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Abstract
In this paper, we study multiple zeta values (abbreviated as MZV’s) over function fields in positive characteristic.
Our main result is to prove Thakur’s basis conjecture, which plays the analogue of Hoffman’s basis conjecture
for real MZV’s. As a consequence, we derive Todd’s dimension conjecture, which is the analogue of Zagier’s
dimension conjecture for classical real MZV’s.
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1. Introduction

1.1. Classical conjectures

In this paper, we study multiple zeta values (abbreviated as MZV’s) over function fields in positive
characteristic introduced by Thakur [31]. Our motivation arises from Zagier’s dimension conjecture and
Hoffman’s basis conjecture for classical real MZV’s.

The special value of the Riemann 𝜁-function at positive integer 𝑠 ≥ 2 is the following series:

𝜁 (𝑠) :=
∞∑
𝑛=1

1
𝑛𝑠
∈ R×.

Classical real MZV’s are generalizations of the special 𝜁-values above. Their study was initiated by
Euler on double zeta values and fully generalized by Zagier [36] in the 1990s. An admissible index is
an r-tuple of positive integer 𝔰 = (𝑠1, . . . , 𝑠𝑟 ) ∈ Z

𝑟
>0 with 𝑠1 ≥ 2. The real MZV at 𝔰 is defined by the

following multiple series:

𝜁 (𝔰) :=
∑

𝑛1> · · ·>𝑛𝑟 ≥1

1
𝑛𝑠1

1 · · · 𝑛
𝑠𝑟
𝑟
∈ R×.

We call wt(𝔰) :=
∑𝑟
𝑖=1 𝑠𝑖 and dep(𝔰) := 𝑟 the weight and depth of the presentation 𝜁 (𝔰), respectively.

Over the past decades, the study of real MZV’s has attracted many researchers’ attention as MZV’s have
many interesting and important connections with various topics. For example, MZV’s occur as periods
of mixed Tate motives by Terasoma [29], Goncharov [18] and Deligne-Goncharov [16], and MZV’s
of depth two have close connection with modular forms by Gangl-Kaneko-Zagier [17] etc. For more
details and relevant references, we refer the reader to the books [5, 37, 7].

By the theory of regularized double shuffle relations [28, 23], there are richQ-linear relations among
the same weight MZV’s. One core problem on this topic is Zagier’s following dimension conjecture:

Conjecture 1.1 (Zagier’s dimension conjecture). For an integer 𝑤 ≥ 2, we let ℨ𝑤 be the Q-vector
space spanned by real MZV’s of weight w. We put 𝑑0 := 1, 𝑑1 := 0, 𝑑2 := 1 and 𝑑𝑤 := 𝑑𝑤−2 + 𝑑𝑤−3 for
integers 𝑤 ≥ 3. Then for each integer 𝑤 ≥ 2, we have

dimQℨ𝑤 = 𝑑𝑤 .

The best known result towards Zagier’s dimension conjecture until now has been the upper bound
result proved by Terasoma [29] and Goncharov [18] independently. Namely, they showed that dimQℨ𝑤 ≤
𝑑𝑤 for all integers 𝑤 ≥ 2. Furthermore, Hoffman [21] proposed the following conjectural basis for ℨ𝑤
for each 𝑤 ≥ 2.

Conjecture 1.2 (Hoffman’s basis conjecture). For an integer 𝑤 ≥ 2, we let IH
𝑤 be the set of admissible

indices 𝔰 = (𝑠1, . . . , 𝑠𝑟 ) with 𝑠𝑖 ∈ {2, 3} satisfying wt(𝔰) = 𝑤. Then the following set

BH
𝑤 :=

{
𝜁 (𝔰) |𝔰 ∈ IH

𝑤

}
is a basis of the Q-vector space ℨ𝑤 .

