Tournaments and Orders with the Pigeonhole Property

Anthony Bonato, Peter Cameron and Dejan Delić

Abstract

A binary structure S has the pigeonhole property (\mathcal{P}) if every finite partition of S induces a block isomorphic to S. We classify all countable tournaments with (\mathcal{P}); the class of orders with (\mathcal{P}) is completely classified.

1 Introduction

A nontrivial graph G has the pigeonhole property (\mathcal{P}) if for every finite partition of the vertex set of G the induced subgraph on at least one of the blocks is isomorphic to G. The intriguing thing about (\mathcal{P}) is that few countable graphs satisfy it: by Proposition 3.4 of [3] the only countable graphs with (\mathcal{P}) are (up to isomorphism) $K_{\aleph_{0}}$ (the complete graph on \aleph_{0}-many vertices), $\overline{K_{\aleph_{0}}}$ (the complement of $K_{\aleph_{0}}$), and R (the random graph). Cameron in [2] originally asked which other relational structures satisfy (\mathcal{P}). In [1], the authors gave an answer to Cameron's question for various kinds of relational structures. However, in [1] the classification of countable tournaments with (\mathcal{P}) was left open.

The immediate goal of the present article is to present a complete classification of the countable tournaments with (\mathcal{P}) (see Theorem 1 below for an explicit list). In stark contrast to the situation for graphs, we find there are uncountably many non-isomorphic countable tournaments with (\mathcal{P}). Along the way, we classify the orders and quasi-orders with (\mathcal{P}) in each infinite cardinality (see Theorems 1 and 2). We close with a discussion on the classification of the oriented graphs with (\mathcal{P}).

2 Preliminaries

2.1 Binary Structures and the Pigeonhole Principle

Definition 1 A binary structure S consists of a vertex set (called S as well) and an edge set $E^{S} \subseteq S^{2}$. The order of S is the cardinality of the vertex set, written $|S|$. If $|S|>1$, we say S is nontrivial.

If S is clear from context, we sometimes $\operatorname{drop} S$ from E^{S} and simply write E.

Example 1 Directed graphs (digraphs) are binary structures with an irreflexive edge set. An oriented graph is a binary structure with an irreflexive and asymmetric edge set. Graphs

[^0]are binary structures with an irreflexive, symmetric edge set. Orders (or partial orders) are binary structures with an irreflexive and transitive edge set; for orders we write $x<y$ for $(x, y) \in E$. Tournaments are oriented graphs so that for each pair of distinct vertices x, y either (x, y) or (y, x) is in E.

Definition 2

1. Let S be a binary structure with $A \subseteq S$. Then $S \upharpoonright A$ is the binary structure with vertices A and edges $E \cap A^{2} . S \upharpoonright A$ is the induced substructure of S on A.
2. Given two binary structures S, T, we say that S and T are isomorphic if there is a bijective map $f: S \rightarrow T$ so that $(x, y) \in E^{S}$ if and only if $(f(x), f(y)) \in E^{T}$. We write $S \cong T$.

We use the notation $S \uplus T$ for the disjoint union of sets S and T.
Definition 3 A binary structure S has the pigeonhole property (\mathcal{P}) if S is nontrivial and whenever $S=S_{1} \uplus \cdots \uplus S_{n}$ then for some $1 \leq i \leq n, S \upharpoonright S_{i} \cong S$.

Note that every binary structure with (\mathcal{P}) is infinite.

2.2 Directed Graphs and Duality

Definition 4 Let D be a digraph with edge set E. The converse D^{*} of D is the digraph with vertex set D and edge set $E^{*}=\{(y, x):(x, y) \in E\}$.

We will make use of the following well-known fact about digraphs.
Principle of Directional Duality For each property of digraphs, there is a corresponding property obtained by replacing every concept by its converse.

2.3 Results from [1]

We will use a few of the results from [1].
Definition 5 Let S be a binary structure. Define the graph of S, denoted by $G(S)$, to be the graph with vertices S, and edges $\{(x, y): x, y \in S$ so that $x \neq y$ and $(x, y) \in E$ or $(y, x) \in E\}$.

