Canad. Math. Bull. Vol. 43 (4), 2000 pp. 397-405

Tournaments and Orders with the Pigeonhole Property

Anthony Bonato, Peter Cameron and Dejan Delić

Abstract. A binary structure S has the pigeonhole property (\mathcal{P}) if every finite partition of S induces a block isomorphic to S. We classify all countable tournaments with (\mathcal{P}) ; the class of orders with (\mathcal{P}) is completely classified.

1 Introduction

A nontrivial graph *G* has the pigeonhole property (\mathcal{P}) if for every finite partition of the vertex set of *G* the induced subgraph on at least one of the blocks is isomorphic to *G*. The intriguing thing about (\mathcal{P}) is that few countable graphs satisfy it: by Proposition 3.4 of [3] the only countable graphs with (\mathcal{P}) are (up to isomorphism) K_{\aleph_0} (the complete graph on \aleph_0 -many vertices), $\overline{K_{\aleph_0}}$ (the complement of K_{\aleph_0}), and *R* (the random graph). Cameron in [2] originally asked which other relational structures satisfy (\mathcal{P}) . In [1], the authors gave an answer to Cameron's question for various kinds of relational structures. However, in [1] the classification of countable tournaments with (\mathcal{P}) was left open.

The immediate goal of the present article is to present a complete classification of the countable tournaments with (\mathcal{P}) (see Theorem 1 below for an explicit list). In stark contrast to the situation for graphs, we find there are uncountably many non-isomorphic countable tournaments with (\mathcal{P}) . Along the way, we classify the orders and quasi-orders with (\mathcal{P}) in each infinite cardinality (see Theorems 1 and 2). We close with a discussion on the classification of the oriented graphs with (\mathcal{P}) .

2 Preliminaries

2.1 Binary Structures and the Pigeonhole Principle

Definition 1 A binary structure S consists of a vertex set (called S as well) and an edge set $E^S \subseteq S^2$. The order of S is the cardinality of the vertex set, written |S|. If |S| > 1, we say S is nontrivial.

If S is clear from context, we sometimes drop S from E^{S} and simply write E.

Example 1 Directed graphs (digraphs) are binary structures with an irreflexive edge set. An oriented graph is a binary structure with an irreflexive and asymmetric edge set. Graphs

Received by the editors January 14, 1998; revised June 1, 2000.

The first and third authors gratefully acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC).

AMS subject classification: 05C20, 03C15.

Keywords: pigeonhole property, tournament, order.

[©]Canadian Mathematical Society 2000.

are binary structures with an irreflexive, symmetric edge set. Orders (or partial orders) are binary structures with an irreflexive and transitive edge set; for orders we write x < y for $(x, y) \in E$. Tournaments are oriented graphs so that for each pair of distinct vertices x, y either (x, y) or (y, x) is in E.

Definition 2

- 1. Let *S* be a binary structure with $A \subseteq S$. Then $S \upharpoonright A$ is the binary structure with vertices *A* and edges $E \cap A^2$. $S \upharpoonright A$ is the *induced substructure* of *S* on *A*.
- 2. Given two binary structures *S*, *T*, we say that *S* and *T* are *isomorphic* if there is a bijective map $f: S \to T$ so that $(x, y) \in E^S$ if and only if $(f(x), f(y)) \in E^T$. We write $S \cong T$.

We use the notation $S \uplus T$ for the disjoint union of sets *S* and *T*.

Definition 3 A binary structure *S* has the *pigeonhole property* (\mathcal{P}) if *S* is nontrivial and whenever $S = S_1 \uplus \cdots \uplus S_n$ then for some $1 \le i \le n, S \upharpoonright S_i \cong S$.

Note that every binary structure with (\mathcal{P}) is infinite.

2.2 Directed Graphs and Duality

Definition 4 Let *D* be a digraph with edge set *E*. The *converse* D^* of *D* is the digraph with vertex set *D* and edge set $E^* = \{(y, x) : (x, y) \in E\}$.

We will make use of the following well-known fact about digraphs.

Principle of Directional Duality For each property of digraphs, there is a corresponding property obtained by replacing every concept by its converse.

