0}, 

for w £ co. Now, choose a i ^ a0 G X so tha t g# ^ w feai for each /3 ^ a0-
Suppose, for j < iV, we have chosen OLJ ̂  a ^ i satisfying haj u}± gz for 

each sequence s = (/30, . • . , i^-i) G J"(c^-i + 1) where gz(n) is the smallest 
integer such tha t for each of the finitely many functions 

r e '(*«,-_! (n) + 1 ) , H {U(n9sHihffii) : i < j} * 0 

implies there is an m < gz(n) with 

£/(»i **»»/«) € o- and 

£/(», sm,fa)nr\ {tf(fl,sr(<),/*) :i <i! * 0. 
T o find aN, we define g2 for each z G ^ ( a ^ - i + 1) as above. Note tha t 

for each n £ co, g2(w) exists because there are only finitely many sets to 
meet and \J a is dense in X. We simply choose aN < X, a^ - i :g aN such 
tha t gz ^ w ftajV- for all z £ N {aN-\ + 1) which we may do since {hy : y < X} 
is a w-scale. Define 

ff,= U U {tf(n, **,/«) Ç cr:& £ m a x { A a y ( » ) : j ^ w}}. 
wÇco 

We shall refer to the above ordinals by a(<r), di(<r),i £ co and the function 

gz by gz,9. 
We show tha t {Ha : a £ T} is a filter base and is remote. Let Ti C r 

with | Ti| = N; recursively select, for j < N, <jj £ I \ so tha t a7(cr ;) is a 
minimum for 

[<*j(<r) : o- G ri\{o-o, • . . , <Tj-i}}. 
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Let fit = a(o-i) for i < N. First note that for each i < j < N, 

Pi ^ OfoOrO = OLi(<Ji) g OLj-.i{<Jj) 

so, for 0 < j < N, 

z, = (0o, • • • , Pj-i) £ j(aj-i(<Tj) + 1) and 

gzj,<rj = u rlaj(<Tj)' 

Also for i <j < N, 

haiiai) ^ « Kj_l(<rj). 

It follows that we may choose £/ 6 w so that for » G U all of the following 
hold: 

(i) n > N, 

(iii) for i < j < N, 

hai{*i)(n) g haj_l(aj)(n) and 

(iv) for i <j < N, gzi,9i(n) ^ haji<rj)(n). 

Now let » G £/ and choose r(0) ^ ha0(ff0)(n) such that 

f / ( w , 5 r ( 0 ) , fe/30) G 0-0. 

From (iii) and the definition of gzl,oi(n) there is an r ( l ) ^ g«,<n(w) such 
that 

#(»» ^r(i)i//Ji) 6 o-i and 

^ ( » i *r( l ) , / /* i ) ^ Î/(W» ^r(0),//9o) ^ 0-

By (iv), r ( l ) ^ hai(<n)(n). Suppose, for i < j < N, we have chosen 
r(i) ^ hai(<ri)(n) such that 

Ĉ («» srii),fPi) e o-i and fï tf(», *r«),/*) ^ 0. 

Again from (iii) and the definition of gzjt<Tj(n) there is an r(j) ^ gzjt<rj(n) 
^ haj(<Tj)(n) such that 

O U(n,sT(i)lf^) 5* 0 and U(nt sr(j)if0j) G o> 

Therefore 

H U(n,srii),ffii) * 0. 

Also, for i < N, 

because r(i) ^ hai(ffi)(n). Hence {H„ : o- 6 T} is a filter base. 
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Let A C X be a nowhere dense set and a a countable collection of 
7r-base members whose union is dense and misses A. Choose a < A such 
that, for each U(n, s,f) G </, / ^ /« which we may do since F is admis
sible. Let U{n, s, f) G a' be arbitrary and choose N G co such that 
/«(*) ^ /(fe) for k^ N.So for each * G [/(n, 5,/) with /(/) ^ TV, U(nf t, /«) 
C t/(w, s,f). Recalling the definition of T, we see that there is a a G T 
with U a C U e/. Therefore Ha C\ A = 0 and {i?„ : cr G T} is remote. 
Each pointy G H { c l ^ ^ : c G T} is a remote point of X. 