Lemma 1 If S is a binary structure with (\mathcal{P}), then $G(S)$ satisfies (\mathcal{P}).
Definition 6 A graph G is existentially closed (or e.c.) if it satisfies the condition ($\boldsymbol{\ell}$): for every $n, m \geq 1$, if x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{m} are vertices of G with $\left\{x_{1}, \ldots, x_{n}\right\} \cap$ $\left\{y_{1}, \ldots, y_{m}\right\}=\varnothing$, then there is a vertex $x \in G$ adjacent to the x_{i} and to none of the y_{j}.

An e.c. graph embeds each countable graph; the random graph R is the unique countable e.c. graph; see Section 2.10 of [2] for details.

Proposition 1 A graph G that satisfies (\mathcal{P}) that is neither null nor complete is e.c.

Definition 7 Let D be a digraph.

1. For $x, y \in D, \neg x E y$ if and only if $(x, y) \in D^{2}-E$.
2. Let $x \in D$ be a vertex.
(a) $N_{\varnothing}(x)=\{y \in D: \neg y E x$ and $\neg x E y$ and $y \neq x\}$.
(b) $N_{o}(x)=\{y \in D: \neg y E x$ and $x E y\} .(x, y)$ is an out-edge.
(c) $N_{i}(x)=\{y \in D: y E x$ and $\neg x E y\} .(x, y)$ is an in-edge.
(d) $N_{u}(x)=\{y \in D: y E x$ and $x E y\} .(x, y)$ is an (undirected) edge.

The following property is an essential part of our classification.

Definition 8 A tournament T has property (\$) if for $\square \in\{i, o\}$, and for some $x \in T$, $N_{\square}(x) \neq \varnothing$ then for all $y \in T, N_{\square}(y) \neq \varnothing$.
T^{∞} is the generic (or random) tournament and is defined to be the Fraïssé limit of the class of finite tournaments; see specifically Example 1 of Section 3.3 of [2].

Proposition 2 A countable tournament T is isomorphic to T^{∞} if and only if T satisfies (\mathcal{P}) and (\$).

We will assume the reader is familiar with the basic facts about linear orderings and wellorderings. Rosenstein [4] is a good reference for our purposes. The set of natural numbers is denoted ω.

3 The Classification of Tournaments with (\mathcal{P})

The following is our main theorem.

Theorem 1 The countable tournaments with (\mathcal{P}) are $T^{\infty},\left\{\omega^{\alpha},\left(\omega^{\alpha}\right)^{*}: \alpha\right.$ a non-zero countable ordinal $\}$. In particular, there are uncountably many countable tournaments with (\mathcal{P}).

Remark 1 We note that ω^{α} stands for ordinal exponentiation, not cardinal exponentiation.

The proof of Theorem 1 will take the rest of Section 3. To begin the proof, fix D a countable tournament with (\mathcal{P}). We consider the following two cases.

1. D satisfies (\$): by Proposition $2, D \cong T^{\infty}$.
2. D does not satisfy (\$): we first show that D must be a linear order (see Proposition 3). We then show in Theorem 2 that a linear ordering with (\mathcal{P}) must be one of $\left\{\omega^{\alpha},\left(\omega^{\alpha}\right)^{*}: \alpha\right.$ a non-zero countable ordinal $\}$.

3.1 The Classification of Tournaments with (P)

3.1.1 From Tournaments to Linear Orders

Definition 9 Let T be a tournament.

1. A vertex $a \in T$ is a source if $a E b$ for all $b \in T-\{a\}$.
2. A vertex $a \in T$ is a sink if $b E a$ for all $b \in T-\{a\}$.
3. A vertex $a \in T$ is special if it is a source or a sink.

The following lemma is easy but makes our classification possible.

Lemma 2

1. A tournament has no more than two special points; if it has exactly two special points, there must be exactly one source and one sink.
2. A nontrivial tournament has (\$) if and only if it has no special points.

Proof (1) A tournament with more than two special points would have at least two sinks or two sources, which is impossible.
(2) If T has (\$) and $a \in T$ was special, then say $N_{i}(a)=\varnothing$. But then there is some $b \in T$ so that $a E b$, so that $N_{i}(b) \neq \varnothing$, which is a contradiction.