We mention that Hoffman’s basis conjecture implies Zagier’s dimension conjecture. In [6], Brown
proved Hoffman’s basis conjecture for motivic MZV’s. As there is a surjective map from motivic MZV’s
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to real MZV’s, Brown’s theorem implies that Hoffman’s conjectural basis would be a generating set
for ℨ𝑤 , and as a consequence, the upper bound result of Terasoma and Goncharov would be derived.
Our main results in this paper are to prove the analogues of Conjecture 1.1 and Conjecture 1.2 and give
precise generators of all linear relations among MZV’s in positive characteristic.

1.2. The main results

In the positive characteristic setting, we let 𝐴 := F𝑞 [𝜃] be the polynomial ring in the variable 𝜃 over a
finite field F𝑞 of q elements, where q is a power of a prime number p. We let k be the field of fractions
of A and | · |∞ be the normalized absolute value on k at the infinite place∞ of k for which |𝜃 |∞ = 𝑞. Let
𝑘∞ := F𝑞 ((1/𝜃)) be the completion of k with respect to | · |∞. We then fix an algebraic closure 𝑘∞ of 𝑘∞
and still denote by | · |∞ the extended absolute value on 𝑘∞. We let C∞ be the completion of 𝑘∞ with
respect to | · |∞. Finally, we let 𝑘 be the algebraic closure of k inside C∞.

Let 𝐴+ be the set of monic polynomials of A, which plays an analogous role to the set of positive
integers now in the function field setting. In [31], Thakur introduced the following positive characteristic
MZV’s: for any r-tuple of positive integers 𝔰 = (𝑠1, . . . , 𝑠𝑟 ) ∈ Z

𝑟
>0,

𝜁𝐴(𝔰) :=
∑

𝑎1 , · · · ,𝑎𝑟 ∈𝐴+

1
𝑎𝑠1

1 · · · 𝑎
𝑠𝑟
𝑟
∈ 𝑘∞ (1.1)

with the restriction that |𝑎1 |∞ > · · · > |𝑎𝑟 |∞. As our absolute value | · |∞ is non-archimedean, the series
𝜁𝐴(𝔰) converges in 𝑘∞. However, Thakur [32] showed that such series are in fact non-vanishing. The
weight and the depth of the presentation 𝜁𝐴(𝔰) are defined to be wt(𝔰) :=

∑𝑟
𝑖=1 𝑠𝑖 and dep(𝔰) := 𝑟 ,

respectively. When dep(𝔰) = 1, these values are now called Carlitz zeta values, as their study was
initiated by Carlitz in [8].

As from now on, we focus on MZV’s in positive characteristic; in what follows, MZV’s will be
Thakur’s (∞-adic) MZV’s. In [34], Thakur established a product on MZV’s, which is called q-shuffle
relation in this paper. Namely, the product of two MZV’s can be expressed as an F𝑝-linear combination
of MZV’s whose weights are the same. It follows that the k-vector space Z spanned by all MZV’s forms
an algebra.

Note that 𝑘-algebraic relations among MZV’s are 𝑘-linear relations among monomials of MZV’s,
which can be expressed as 𝑘-linear relations among MZV’s by q-shuffle relations mentioned above. In
[9], the first named author of the present paper proved that all 𝑘-linear relations come from k-linear
relations among MZV’s of the same weight. Therefore, determination of the dimension of the k-vector
space of MZV’s of weight w for 𝑤 ∈ Z>0 is the central problem in this topic. Via numerical computation,
Todd [30] provided the following analogue of Zagier’s dimension conjecture.

Conjecture 1.3 (Todd’s dimension conjecture). For any positive integer w, let Z𝑤 be the k-vector space
spanned by all MZV’s of weight w. Define

𝑑 ′𝑤 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2𝑤−1 if 1 ≤ 𝑤 < 𝑞,

2𝑞−1 − 1 if 𝑤 = 𝑞,∑𝑞
𝑖=1 𝑑

′
𝑤−𝑖 if 𝑤 > 𝑞.

Then one has

dim𝑘 Z𝑤 = 𝑑 ′𝑤 .

In analogy with Hoffman’s basis conjecture, Thakur [35] proposed the following conjecture.