3.2 COROLLARY. JT^re w a compact separable space KF such that co X KF 

has remote points but KF has no remote 2-linked collections of closed sets. 

Proof. By the definition of 6, there is a sequence [fa : a < b) C ww, 
well-ordered by <COf which is unbounded in ("co, < ) . Since & is regular 
and uncountable it is clear that F — {fa : a < b) is admissible by simply 
insisting that it contain the constants. Therefore, by 2.1, KF has no 
remote 2-linked collections. For each u G co*, XM ^ 5 because a subset of 
uw which is bounded in < c o f is also bounded in <u. Therefore K > b and 
by 3.1, X has remote points. 

3.3 COROLLARY. If K > d then œ X KF has remote points where F = wco. 

Proof. If D C wco is dominating then { U(s,f) : s G S,f G £>} is a 7r-base 
for i£^. The proof of 3.1 may be carried out by replacing T with r ' = 
{a : VJ cr is dense in co X K and there is a n / G D with a C { C/(w, s,f) : 
« f (o, <ÎG 5). 

3.4 Remark. U K < d, for instance when d is singular, it is not known if 
co X KF has remote points. It seems very unlikely to the author that in 
this case co X KF will have remote points. 

4. Nice remote filters. As mentioned in the introduction we require 
an additional set theoretic assumption to show that co X K has no nice 
remote filters. We shall state this property below and defer the proof 
until Section 5. Let us assume that F = wco throughout this section, and 
let X = co X KF. 

4.1 THEOREM. Ifb = d then X has nice remote filters. 

Proof. In the proof of 3.1 and 3.3, the remote filter J ^ we constructed 
has the property that for each H G ^ , 

{n : H r\ Xn 7± 0} £ u. 

Hence J ^ may be constructed to be nice in case u is the cofinite filter. It is 
not difficult to see that this is the case if b = d. 

Let "hockey stick" (V) abbreviate the statement: there is a set 
{ga : a < coi} C wco and a sequence {Sa : a < coi} of countable subsets of 
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coi such that if S G [coi]"1 there is an Sa C 5 and an n G to with 
{gflM : 0 G 5a} infinite. 

4.2 THEOREM. Assume co2 < K anrf V- ^ ^ ^ ^ A#s no wice remote filters. 

Proof. Let G = {g« : a < coi} and {5^ : /3 < coi} exhibit \^. We may 
assume, without loss of generality, that each ga is increasing. Let, for 
each a < coi, 

(T« = { U(n, s, ga) : s £ S, n £ œ and l(s) > g(n)}. 

Assume that Ĵ ~ is a remote filter on X. We can choose, for a < coi and 
w f w,a finite set aa(n) C cra such that 

W cra(n) C X„ and U VJ er«(«) = Ha£^. 

Define, fora < coi, fea G
 wco as follows: 

fea(w) = max {s(ga(n)) : Z7(w, s, ga) G <ra(w)}. 

Now, for 13 < coi, choose S& C ^ so that for some « = w(j8) G w, 
gsM ^ &yM for 5 9^ 7 G S/ . Notice that for k > n and m G co, 
{« G 5/3' : ga(&) = w} is finite because each ga is increasing. Define, for 
13 G coi and & ^ w(]S), iJ/s,* G wco by 

Hp,k(n) = J2 {ha(k) : ga(k) = min {w : 3 CL G S / such that 

ga(k) = m ^ n\\. 

Since d > coi we can choose/ G wco so that for each /3 < coi and & ̂  w(j3), 
{w : f(n) > Hptk(n)} is infinite. We may also choose/ to be increasing. 

Let 

af = { U{n, s J) : s G S, n G co, /(s) > 0} 

and suppose that af(n) is a finite subset of 07 with 

U 07^) C X» and H = U U (r,(«) G ^" . 

For sake of contradiction, suppose t h a t ^ is nice. Hence for each a G coi 
there is an n G co such that 

Hr\Har\Xk*Q îork>n. 