Conversely, assume T does not satisfy (\$). Then for some $a, b \in T$, and some $\square \in\{i, o\}$, $N_{\square}(a) \neq \varnothing$ and $N_{\square}(b)=\varnothing$. But then b is special.

Proposition 3 Let T be a countable tournament satisfying (\mathcal{P}). If $T \not \nexists T^{\infty}$ then T is a linear order.

Proof If T satisfies (\$), then $T \cong T^{\infty}$ by Proposition 2.
Assume T does not satisfy (\$). We show that T must be a linear order. By Lemma 2 there are two cases: T has one or two special points.

Case 1 Thas one special point.
Without loss of generality, we assume that T has a source 0 (the case when T has a sink will follow by the principle of directional duality). We aim to show that T does not have the intransitive 3-cycle D_{3} as an induced subtournament; if we succeed then T is a linear order.

Assume T has D_{3} as an induced subtournament. We find a contradiction. Define $S=$ $\left\{y \in T: y E z\right.$ for all $z \in X$, where X is an induced subtournament of T isomorphic to $\left.D_{3}\right\}$.

Claim $1 S \neq \varnothing$.
We show that $0 \in S$. If not then either there is a z in a 3 -cycle so that $z E 0$, which is impossible as 0 is a source, or 0 itself is in 3 -cycle, which is impossible as D_{3} has no source.

Claim $2 S$ is a linear order.
Otherwise, D_{3} embeds in S; let X be an induced subtournament of S isomorphic to D_{3}. But then $X \subseteq T$, so that for each $x \in X, x E x$ (by the definition of S), contradicting irreflexivity.

Let $A=S, B=T-S$. If $B=\varnothing$ then D is a linear order by Claim 2 and we have our contradiction. Assume now that $B \neq \varnothing$.

Claim $3 T \cong T \upharpoonright A$.
If not, as T satisfies (\mathcal{P}), then $T \cong T \upharpoonright B$. If so, then B contains a source 0^{\prime}; that is, for all $y \in B-\left\{0^{\prime}\right\}, 0^{\prime} E y$. But $0^{\prime} \notin S$ implies that there is $X \subseteq T$ isomorphic to D_{3} so that $0^{\prime} \in X$ or there is some $y \in X$ so that $y E 0^{\prime}$. By the proof of Claim $2, X \subseteq B$. As before, as 0^{\prime} is a source in B either case leads to a contradiction.

Claims 2 and 3 contradict our assumption that T has D_{3} as an induced subtournament. Hence, in Case $1, T$ is a linear order with first element 0 and no greatest element. If T has a sink, a similar argument shows that T is a linear order with last element and no first element.

Case $2 T$ has two special points.
Proceed as in Case 1. T is then a linear order with a first and last element.

3.1.2 The Classification of Orders with (\mathcal{P})

We classify orders (even the uncountable ones) with (\mathcal{P}). We can consider orders as binary structures with a binary relation \leq that is reflexive, anti-symmetric, and transitive; we call these reflexive orders to distinguish them from their irreflexive counterparts (see Example 1 above). However, reflexive orders are not true oriented graphs (recall that we forbid loops). Nevertheless, the following result holds for both "irreflexive" and reflexive orders; when the distinction is irrelevant, we refer to either kind of structure simply as an order. In the irreflexive case, \leq means " $<$ or $=$ ".

The next theorem, in the countable case, will complete the proof of Theorem 1.

Theorem 2 Let P be an order satisfying ($\mathcal{P})$. Then P is an infinite antichain or P is one of ω^{α} or $\left(\omega^{\alpha}\right)^{*}$, where α is a non-zero ordinal.

Proof An infinite antichain satisfies (\mathcal{P}).
Assume P is not an antichain and $|P|=\delta \geq \aleph_{0}$. For an order $P, G(P)$ is the comparability graph of P. By Lemma 1 and Proposition 1 above, $G(P)$ is e.c. or K_{δ}; the first case is impossible, as every e.c. graph embeds the 5 -cycle C_{5}. Hence, $G(P)=K_{\delta}$ so that P is a linear ordering.