2.3 Results from [1]

We will use a few of the results from [1].

Definition 5 Let S be a binary structure. Define the *graph* of S, denoted by G(S), to be the graph with vertices S, and edges $\{(x, y) : x, y \in S \text{ so that } x \neq y \text{ and } (x, y) \in E \text{ or } (y, x) \in E\}$.

Lemma 1 If S is a binary structure with (\mathcal{P}) , then G(S) satisfies (\mathcal{P}) .

Definition 6 A graph G is *existentially closed* (or *e.c.*) if it satisfies the condition (\clubsuit): for every $n, m \ge 1$, if x_1, \ldots, x_n and y_1, \ldots, y_m are vertices of G with $\{x_1, \ldots, x_n\} \cap \{y_1, \ldots, y_m\} = \emptyset$, then there is a vertex $x \in G$ adjacent to the x_i and to none of the y_i .

An e.c. graph embeds each countable graph; the random graph *R* is the unique countable e.c. graph; see Section 2.10 of [2] for details.

Proposition 1 A graph G that satisfies (\mathcal{P}) that is neither null nor complete is e.c.

Definition 7 Let *D* be a digraph.

- 1. For $x, y \in D$, $\neg xEy$ if and only if $(x, y) \in D^2 E$.
- 2. Let $x \in D$ be a vertex.
 - (a) $N_{\emptyset}(x) = \{y \in D : \neg y Ex \text{ and } \neg x Ey \text{ and } y \neq x\}.$
 - (b) $N_o(x) = \{y \in D : \neg y Ex \text{ and } x Ey\}$. (x, y) is an out-edge.
 - (c) $N_i(x) = \{y \in D : yEx \text{ and } \neg xEy\}$. (x, y) is an *in-edge*.
 - (d) $N_u(x) = \{y \in D : yEx \text{ and } xEy\}$. (x, y) is an (undirected) edge.

The following property is an essential part of our classification.

Definition 8 A tournament *T* has property (\$) if for $\Box \in \{i, o\}$, and for some $x \in T$, $N_{\Box}(x) \neq \emptyset$ then for all $y \in T$, $N_{\Box}(y) \neq \emptyset$.

 T^{∞} is the generic (or random) tournament and is defined to be the Fraissé limit of the class of finite tournaments; see specifically Example 1 of Section 3.3 of [2].

Proposition 2 A countable tournament T is isomorphic to T^{∞} if and only if T satisfies (\mathfrak{P}) and (\mathfrak{s}).

We will assume the reader is familiar with the basic facts about linear orderings and wellorderings. Rosenstein [4] is a good reference for our purposes. The set of natural numbers is denoted ω .

3 The Classification of Tournaments with (P)

The following is our main theorem.

Theorem 1 The countable tournaments with (\mathcal{P}) are T^{∞} , $\{\omega^{\alpha}, (\omega^{\alpha})^* : \alpha \text{ a non-zero count-able ordinal}\}$. In particular, there are uncountably many countable tournaments with (\mathcal{P}) .

Remark 1 We note that ω^{α} stands for ordinal exponentiation, not cardinal exponentiation.

The proof of Theorem 1 will take the rest of Section 3. To begin the proof, fix D a countable tournament with (\mathcal{P}). We consider the following two cases.

- 1. *D* satisfies (\$): by Proposition 2, $D \cong T^{\infty}$.
- 2. *D* does not satisfy (\$): we first show that *D* must be a linear order (see Proposition 3). We then show in Theorem 2 that a linear ordering with (\mathcal{P}) must be one of $\{\omega^{\alpha}, (\omega^{\alpha})^* : \alpha \text{ a non-zero countable ordinal}\}$.

3.1 The Classification of Tournaments with (P)

3.1.1 From Tournaments to Linear Orders

Definition 9 Let *T* be a tournament.

- 1. A vertex $a \in T$ is a *source* if aEb for all $b \in T \{a\}$.
- 2. A vertex $a \in T$ is a *sink* if *bEa* for all $b \in T \{a\}$.
- 3. A vertex $a \in T$ is *special* if it is a source or a sink.