Conjecture 1.4 (Thakur’s basis conjecture). Let w be a positive integer and let IT
𝑤 be the set consisting

of all 𝔰 = (𝑠1, . . . , 𝑠𝑟 ) ∈ Z
𝑟
>0 (varying positive integers r) for which
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• wt(𝔰) = 𝑤;
• 𝑠𝑖 ≤ 𝑞 for all 1 ≤ 𝑖 ≤ 𝑟 − 1;
• 𝑠𝑟 < 𝑞.

Then the following set

BT
𝑤 :=

{
𝜁𝐴(𝔰) |𝔰 ∈ IT

𝑤

}
is a basis of the k-vector space Z𝑤 .

We mention that for every positive integer w, the cardinality of IT
𝑤 is equal to 𝑑 ′𝑤 given in Conjecture

1.3. It follows that as in the classical case, Thakur’s basis conjecture implies Todd’s dimension conjecture.
The main result of this paper is to prove Thakur’s basis conjecture.

Theorem 1.5. For any positive integer w, Conjecture 1.4 is true. As a consequence, Conjecture 1.3 is
also true.

As we have determined the dimension of Z𝑤 for each 𝑤 ∈ N, it is a natural question about how to
describe all the k-linear relations among the MZV’s of weight w. We establish a concrete and simple
mechanism in Theorem 5.3 that (5.3) accounts for all the k-linear relations. Note that Theorem 5.3
basically verifies the ℬ∗-version of [30, Conjecture 5.1].

Remark 1.6. In [26], Ngo Dac showed that for each 𝑤 ≥ 1, BT
𝑤 is a generating set for the k-vector space

Z𝑤 . As a consequence of Ngo Dac’s result, one has the upper bound result:

dim𝑤 Z𝑤 ≤ 𝑑 ′𝑤 , ∀𝑤 ≥ 1.

Theoretically, to prove Thakur’s basis conjecture, it suffices to show that his conjectural basis is linearly
independent over k. However, when developing our approaches in a unified framework, we reprove Ngo
Dac’s result mentioned above in Corollary 3.7, which also provides a generating set for the k-vector
space spanned by the special values Li𝔰 (1) for all indices 𝔰 with wt(𝔰) = 𝑤 and which is described in
the next section.

Remark 1.7. As mentioned above, by [9], k-linear independence of MZV’s implies 𝑘-linear indepen-
dence. It follows that for each positive integer w, BT

𝑤 is also a basis for the 𝑘-vector space spanned by
the MZV’s of weight w.

Given a finite place v of k, we mention that v-adic MZV’s 𝜁𝐴(𝔰)𝑣 were introduced in [13] for 𝔰 ∈ Z𝑟>0.
By [13, Thm. 1.2.2], there is a natural k-linear map from (∞-adic) MZV’s to v-adic MZV’s, and it was
further shown in [11] that the map is indeed an algebra homomorphism with kernel containing the ideal
generated by 𝜁𝐴(𝑞 − 1) since 𝜁𝐴(𝑞 − 1)𝑣 = 0 by [19]. As a consequence of Theorem 1.5, we have the
following upper bound result for v-adic MZV’s.

Corollary 1.8. Let v be a finite place of k. For a positive integer w, we let Z𝑣,𝑤 be the 𝑘-vector space
space by v-adic MZV’s of weight w defined in [13]. Then we have

dim𝑘 Z𝑣,𝑤 ≤ 𝑑 ′𝑤 − 𝑑 ′𝑤−(𝑞−1) ,

where 𝑑 ′0 := 1 and 𝑑 ′𝑛 := 0 for 𝑛 < 0.

1.3. Strategy of proofs

The key ingredient of our proof of Theorem 1.5 is to switch the study of MZV’s to that of the special
values of Carlitz multiple polylogarithms (abbreviated as CMPL’s) Li𝔰 for 𝔰 ∈ Z𝑟>0 defined by the first
named author in [9]. For the definition of Li𝔰 , see (2.3). Note that CMPL’s are higher depth generalization
of the Carlitz polylogarithms initiated by Anderson-Thakur [3]. Based on the interpolation formula of
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Anderson-Thakur [3, 4], one knows from [9] that 𝜁𝐴(𝔰) can be expressed as a k-linear combination of
CMPL’s at some integral points, and in the particular case for 𝔰 ∈ IT

𝑤 , one has the simple identity (2.7)
that

𝜁𝐴(𝔰) = Li𝔰 (1),

where 1 := (1, . . . , 1) ∈ Zdep(𝔰)
>0 .