It follows easily that there is an Wi G co and an A G [coi]"1 such that 

H r\Har\Xk?±Q for k > ti! and a £ A. 

By V» there is a /3 < coi such that Sp C. A, hence S / C A. So we first 
choose k > max (#1, n(/3)) and let 

M = max {l(s) : s G o/(fe)}. 
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We shall show that there is an a £ Sp such that 

H H Ha C\ Xk = 0 

which will be our contradiction. Since {w : f(n) > H$tk(n)} is infinite, 
there is an n > M w)thf(n) > Hpjk(n). By the definition of Hpk there is 
an a £ 5 / with 

&*(£) = m > n and Hptk(n) = HPtk(m) è fca(fe) 

since &*(£) = w. Since/ is increasing, 

/(w) è / ( » ) >Hfitk(n) = ffM(m). 

To show that H C\ Ha C\ Xk = fd, let 

Z7(fe, *,/) G *,(£) and £/(fe, 5, &) G cr«(fe). 

Since/(0 ^ Mand/(s ) > g«(ft) > M, we have that 

C/(fe,/ , /)n £/(ft,s,&) ^ 0 

implies 

s(&(*)) è/(&,(*))• 

However, since ga{k) = w, this is not the case and the proof is complete. 

4.3 COROLLARY. If V and u2 ^ d < K then X has remote points but no 
nice remote filters. 

5. Consistency of \ ^ + K > d = co2. In this section we shall show that 
the model introduced by Shelah in [7] is a model of V + K > d = co2. 
We shall use the notation of [4] and the reader is referred to [4] for more 
details of forcing. We remind the reader of the following notions. For a 
stationary S C to2, 0 s means there are Sa C a for a £ 5 such that for any 
A C w2, {a £ <5 : A C\ a = Sa) is stationary. Jensen introduced this 
principle and showed that it holds in V = L. Recall also that GCH holds 
in V = L. 

We start with M = L. First add co3 subsets of toi by forcing over 

^o = {/ : / is a function from a countable A C u>z X coi to wij 

ordered by inclusion. (So if G0 is L-generic over P 0 then in M[Go], 2e0 = cox, 
2W1 = co3 = 2W2 and cardinalities are preserved (§ 5 of [7]).) We next 
collapse coi by forcing over 

Pi = {g : g is a function from a finite subset of co to a>i} 

(so P i collapses wi and preserves cardinals not equal to coi, and preserves 
2X for X ̂  co [7]). We let G0 be L-generic over P 0 and M0 = M[G0]. Next 
let Gi be Mo-generic over Pi and Mi = M0[Gi]. We show that Mi is as 
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required by a series of facts. Let g c be the order on wlcoi/ ^ c g if and only 
if {/3 G coi :/(/?) > g(j8)} is countable. 

Fact 1. There is a J5 £ L, I? C wlcoi such that B is well ordered with 
respect to ^ e and J5 is unbounded with respect to g C

M°. This is essen
tially the same as Theorem 2.3 of VIII in [4] so we omit the proof. Let 
B = {ba : a < co2} be an order preserving indexing. 

Fact 2. Let A C w2f .4 G M0, | 4 | = co2; then for all 7 G coi there is a 
à G coi, 5 > 7 such that for each J G coi, 

|{<x 6 A :&«(«) > Z}\ = co2. 

Proof. Suppose that this is not the case. We shall show that {ba : a G A} 
is bounded with respect to ^ c which is a contradiction. Let 7 G coi be 
such that for each 5 G coi, 5 > 7 there is an h(5) = £ such that 

|{a G i4 :&«(*) > £}| < o)2. 

Let 

4 ' = {a G 4 : ba(6) > h(d) for some 6 > 7}, 

|i4'| ^ wi. Let hx £ B such that hi c> ba for all a G 4 ' . Hence fra < c A + fti 
for each a £ A. 

Let 

5 = {a G co2 : « has cofinality 00} ; 

5 is stationary in C02. 
Fac/ 3. There is a sequence {.$«,6 : a G S, 5 G coi} G -Mo of countable 

subsets of co2, such that if A G [co2]
w2, -4 G M0 there is an a G 5, ô G coi 

such that 5a>5 C 4̂ and {6/9(6) : 0 G Sa,*} is infinité. 