The following lemma is easy but makes our classification possible.

Lemma 2

- 1. A tournament has no more than two special points; if it has exactly two special points, there must be exactly one source and one sink.
- 2. A nontrivial tournament has (\$) if and only if it has no special points.

Proof (1) A tournament with more than two special points would have at least two sinks or two sources, which is impossible.

(2) If T has (\$) and $a \in T$ was special, then say $N_i(a) = \emptyset$. But then there is some $b \in T$ so that aEb, so that $N_i(b) \neq \emptyset$, which is a contradiction.

Conversely, assume *T* does not satisfy (\$). Then for some $a, b \in T$, and some $\Box \in \{i, o\}$, $N_{\Box}(a) \neq \emptyset$ and $N_{\Box}(b) = \emptyset$. But then *b* is special.

Proposition 3 Let T be a countable tournament satisfying (\mathcal{P}) . If $T \ncong T^{\infty}$ then T is a linear order.

Proof If *T* satisfies (\$), then $T \cong T^{\infty}$ by Proposition 2.

Assume *T* does not satisfy (\$). We show that *T* must be a linear order. By Lemma 2 there are two cases: *T* has one or two special points.

Case 1 T has one special point.

Without loss of generality, we assume that *T* has a source 0 (the case when *T* has a sink will follow by the principle of directional duality). We aim to show that *T* does not have the intransitive 3-cycle D_3 as an induced subtournament; if we succeed then *T* is a linear order.

Assume *T* has D_3 as an induced subtournament. We find a contradiction. Define $S = \{y \in T : yEz \text{ for all } z \in X, \text{ where } X \text{ is an induced subtournament of } T \text{ isomorphic to } D_3\}$.

Claim 1 $S \neq \emptyset$.

We show that $0 \in S$. If not then either there is a *z* in a 3-cycle so that *zE*0, which is impossible as 0 is a source, or 0 itself is in 3-cycle, which is impossible as D_3 has no source.

Claim 2 S is a linear order.

Otherwise, D_3 embeds in S; let X be an induced subtournament of S isomorphic to D_3 . But then $X \subseteq T$, so that for each $x \in X$, *xEx* (by the definition of S), contradicting irreflexivity.

Let A = S, B = T - S. If $B = \emptyset$ then D is a linear order by Claim 2 and we have our contradiction. Assume now that $B \neq \emptyset$.

Claim 3 $T \cong T \upharpoonright A$.

If not, as *T* satisfies (\mathcal{P}), then $T \cong T \upharpoonright B$. If so, then *B* contains a source 0'; that is, for all $y \in B - \{0'\}$, 0'Ey. But $0' \notin S$ implies that there is $X \subseteq T$ isomorphic to D_3 so that $0' \in X$ or there is some $y \in X$ so that yE0'. By the proof of Claim 2, $X \subseteq B$. As before, as 0' is a source in *B* either case leads to a contradiction.

Claims 2 and 3 contradict our assumption that T has D_3 as an induced subtournament. Hence, in Case 1, T is a linear order with first element 0 and no greatest element. If T has a sink, a similar argument shows that T is a linear order with last element and no first element.

Case 2 T has two special points.

Proceed as in Case 1. *T* is then a linear order with a first and last element.

3.1.2 The Classification of Orders with (\mathcal{P})

We classify orders (even the uncountable ones) with (\mathcal{P}) . We can consider orders as binary structures with a binary relation \leq that is reflexive, anti-symmetric, and transitive; we call these *reflexive orders* to distinguish them from their irreflexive counterparts (see Example 1 above). However, reflexive orders are not true oriented graphs (recall that we forbid loops). Nevertheless, the following result holds for both "irreflexive" and reflexive orders; when the distinction is irrelevant, we refer to either kind of structure simply as an order. In the irreflexive case, \leq means "< or =".

The next theorem, in the countable case, will complete the proof of Theorem 1.

Theorem 2 Let P be an order satisfying (\mathfrak{P}). Then P is an infinite antichain or P is one of ω^{α} or $(\omega^{\alpha})^*$, where α is a non-zero ordinal.