Claim $1 P$ has endpoints.
Otherwise, let $a, b \in P$ with $a<b$. Define $A=\{y \in P: y \geq a\}-\{b\}, B=P-A$. But $P \upharpoonright A$ has a least point and $P \upharpoonright B$ has a greatest point, so that neither A nor B is isomorphic to P, violating (\mathcal{P}).

By Claim 1, P has either a least point and no greatest point, a greatest point and no least point, or both a least and greatest point.

Case $1 P$ has a least point 0 and no greatest point.

We show P is a well-ordering. We use the characterization that P is well-ordered if it has no subordering isomorphic to ω^{*}. Assume P is not a well-ordering. Define $S=\{x \in P$: $x<y$ for all $y \in X \subseteq P$ with X isomorphic to $\left.\omega^{*}\right\}$.

Claim $2 S \neq \varnothing$.
We show $0 \in S$. If not, then $0 \geq y$ where y is some element of an infinite descending chain in P, which is a contradiction.

Claim $3 S$ is well-ordered.
The proof is similar to the proof of Claim 2 of Theorem 3. We show there is no subordering X of S isomorphic to ω^{*}. Otherwise, say X is a subset of P isomorphic to ω^{*}. Fix $x \in X$. Then $x<x$, which is a contradiction.

Let $A=S, B=P-S$. By Claims 2 and 3 we may assume B is nonempty.
Claim $4 P \cong P \upharpoonright A$.
If not, then $P \cong P \upharpoonright B$ by (\mathcal{P}). If so, B contains a least element 0^{\prime}. As $0^{\prime} \notin S$, there is some $y \in X \subseteq P$ with X isomorphic to ω^{*} so that $y \leq 0^{\prime}$. By the proof of Claim 3, $X \subseteq B$. But then there is an infinite descending chain below 0^{\prime} in B so we arrive at a contradiction. The contradiction shows that P is well-ordered, and hence, isomorphic to an ordinal α.

We now employ Cantor's normal form theorem (see Theorem 3.46 of [4]): there are ordinals $\alpha_{1}>\cdots>\alpha_{k}$ for $k \in \omega-\{0\}$, and $n_{1}, \ldots, n_{k} \in \omega-\{0\}$ so that

$$
\alpha=\omega^{\alpha_{1}} n_{1}+\cdots+\omega^{\alpha_{k}} n_{k}
$$

Claim $5 \quad k=1$.
Otherwise, $k \geq 2$. Let $A_{i}=\omega^{\alpha_{i}} n_{i}$, with $1 \leq i \leq k$. By (\mathcal{P}) there is some i so that $P \cong P \upharpoonright A_{i}$.

Claim $6 \quad n_{i}=1$.
Otherwise, $\alpha=\omega^{\alpha_{1}} n_{i}=\omega^{\alpha_{1}}+\cdots+\omega^{\alpha_{1}}$ (n_{i} times). Again by (\mathcal{P}) α is isomorphic to some $\omega^{\alpha_{1}}$.

It remains to show sufficiency; namely, we must show that ω^{α} satisfies (\mathcal{P}) for α a nonzero ordinal. We proceed by transfinite induction on $\alpha \geq 1$.

As ω satisfies (\mathcal{P}) the induction commences. Let $2 \leq \alpha=\beta+1$ be a successor ordinal. Then $\omega^{\alpha}=\omega^{\beta} \omega$. Let $\omega^{\alpha}=S_{1} \uplus \cdots \uplus S_{n}$ for $n \geq 2$. We label the ω copies of ω^{β} in ω^{α} as $\left\{\omega^{\beta}(i): i \in \omega\right\}$. For $i \in \omega, j \in\{1, \ldots, n\}$ define $S_{i j}=\omega^{\beta}(i) \cap S_{j}$.

Then for $j \in\{1, \ldots, n\}$

$$
S_{j}=\sum_{i \in \omega} S_{i j}
$$

By the inductive hypothesis ω^{β} satisfies (\mathcal{P}); hence, for each $i \in \omega$ there is a $j(i) \in$ $\{1, \ldots, n\}$ so that $S_{i j(i)} \cong \omega^{\beta}$. By the pigeonhole principle for sets, there is some $j \in$ $\{1, \ldots, n\}$ with infinitely many $S_{i j} \cong \omega^{\beta}$.