Given a positive integer w, we let IND
𝑤 be the set consisting of all tuples of positive integers

𝔰 = (𝑠1, . . . , 𝑠𝑟 ) with wt(𝔰) = 𝑤 and 𝑞 � 𝑠𝑖 for all 1 ≤ 𝑖 ≤ 𝑟 , and note that IND
𝑤 was used and studied in

[26]. The overall arguments in the proof of Theorem 1.5 are divided into the following two parts:

(I) We show in Corollary 3.7 that the two sets BLi,T
𝑤 :=

{
Li𝔰 (1) |𝔰 ∈ IT

𝑤

}
and B𝑇𝑤 are generating sets

of the k-vector space Z𝑤 for every positive integer w (the latter one was known by Ngo Dac [26])
and further show in Theorem 3.8 that the set

{
Li𝔰 (1) |𝔰 ∈ IND

𝑤

}
is a generating set for Z𝑤 .

(II) We prove in Theorem 5.2 that
{
Li𝔰 (1) |𝔰 ∈ IND

𝑤

}
is a linearly independent set over k. Since |IT

𝑤 | =
|IND
𝑤 | (see Proposition 2.1), it follows that B𝑇𝑤 is a k-basis of Z𝑤 .

Regarding the part (I) above, we try to abstract and unify our methods to have a wide scope. We
consider a formal k-space H generated by indices, on which the harmonic product ∗Li and q-shuffle
product ∗𝜁 are defined. We also consider the power/truncated sums maps arising from Li𝔰 (1) and 𝜁 (𝔰).
We then define the maps ℒLi,ℒ𝜁 : H → 𝑘∞ as the CMPL and MZV-realizations. These realizations
preserve the harmonic product and q-shuffle product, respectively, illustrating the stuffle relations [9]
for CMPL’s and the q-shuffle relations [34, 15] for MZV’s in a formal framework. See Theorem 2.7.

Then we adopt the ideas and methods rooted in [30, 26] to achieve Theorem 3.6, which enables us to
show the results mentioned in (I). Since some essential arguments are from those in [26], we leave the
detailed proofs in the appendix. However, under such abstraction, the maps 𝒰• given in Definition 3.4
are explicit. In particular, Theorem 3.6 (2) allows us to provide a concrete and effective way to express
Li𝔰 (1) (resp. 𝜁𝐴(𝔰)) as linear combinations in terms of BLi,T

𝑤 (resp. B𝑇𝑤 ) simultaneously. This is more
concrete and explicit than those developed in [26] and enables us to establish a simple mechanism in
Theorem 5.3 that generates all the k-linear relations among MZV’s of the same weight (cf. the ℬ∗-
version of [30, Conjecture 5.1]).

Concerning the second part (II), the primary tool that we use is the Anderson-Brownawell-Papanikolas
criterion [2, Thm. 3.1.1] (abbreviated as ABP-criterion), which has very strong applications in transcen-
dence theory in positive characteristic. We prove (II) by induction on w. We start with a linear equation∑

𝔰∈IND
𝑤

𝛼𝔰 (𝜃) Li𝔰 (1) = 0, for 𝛼𝔰 = 𝛼𝔰 (𝑡) ∈ F𝑞 (𝑡), ∀𝔰 ∈ IND
𝑤 (1.2)

and aim to show that 𝛼𝔰 = 0 for all 𝔰 ∈ IND
𝑤 . We outline our arguments as below.

(II-1) Using the period interpretation [9, (3.4.5)] for special values of CMPL’s (inspired by [4] for
MZV’s), we can construct a system of difference equations 𝜓 (−1) = Φ̃𝜓 fitting into the conditions
of ABP-criterion for which (1.2) can be expressed as a k-linear identity among the entries of
𝜓(𝜃). We then apply the arguments in the proof of [14, Thm. 2.5.2], and eventually we obtain the
big system of Frobenius difference equations (Ew), which is essentially from [14, (3.1.3)].