Proof. By 0 5 we can define Ma = (a, ^ a , i?a) for a: G 5 such that for 
any partial order ^ * on co2, and two-place relation i? on co2, for a stationary 
set of a's, ^ a = rg*|a, Ra = i?|a- For each a G 5, 5 G coi, choose recursive
ly, if possible, ft*,** 7a V, ^ G co such that /3tti5

0 = 0, 

V,(«) « IV,(«) : j<*} , 
a,o a , 0 

Ro(fiay, 7a V) and ft*,** (i G co) is increasing with respect to g a . If we 
succeed, let 

5a,8 = {7a,a* : * G co}. 

If not, let Sa,s be any countable set with [by(d) : 7 G Sa,i\ infinite. 
Suppose that A G M0 is an unbounded subset of co2. By Fact 2 and 

VII.3.6 of [4] there is a p0 G PQ and a ô G toi such that 

£0 I h (V £ G coifa G A : ba(ô) > £} is unbounded in co2). 
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Now, working in L, choose Q C. PQ such that p0 £ Q, \Q\ = co2, any 
chain of Q of countable length has an upper bound in Q (P0 is countably 
complete) and for every a < co2, q G Q and £ G coi 3 a ^ a g' ^ ç and 
J' > £ such that 6a/(ô) = £' and ç' | h (a' G A). Let 

Ç = {g(j8) : £ G co2}, 

2(0) = £o and define 0 ^ * y if and only if q(/3) ^ 2(7). Define 

* = { ( 0 , 7 ) : g ( 0 ) l h ( 7 e 4 ) } . 

So, let 

C = {a G co2: V/3 G « V f € «1 3 7 6 a W , 7) and 67(«) > {)}• 

It is easy to check that C is closed in co2. To show that C is unbounded, 
let a G co2. Recursively, for w G co, choose an+i > an so that 

V ^ ^ V ^ C O ^ T G «n+1 U(0, 7) and by(d) > {. 

Therefore a' = sup {an : n G co} G C. Therefore we may choose some 
a G S Pi C such that Ma is an elementary submodel of (co2, ^* , R). So 
we succeed in defining ft*i7\ 7«ij

i, i Ç co as required. Let q G Q with 
g ^ q(Pa/),i G co, so 

g I h ( 7 « / G -4) fori G co. 

Now since q ^ po and q | f- (5Œf« C A) we are done. 

Let g G Mi be a set isomorphism between co and coiL. It is clear, then, 

that g induces an obvious set isomorphism between wco and "îcoi1', i.e., 

for/ G "co define Jtf(f) G "fco^ by 

je(f)(g(n)) = g(f(n)). 

In this way we have 

5 = {/G"co:^(f) £B\. 

Fact 4. V- holds in Mi. 

Proof. Recall that in Mi, C O i ^ 1 = C02
 L. Let 4 C coiMl with A £ Mi and 

4̂ unbounded. Since, in L, \Pi\ < co2
L, there is an A' C. A with A' G Mo, 

and .4' is unbounded in co2
M° = co2

z'. Therefore there is an a G -S and 
ô G coiL such that 5a>ô C -4' and {by(ô) : 7 G Sa,&} is infinite. Therefore 

{ ^ ( r (*)) : ^ ( M = &r and 7 G &,«} 

is infinite showing that B is an instance of V~ 
Finally it remains to show that in Mi, d — co2 < K. TO this end we first 

note that Mi can also be obtained by M[Gi] = M' and Mx = M'[G0}. 
Since Po G £ we can use a A-system argument to show that P 0 has the 
<aiL-cc property (this is why it preserves cardinals). Therefore in M', Po is 
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ccc. This means that if h G wco, h G Afi, there is an M'-countable set 
I C a>zL such that 

/ G M'[G H {/ : / X coiL - • co^ : / is L-countable} ] 

(VIII 2.2 in [4]). 

Fact 5. d = o)2 holds in Mi. 