Recall that for $\beta \geq 1, \varepsilon+\omega^{\beta}=\omega^{\beta}$ for $\varepsilon<\omega^{\beta}$. By applying this fact and the fact that the set of blocks equal to ω^{β} is cofinal in $\left\{S_{i j}: i \in \omega\right\}$, we have that $S_{j} \cong \sum_{i \in \omega} \omega^{\beta}=\omega^{\alpha}$.

Now, assume α is a limit ordinal that satisfies $\alpha>\omega$. Then $\omega^{\alpha}=\sum_{\beta<\alpha} \omega^{\beta}$. The argument in this case is similar to the case when α is a successor ordinal and so is omitted.

Case $2 P$ has a greatest point and no least point.
In this case, we find that P is of the form $\left(\omega^{\alpha}\right)^{*}$. The argument for Case 2 follows from the argument of Case 1 , and by directional duality.

Case $3 P$ has a least element 0 and greatest element ∞.
We find a contradiction. Define $A=S$ as in Case 1 and $B=P-A$. It is immediate that $0 \in A-B$ and $\infty \in B-A$. As in Case $1, A$ is well-ordered.

By (\mathcal{P}) one of $P \upharpoonright A, P \upharpoonright B$ is isomorphic to P. If $P \upharpoonright A$ is isomorphic to P, then P is a well-ordering and hence, isomorphic to an ordinal. But then by Case $1, P$ is of the form ω^{α} for some non-zero ordinal α contradicting that P has a greatest point.

If $P \upharpoonright B \cong P$, then B has a first-element 0^{\prime}; but as $0^{\prime} \in P-S, 0^{\prime} \geq y$ for some y in an isomorphic copy of ω^{*}. This contradiction finishes the proof.

3.1.3 Quasi-Orders with (\mathcal{P})

The classification of orders with (\mathcal{P}) also supplies a classification of quasi-orders (or preorders) with (\mathcal{P}). A binary structure is a quasi-order if it has a reflexive, transitive edge set. We write $a \leq b$ for $(a, b) \in E$. If we define $a \sim b$ by $a \leq b$ and $b \leq a$, then \sim is an equivalence relation; further, the quasi-ordering of S induces an order on the set of blocks $S / \sim:[a] \leq[b]$ if and only if $a \leq b$.

Definition 10 A class of binary structures \mathcal{K} is equipped with an equivalence relation R if for each $S \in \mathcal{K}$ there is an equivalence relation $R^{S} \subseteq S^{2}$ satisfying the following two conditions.
(E1) For $S, T \in \mathcal{K}$ if $f: S \rightarrow T$ is an isomorphism, then $(x, y) \in R^{S}$ if and only if $(f(x), f(y)) \in R^{T}$.
(E2) For all $S, T \in \mathcal{K}$ with $S \leq T, R^{S}=R^{T} \cap S^{2}$.
Lemma 3 Let S be a member of a class of binary structures equipped with an equivalence relation R. IfS has (\mathcal{P}), then S has either a single infinite R-block or has only singleton R-blocks.

Proof If S has a single finite block, then S is finite and so cannot satisfy (\mathcal{P}). Assume S has (\mathcal{P}), has more than one R-block, and has some block with at least two elements. We find a contradiction.

Case $1 S$ has n blocks, for $1<n<\omega$.
Let S have blocks $\left\{S_{i}: 1 \leq i \leq n\right\}$. By (\mathcal{P}) some $S \upharpoonright S_{i} \cong S$, which is a contradiction, as an isomorphism preserves the number of blocks by (E1). Hence, we may assume S has infinitely many blocks.

Case 2 Every block of S is finite.
Fix a block S_{i} with cardinality $m \geq 2$. Let $A=\left\{S_{i}:\left|S_{i}\right|=m\right\}, B=S-A$. If $B=\varnothing$, then each block of S has size m. If $B \neq \varnothing$, then since A is a union of R-blocks and by (E2),
$S \upharpoonright B$ has no block of size m, so by $(\mathcal{P}), S \upharpoonright A \cong S$. In either case, each block of S has size m. Now, let C consist of one element from each block of S, with $D=S-C$. Then by (E2) neither $S \upharpoonright C$ nor $S \upharpoonright D$ have blocks of order m, which is a contradiction.