(II-2) Denote by 𝒳𝑤 the F𝑞 (𝑡)-vector space of the solution space of (Ew). We then show in Theorem
4.8 that dimF𝑞 (𝑡) 𝒳𝑤 is either 1 if (𝑞 − 1) | 𝑤 or 0 if (𝑞 − 1) � 𝑤.

(II-3) Using the trick of [9, 14] together with the induction hypothesis, we establish Lemma 5.1. By the
first part of Lemma 5.1, we see that if 𝛼𝔰 ≠ 0, then 𝔰 must be in IND0

𝑤 , which is given in (4.1).
Then we apply Lemma 5.1 (2) to conclude that there exists (𝜀𝔰) ∈ 𝒳𝑤 for which 𝛼𝔰 = 𝜀𝔰 for all
𝔰 ∈ IND0

𝑤 . Note that the description of indices in IND0
𝑤 arises from the simultaneously Eulerian

phenomenon in [14, Cor. 4.2.3], which was first witnessed by Lara Rodríguez and Thakur in [25].

https://doi.org/10.1017/fmp.2023.26 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.26


6 C-Y. Chang, Y-T. Chen and Y. Mishiba

(II-4) When (𝑞 − 1) � 𝑤, we use the fact of this case that 𝒳𝑤 = 0 to conclude that 𝜀𝔰 = 0 for every 𝔰,
and hence 𝛼𝔰 (𝜃) = 0 for every 𝔰. When (𝑞 − 1) | 𝑤, we apply Theorem 3.8 together with the fact
of this case that dimF𝑞 (𝑡) 𝒳𝑤 = 1. Having one trick further in the proof of Theorem 5.2 shows
that 𝛼𝔰 (𝜃) = 0 for every 𝔰.

Remark 1.9. The above is the overall strategy of our proof. However, to save some length without
affecting logical arguments, we avoid many details in (II-1). Instead, we directly go to (1.2) in this paper.

1.4. Organization of the paper

In Section 2.1, we introduce the abstract k-vector space H, on which the harmonic product ∗Li and q-
shuffle product ∗𝜁 are defined. The purpose of Section 2.1 is to derive the product formulae, stated as
Proposition 2.7, for the CMPL and MZV realizations ℒLi and ℒ𝜁 . In Section 3, we follow [30, 26] to
transfer their ℬ,𝒞,ℬ𝒞 maps into our formal framework in a concrete way. The primary result of this
section is to establish Theorem 3.8, which is an application of Theorem 3.6, whose detailed proof is
given in the appendix.

We study the specific system of Frobenius difference equations (Ew) mentioned in the (II) above in
Section 4. We carefully analyze the solution space 𝒳𝑤 of (Ew), and determine its dimension in Theorem
4.8. In Section 5, we establish the key Lemma 5.1, which is used to prove the k-linear independence of{

Li𝔰 (1) |𝔰 ∈ IND
𝑤

}
in Theorem 5.2. With these results at hand, we prove Theorem 1.5 in Section 5.3 as a

short conclusion. Finally, combining Theorems 3.6 and 1.5, we give a proof of Theorem 5.3 in Section
5.4. As mentioned above, the appendix consists of a detailed proof of Theorem 3.6.

Remark 1.10. When this paper was nearly in its final version, we announced our results of Theorem
1.5 to Thakur, and soon after, Ngo Dac sent his paper [22] to Thakur on the same day announcing that
he and his coauthors show the same results for alternating MZV’s. Our paper was finished a few days
later than theirs. The key strategy of their proofs is in the same direction as ours. They switch the study
of alternating MZV’s to the k-vector space spanned by the following special values of CMPL’s:{

Li𝔰 (𝛾1, . . . , 𝛾𝑟 ) |𝔰 ∈ IT
𝑤 , (𝛾1, . . . , 𝛾𝑟 ) ∈ (F

×
𝑞𝑞−1 )

𝑟
}
.