Proof An infinite antichain satisfies (\mathcal{P}) .

Assume *P* is not an antichain and $|P| = \delta \ge \aleph_0$. For an order *P*, *G*(*P*) is the comparability graph of *P*. By Lemma 1 and Proposition 1 above, *G*(*P*) is e.c. or K_δ ; the first case is impossible, as every e.c. graph embeds the 5-cycle C_5 . Hence, *G*(*P*) = K_δ so that *P* is a linear ordering.

Claim 1 P has endpoints.

Otherwise, let $a, b \in P$ with a < b. Define $A = \{y \in P : y \ge a\} - \{b\}, B = P - A$. But $P \upharpoonright A$ has a least point and $P \upharpoonright B$ has a greatest point, so that neither A nor B is isomorphic to P, violating (\mathfrak{P}).

By Claim 1, *P* has either a least point and no greatest point, a greatest point and no least point, or both a least and greatest point.

Case 1 P has a least point 0 and no greatest point.

We show *P* is a well-ordering. We use the characterization that *P* is well-ordered if it has no subordering isomorphic to ω^* . Assume *P* is not a well-ordering. Define $S = \{x \in P : x < y \text{ for all } y \in X \subseteq P \text{ with } X \text{ isomorphic to } \omega^* \}$.

Claim 2 $S \neq \emptyset$.

We show $0 \in S$. If not, then $0 \ge y$ where y is some element of an infinite descending chain in P, which is a contradiction.

Claim 3 S is well-ordered.

The proof is similar to the proof of Claim 2 of Theorem 3. We show there is no subordering X of S isomorphic to ω^* . Otherwise, say X is a subset of P isomorphic to ω^* . Fix $x \in X$. Then x < x, which is a contradiction.

Let A = S, B = P - S. By Claims 2 and 3 we may assume B is nonempty.

Claim 4 $P \cong P \upharpoonright A$.

If not, then $P \cong P \upharpoonright B$ by (\mathcal{P}). If so, *B* contains a least element 0'. As $0' \notin S$, there is some $y \in X \subseteq P$ with *X* isomorphic to ω^* so that $y \leq 0'$. By the proof of Claim 3, $X \subseteq B$. But then there is an infinite descending chain below 0' in *B* so we arrive at a contradiction. The contradiction shows that *P* is well-ordered, and hence, isomorphic to an ordinal α .

We now employ Cantor's normal form theorem (see Theorem 3.46 of [4]): there are ordinals $\alpha_1 > \cdots > \alpha_k$ for $k \in \omega - \{0\}$, and $n_1, \ldots, n_k \in \omega - \{0\}$ so that

$$\alpha = \omega^{\alpha_1} n_1 + \cdots + \omega^{\alpha_k} n_k.$$

Claim 5 k = 1.

Otherwise, $k \ge 2$. Let $A_i = \omega^{\alpha_i} n_i$, with $1 \le i \le k$. By (\mathcal{P}) there is some *i* so that $P \cong P \upharpoonright A_i$.

Claim 6 $n_i = 1$.

Otherwise, $\alpha = \omega^{\alpha_1} n_i = \omega^{\alpha_1} + \cdots + \omega^{\alpha_1}$ (n_i times). Again by (\mathcal{P}) α is isomorphic to some ω^{α_1} .

It remains to show sufficiency; namely, we must show that ω^{α} satisfies (\mathfrak{P}) for α a non-zero ordinal. We proceed by transfinite induction on $\alpha \geq 1$.

As ω satisfies (\mathcal{P}) the induction commences. Let $2 \leq \alpha = \beta + 1$ be a successor ordinal. Then $\omega^{\alpha} = \omega^{\beta}\omega$. Let $\omega^{\alpha} = S_1 \uplus \cdots \uplus S_n$ for $n \geq 2$. We label the ω copies of ω^{β} in ω^{α} as $\{\omega^{\beta}(i) : i \in \omega\}$. For $i \in \omega$, $j \in \{1, \ldots, n\}$ define $S_{ij} = \omega^{\beta}(i) \cap S_j$.