Case $3 S$ has some blocks finite, some infinite.
Let A be the union of the finite blocks, $B=S-A$. Then neither $S \upharpoonright A$ nor $S \upharpoonright B$ is isomorphic to S, which is a contradiction.

Case $4 S$ has all blocks infinite.
Let S_{i}, S_{j} be distinct infinite blocks. Fix $a \in S_{i}, b \in S_{j}$. Let $A=\left(S-\left(S_{i} \cup\{b\}\right)\right) \cup\{a\}$, $B=S-A$. Then both $S \upharpoonright A, S \upharpoonright B$ have singleton blocks by (E2), contradicting our hypothesis.

Corollary 1 The quasi-orders with (\mathcal{P}) have either a single infinite $\sim-b l o c k$ or are reflexive orders (quasi-orders with singleton $\sim-b l o c k s)$ with (\mathcal{P}).

Proof If \mathcal{K} is the class of quasi-orders, \mathcal{K} is equipped with the equivalence relation \sim. Apply Lemma 3.

3.2 Towards a Classification of Oriented Graphs with (P)

By Proposition 3.4 of [3] and Lemma 1, if D is a countable oriented graph with $(\mathcal{P}), G(D)$ is isomorphic to one of $\overline{K_{\aleph_{0}}}, K_{\aleph_{0}}$, or R. If $G(D) \cong \overline{K_{\aleph_{0}}}$, then D is just the countable edgeless oriented graph on \aleph_{0}-many vertices. If $G(D) \cong K_{\aleph_{0}}$, then D is a tournament, for which we have a complete classification.

Assuming $G(D) \cong R$, then for each $x \in D$, both $N_{u}(x)$ and $N_{\varnothing}(x)$ are infinite in $G(D)$. But then $N_{i}(x) \cup N_{o}(x)$ and $N_{\varnothing}(x)$ are each infinite in D. If for each $x \in D, N_{i}(x), N_{o}(x)$ are nonempty, then we can show that D is isomorphic to the generic oriented graph O (the Fraïssé limit of the finite oriented graphs).

Definition 11 Let D be an oriented graph. D is 1-e.c. if for each $x \in D$ and eachϵ $\{\varnothing, i, o\}, N_{\square}(x)$ is nonempty.

The following proposition follows from results in [1].

Proposition 4 A countable oriented graph D with (\mathcal{P}) is 1-e.c. if and only if $D \cong O$.
We do not have an answer to the following problem.
Problem Is there a countable oriented graph D that is not 1-e.c. with $G(D) \cong R$ so that D has (P)?

If so, then there is an orientation of the random graph R, distinct from the orientation giving O, with (\mathcal{P}).

References

[1] A. Bonato and D. Delić, A pigeonhole principle for relational structures. Mathematical Logic Quarterly 45(1999), 409-413.
[2] P. J. Cameron, Oligomorphic Permutation Groups. London Math. Soc. Lecture Notes 152, Cambridge University Press, Cambridge, 1990.
[3] , The random graph. In: Algorithms and Combinatorics, Springer Verlag, New York 14(1997), 333351.
[4] J. G. Rosenstein, Linear orderings, Academic Press, New York, 1982.

Department of Mathematics
Wilfrid Laurier University
Waterloo, ON
N2L 3C5
email: abonato@wlu.ca

Department of Mathematics and Statistics
McMaster University
Hamilton, ON
L8S 4K1
email: delicd@math.mcmaster.ca

School of Mathematical Sciences
Queen Mary and Westfield College
London E1 4NS
U.K.
email: P.J.Cameron@qmw.ac.uk

[^0]: Received by the editors January 14, 1998; revised June 1, 2000.
 The first and third authors gratefully acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC).

 AMS subject classification: $05 \mathrm{C} 20,03 \mathrm{C} 15$.
 Keywords: pigeonhole property, tournament, order.
 (c)Canadian Mathematical Society 2000.