Proof. Suppose that D C ^ D G ^ i and (\D\ < o>2)
Ml. Let 

£> = {4 : a < c o ^ } 

be an ordering in Mi of P . Since coiMl = co2
L, by the above argument, 

we can find an a G co3
L such that Z) G M7 [G Pi {/ : / is a function from a 

countable subset of a X coiL to coiL}] = M". It suffices, therefore, to show 
that if we extend M" by forcing with P ' = {/ : / is a function from an L-
countable subset of uiL to coiL} then we introduce a function in wco not 
dominated by D. So, for each a G coiMl and w G co, let 

£«.» = i / ^ ' : ^ 6 co^ with f ( « > n and g*-(f(fi) > 4 ( r ( « ) } 

(i.e., / G £«,n if J^*-(f)(tn) > da(m) for some m > n). To see that Pa>ri 

is dense in P', let / G P ' and find a 0 G wiL with g<- (0) > » and p G dom/. 
Extend/ at /3 to be any 7 such that 

^(7) > 4 ( r (« ) . 

So, by forcing over P' we introduce an element of "co not dominated by D. 

Fact 6. co2 < K holds in Mi. It suffices to exhibit a filter u on co such that 
there is a w-scale of order type co2. As above let g G M' be an isomorphism 
from co to coiL. For a G co3

L let Pa = {/ G Z, : / is a function from an 
L-countable A C a X coiL to coi1'}. Observe that Mi can be obtained by 
starting with M' and iterating co3

L-times to obtain 

Ma = M'[Go H P a ] , for each a < co3. 

For each a: G co3
L we introduce a function/a G Ma+i\Ma where fa G wi'toiL 

and with obvious abuse of notation {a} X fa\y G Go for each 7 G coiL. For 
a G co3

L, let 

ua = f i r W : r ( /«(«)) > r ( / ( ô ) ) : / G « f c o ^ n M«j and 

w = U {z/a : a G co3
L}. 

Let us show that u is a filter on co. Let a0 ^ • . • ^ «n and 

hi G Ma, Pi "1 coiL for i < n. 

Recursively define Ui G uai as 

Ut= ( f ( 5 ) : f ( / « , ( 5 ) ) > S f f e ( « ) ) ) . 
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Now Et = {/ 6 Pai+i : V 7 6 « i L 3 5 e co!L with 5 > 7, f W G £/, 
for each J < i and g<- (f((au <5)) > Yli<i t~(hj(ô))} is dense in Pai+i so 
long as Uj is infinite for j < i < n. Since the density of Et guarantees 
t ha t Ui is infinite, each Ut is infinite by induction. This completes the 
proof tha t u is a filter. It remains only to show tha t {Jff̂ tfa) :a £ co3

Lj 
is cofinal in (wo>, < M ) . This, however, follows from the fact tha t for 
/ p w H I i there is an a 6 co3

L w i t h / £ ww H Afa and 

( f W : f ( / « W ) > r ( f l X 0 ) ( * ) } = {n : H+(fa)(n) > f(n)} 6 «. 

Acknowledgement. The author would like to thank Professor Ken Kunen 
for reading a preliminary version of this section. 

REFERENCES 

1. E. K. van Douwen, Remote points, Diss. Math, (to appear). 
2. A. Dow, Weak P-points in compact ccc F-spaces, Trans, of the AMS 269 (1982), 

557-565. 
3. Remote points in large products (to appear). 
4. K. Kunen, Set theory: An introduction to independence proofs (North Holland, Amster

dam, 1980). 
5. K. Kunen, J. van Mill and C. F. Mills, On nowhere dense closed P-sets, Proc. AMS 78 

(1980), 119-122. 
6. J. van Mill, Sixteen topological types in (3oo\oo, Top. Appl. 13 (1982), 43-57. 
7. S. Shelah, Whitehead groups may not be free even assuming CH, II, Israel J. Math. 35 

(1980), 257-285. 

Vrije Universiteit, 
Amsterdam, The Netherlands 

https://doi.org/10.4153/CJM-1982-096-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1982-096-6