Then for $j \in \{1, \ldots, n\}$

$$S_j = \sum_{i \in \omega} S_{ij}.$$

By the inductive hypothesis ω^{β} satisfies (\mathcal{P}) ; hence, for each $i \in \omega$ there is a $j(i) \in \{1, \ldots, n\}$ so that $S_{ij(i)} \cong \omega^{\beta}$. By the pigeonhole principle for sets, there is some $j \in \{1, \ldots, n\}$ with infinitely many $S_{ij} \cong \omega^{\beta}$.

Recall that for $\beta \ge 1$, $\varepsilon + \omega^{\beta} = \omega^{\beta}$ for $\varepsilon < \omega^{\beta}$. By applying this fact and the fact that the set of blocks equal to ω^{β} is cofinal in $\{S_{ij} : i \in \omega\}$, we have that $S_j \cong \sum_{i \in \omega} \omega^{\beta} = \omega^{\alpha}$.

Now, assume α is a limit ordinal that satisfies $\alpha > \omega$. Then $\omega^{\alpha} = \sum_{\beta < \alpha} \omega^{\beta}$. The argument in this case is similar to the case when α is a successor ordinal and so is omitted.

Case 2 P has a greatest point and no least point.

In this case, we find that *P* is of the form $(\omega^{\alpha})^*$. The argument for Case 2 follows from the argument of Case 1, and by directional duality.

Case 3 P has a least element 0 and greatest element ∞ .

We find a contradiction. Define A = S as in Case 1 and B = P - A. It is immediate that $0 \in A - B$ and $\infty \in B - A$. As in Case 1, A is well-ordered.

By (\mathcal{P}) one of $P \upharpoonright A$, $P \upharpoonright B$ is isomorphic to P. If $P \upharpoonright A$ is isomorphic to P, then P is a well-ordering and hence, isomorphic to an ordinal. But then by Case 1, P is of the form ω^{α} for some non-zero ordinal α contradicting that P has a greatest point.

If $P \upharpoonright B \cong P$, then *B* has a first-element 0'; but as $0' \in P - S$, $0' \ge y$ for some y in an isomorphic copy of ω^* . This contradiction finishes the proof.

3.1.3 Quasi-Orders with (P)

The classification of orders with (\mathcal{P}) also supplies a classification of quasi-orders (or preorders) with (\mathcal{P}) . A binary structure is a *quasi-order* if it has a reflexive, transitive edge set. We write $a \leq b$ for $(a, b) \in E$. If we define $a \sim b$ by $a \leq b$ and $b \leq a$, then \sim is an equivalence relation; further, the quasi-ordering of *S* induces an order on the set of blocks $S/\sim: [a] \leq [b]$ if and only if $a \leq b$.

Definition 10 A class of binary structures \mathcal{K} is equipped with an equivalence relation R if for each $S \in \mathcal{K}$ there is an equivalence relation $R^S \subseteq S^2$ satisfying the following two conditions.

- (E1) For $S, T \in \mathcal{K}$ if $f: S \to T$ is an isomorphism, then $(x, y) \in R^S$ if and only if $(f(x), f(y)) \in R^T$.
- (E2) For all $S, T \in \mathcal{K}$ with $S \leq T, R^S = R^T \cap S^2$.

Lemma 3 Let S be a member of a class of binary structures equipped with an equivalence relation R. If S has (\mathcal{P}) , then S has either a single infinite R-block or has only singleton R-blocks.

Proof If *S* has a single finite block, then *S* is finite and so cannot satisfy (\mathcal{P}) . Assume *S* has (\mathcal{P}) , has more than one *R*-block, and has some block with at least two elements. We find a contradiction.

Case 1 S has *n* blocks, for $1 < n < \omega$.

Let *S* have blocks $\{S_i : 1 \le i \le n\}$. By (\mathcal{P}) some $S \upharpoonright S_i \cong S$, which is a contradiction, as an isomorphism preserves the number of blocks by (E1). Hence, we may assume *S* has infinitely many blocks.

Case 2 Every block of *S* is finite.