Note that any value in the set above is equal to an alternating MZV at 𝔰 up to an algebraic multiple (cf.
[12, Prop. 2.12]). However, by the first author’s result [9, Thm. 5.4.3] showing that CMPL’s at algebraic
points form a 𝑘-graded algebra defined over k, one can remove the algebraic factor without affecting
the study for the k-vector space of alternating MZV’s. We find that some directions of our ideas and
theirs are similar and the primary methods rooted in [2, 9, 30, 14, 26] are the same, but presentations
and detailed arguments are different. However, we prove Theorem 5.3 explicitly describing all k-linear
relations among MZV’s, but there is no such a result proved in [22].

2. Two products on H
2.1. Indices

By an index, we mean the empty set ∅ or an r-tuple of positive integers 𝔰 = (𝑠1, . . . , 𝑠𝑟 ). In the former
case, its depth and weight are defined to be dep(∅) = 0 and wt(∅) = 0. The depth and weight of the
latter case are defined to be dep(𝔰) = 𝑟 and wt(𝔰) =

∑𝑟
𝑖=1 𝑠𝑖 , respectively. We denote by I :=

⊔
𝑟 ≥0 Z

𝑟
>0

the set of indices, where Z0
>0 := {∅}.

Throughout this paper, we adapt the following notations.

I𝑤 := {𝔫 ∈ I | wt(𝔫) = 𝑤} (𝑤 ≥ 0),
I>0 := {𝔫 ∈ I | wt(𝔫) > 0} = I \ {∅},
IT
𝑤 := {(𝑠1, . . . , 𝑠𝑟 ) ∈ I𝑤 | 𝑠𝑖 ≤ 𝑞 (1 ≤ ∀𝑖 ≤ 𝑟 − 1) and 𝑠𝑟 < 𝑞} (𝑤 > 0),
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IND
𝑤 := {(𝑠1, . . . , 𝑠𝑟 ) ∈ I𝑤 | 𝑞 � 𝑠𝑖 (1 ≤ ∀𝑖 ≤ 𝑟)} (𝑤 > 0),
IT

0 := IND
0 := {∅}.

We mention that IT
𝑤 refers to the set of indexes arising from Thakur’s basis, and IND

𝑤 is the set studied
in [26]. For any subset S of I, we denote by |𝑆 | the cardinality of S when no confusions arise.

Proposition 2.1. For each weight 𝑤 ≥ 0, we have a bijection between IND
𝑤 and IT

𝑤 , and hence,
|IND
𝑤 | = |IT

𝑤 |.

Proof. The desired result follows from the following correspondence:

(𝑚1𝑞 + 𝑛1, . . . , 𝑚𝑟𝑞 + 𝑛𝑟 ) ←→ (𝑞
{𝑚1 }, 𝑛1, . . . , 𝑞

{𝑚𝑟 }, 𝑛𝑟 ) (𝑚𝑖 ≥ 0, 1 ≤ 𝑛𝑖 ≤ 𝑞 − 1),

where 𝑞 {𝑚} denotes the sequence (𝑞, . . . , 𝑞) ∈ Z𝑚>0. It is understood that in the case of 𝑚 = 0, 𝑞 {0} is
referred to the empty index ∅. �

Given ℓ indices 𝔰1, . . . , 𝔰ℓ ∈ I with 𝔰𝑖 = (𝑠𝑖1, . . . , 𝑠𝑖𝑟𝑖 ) (1 ≤ 𝑖 ≤ ℓ), we define

(𝔰1, . . . 𝔰ℓ) := (𝑠11, . . . , 𝑠1𝑟1 , 𝑠21, . . . , 𝑠2𝑟2 , . . . , 𝑠ℓ1, . . . , 𝑠ℓ𝑟ℓ ) (2.1)

to be the index obtained by putting the given indices consecutively. For each nonempty index 𝔰 =
(𝑠1, . . . , 𝑠𝑟 ) ∈ I>0, we define

𝔰+ := (𝑠1, . . . , 𝑠𝑟−1) and 𝔰− := (𝑠2, . . . , 𝑠𝑟 ). (2.2)

In the depth one case, we note that 𝔰+ = ∅ and 𝔰− = ∅.
Let H =

⊕
𝑤≥0 H𝑤 be the k-vector space with basis I graded by weight and let H>0 :=

⊕
𝑤>0 H𝑤 .

For each index 𝔰 = (𝑠1, . . . , 𝑠𝑟 ) ∈ I, the corresponding generator in H is denoted by [𝔰] = [𝑠1, . . . , 𝑠𝑟 ]
or 𝔰. For each 𝑃 =

∑
𝔰∈I 𝑎𝔰 [𝔰] ∈ H, the support of P is defined by

Supp(𝑃) := {𝔰 ∈ I | 𝑎𝔰 ≠ 0}.

Definition 2.2. Given a positive integer ℓ, we define the following k-multilinear map

[−,−, . . . ,−] : H⊕ℓ → H

as follows. For any indices 𝔰1, . . . , 𝔰ℓ ∈ I, let (𝔰1, . . . , 𝔰ℓ) be given in (2.1). We define

[𝔰1, . . . , 𝔰ℓ] := [(𝔰1, . . . , 𝔰ℓ)] ∈ H.

Remark 2.3. As the map above is multilinear, for any 𝔰 ∈ I, we particularly have the following identity

[𝔰, 0] = 0 ∈ H,

which will be used in the appendix. As ∅ is also an index by our definition, we mention that

[𝔰, ∅] ≠ [𝔰, 0] = 0 ∈ H.

2.2. The maps 𝓛Li and 𝓛𝜻

Recall that the Carlitz logarithm is given by

log𝐶 (𝑧) :=
∑
𝑑≥0

𝑧𝑞
𝑑

𝐿𝑑
∈ 𝑘 [[𝑧]],
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where 𝐿0 := 1 and 𝐿𝑑 := (𝜃−𝜃𝑞) · · · (𝜃−𝜃𝑞𝑑
) for 𝑑 ≥ 1 (see [20, 31]), and the nth Carlitz polylogarithm

defined by Anderson-Thakur [3] is the following power series:

Li𝑛 (𝑧) :=
∑
𝑑≥0

𝑧𝑞
𝑑

𝐿𝑛𝑑
∈ 𝑘 [[𝑧]] .

For any index 𝔰 = (𝑠1, . . . , 𝑠𝑟 ) ∈ I>0 of positive depth, the 𝔰th Carlitz multiple polylogarithm (abbrevi-
ated as CMPL) is given by the following series (see [9]):

Li𝔰 (𝑧1, . . . , 𝑧𝑟 ) :=
∑

𝑑1> · · ·>𝑑𝑟 ≥0

𝑧𝑞
𝑑1

1 · · · 𝑧𝑞
𝑑𝑟

𝑟

𝐿𝑠1
𝑑1
· · · 𝐿𝑠𝑟𝑑𝑟

∈ 𝑘 [[𝑧1, . . . , 𝑧𝑟 ]] . (2.3)

For each 𝑠 ∈ Z≥1 and 𝑑 ∈ Z≥0, we set

𝑆Li
𝑑 (𝑠) :=

1
𝐿𝑠𝑑
∈ 𝑘 and 𝑆

𝜁
𝑑 (𝑠) :=

∑
𝑎∈𝐴+,𝑑

1
𝑎𝑑
∈ 𝑘,

where 𝐴+,𝑑 is the set of monic polynomials in A of degree d. We then define k-linear maps ℒ•𝑑 , ℒ•<𝑑
and ℒ• on H.
Definition 2.4. Let • ∈ {Li, 𝜁 } and 𝑑 ∈ Z.
(1) The map ℒ•𝑑 : H→ 𝑘 is the k-linear map defined by