Fix a block S_i with cardinality $m \ge 2$. Let $A = \{S_i : |S_i| = m\}$, B = S - A. If $B = \emptyset$, then each block of *S* has size *m*. If $B \neq \emptyset$, then since *A* is a union of *R*-blocks and by (E2),

 $S \upharpoonright B$ has no block of size *m*, so by (\mathcal{P}) , $S \upharpoonright A \cong S$. In either case, each block of *S* has size *m*. Now, let *C* consist of one element from each block of *S*, with D = S - C. Then by (E2) neither $S \upharpoonright C$ nor $S \upharpoonright D$ have blocks of order *m*, which is a contradiction.

Case 3 S has some blocks finite, some infinite.

Let *A* be the union of the finite blocks, B = S - A. Then neither $S \upharpoonright A$ nor $S \upharpoonright B$ is isomorphic to *S*, which is a contradiction.

Case 4 S has all blocks infinite.

Let S_i , S_j be distinct infinite blocks. Fix $a \in S_i$, $b \in S_j$. Let $A = (S - (S_i \cup \{b\})) \cup \{a\}$, B = S - A. Then both $S \upharpoonright A$, $S \upharpoonright B$ have singleton blocks by (E2), contradicting our hypothesis.

Corollary 1 The quasi-orders with (\mathbb{P}) have either a single infinite \sim -block or are reflexive orders (quasi-orders with singleton \sim -blocks) with (\mathbb{P}) .

Proof If \mathcal{K} is the class of quasi-orders, \mathcal{K} is equipped with the equivalence relation \sim . Apply Lemma 3.

3.2 Towards a Classification of Oriented Graphs with (P)

By Proposition 3.4 of [3] and Lemma 1, if *D* is a countable oriented graph with (\mathcal{P}) , G(D) is isomorphic to one of $\overline{K_{\aleph_0}}$, K_{\aleph_0} , or *R*. If $G(D) \cong \overline{K_{\aleph_0}}$, then *D* is just the countable edgeless oriented graph on \aleph_0 -many vertices. If $G(D) \cong K_{\aleph_0}$, then *D* is a tournament, for which we have a complete classification.

Assuming $G(D) \cong R$, then for each $x \in D$, both $N_u(x)$ and $N_{\emptyset}(x)$ are infinite in G(D). But then $N_i(x) \cup N_o(x)$ and $N_{\emptyset}(x)$ are each infinite in D. If for each $x \in D$, $N_i(x)$, $N_o(x)$ are nonempty, then we can show that D is isomorphic to the generic oriented graph O (the Fraïssé limit of the finite oriented graphs).

Definition 11 Let *D* be an oriented graph. *D* is 1-*e.c.* if for each $x \in D$ and each $\Box \in \{\emptyset, i, o\}, N_{\Box}(x)$ is nonempty.

The following proposition follows from results in [1].

Proposition 4 A countable oriented graph D with (\mathcal{P}) is 1-e.c. if and only if $D \cong O$.

We do not have an answer to the following problem.

Problem Is there a countable oriented graph D that is not 1-e.c. with $G(D) \cong R$ so that D has (\mathcal{P}) ?

If so, then there is an orientation of the random graph *R*, distinct from the orientation giving *O*, with (\mathcal{P}) .

References

- [1] A. Bonato and D. Delić, A pigeonhole principle for relational structures. Mathematical Logic Quarterly 45(1999), 409–413.
- [2] P. J. Cameron, Oligomorphic Permutation Groups. London Math. Soc. Lecture Notes 152, Cambridge University Press, Cambridge, 1990.
- [3] _____, *The random graph.* In: Algorithms and Combinatorics, Springer Verlag, New York 14(1997), 333–351.
- [4] J. G. Rosenstein, *Linear orderings*, Academic Press, New York, 1982.

Department of Mathematics Wilfrid Laurier University Waterloo, ON N2L 3C5 email: abonato@wlu.ca School of Mathematical Sciences Queen Mary and Westfield College London E1 4NS U.K. email: P.J.Cameron@qmw.ac.uk

Department of Mathematics and Statistics McMaster University Hamilton, ON L8S 4K1 email: delicd@math.mcmaster.ca