ℒ•𝑑 (𝔰) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∑

𝑑=𝑑1> · · ·>𝑑𝑟 ≥0
𝑆•𝑑1
(𝑠1) · · · 𝑆

•
𝑑𝑟
(𝑠𝑟 ) (𝔰 = (𝑠1, . . . , 𝑠𝑟 ) ∈ I>0 and 𝑑 ≥ dep(𝔰) − 1)

1 (𝔰 = ∅ and 𝑑 = −1)
0 (otherwise)

(2.4)

(2) The map ℒ•<𝑑 : H→ 𝑘 is the k-linear map defined by

ℒ•<𝑑 (𝔰) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∑

𝑑>𝑑1> · · ·>𝑑𝑟 ≥0
𝑆•𝑑1
(𝑠1) · · · 𝑆

•
𝑑𝑟
(𝑠𝑟 ) (𝔰 = (𝑠1, . . . , 𝑠𝑟 ) ∈ I>0 and 𝑑 ≥ dep(𝔰))

1 (𝔰 = ∅ and 𝑑 ≥ 0)
0 (otherwise)

(2.5)

(3) The map ℒ• : H→ 𝑘∞ is the k-linear map defined by

ℒ•(𝔰) :=
⎧⎪⎪⎨⎪⎪⎩

∑
𝑑1> · · ·>𝑑𝑟 ≥0

𝑆•𝑑1
(𝑠1) · · · 𝑆

•
𝑑𝑟
(𝑠𝑟 ) (𝔰 = (𝑠1, . . . , 𝑠𝑟 ) ∈ I>0)

1 (𝔰 = ∅).
(2.6)

It follows that for each 𝑃 ∈ H, 𝔰 ∈ I, 𝑠 ∈ Z≥1 and 𝑑 ∈ Z, we have

ℒ•𝑑 (𝑃) = ℒ•<𝑑+1 (𝑃) −ℒ
•
<𝑑 (𝑃),

ℒ•<𝑑 (𝑃) =
∑
𝑑′<𝑑

ℒ•𝑑′ (𝑃),

ℒ•(𝑃) =
∑
𝑑∈Z

ℒ•𝑑 (𝑃) = lim
𝑑→∞

ℒ•<𝑑 (𝑃) ∈ 𝑘∞,

ℒ•𝑑 (𝑠)ℒ
•
<𝑑 (𝑃) = ℒ•𝑑 ([𝑠, 𝑃]),

ℒLi(𝔰) = Li𝔰 (1),
ℒ𝜁 (𝔰) = 𝜁𝐴(𝔰),
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where 1 is simply referred to (1, . . . , 1) ∈ Zdep(𝔰)
>0 when it is clear from the context without confusion,

and we set Li∅ (1) := 𝜁𝐴(∅) := 1.

Remark 2.5. For 1 ≤ 𝑠 ≤ 𝑞 and 𝑑 ≥ 0, we have the following equality due to Carlitz (see also [31,
Thm. 5.9.1]):

1
𝐿𝑠𝑑

=
∑

𝑎∈𝐴+,𝑑

1
𝑎𝑠

.

Therefore, for each 𝔰 = (𝑠1, . . . , 𝑠𝑟 ) with 1 ≤ 𝑠𝑖 ≤ 𝑞 and 𝑑 ∈ Z, we have

ℒLi
𝑑 (𝔰) = ℒ

𝜁
𝑑 (𝔰), ℒLi

<𝑑 (𝔰) = ℒ
𝜁
<𝑑 (𝔰),

and

Li𝔰 (1) = ℒLi(𝔰) = ℒ𝜁 (𝔰) = 𝜁𝐴(𝔰). (2.7)

2.3. Product formulae

The harmonic product on H is denoted by ∗ or ∗Li. Thus, ∗ is a k-bilinear map H ×H→ H such that

[∅] ∗ 𝑃 = 𝑃 ∗ [∅] = 𝑃,

[𝔰] ∗ [𝔫] = [𝑠1, 𝔰− ∗ 𝔫] + [𝑛1, 𝔰 ∗ 𝔫−] + [𝑠1 + 𝑛1, 𝔰− ∗ 𝔫−]

for each 𝑃 ∈ H, 𝔰 = (𝑠1, 𝔰−), 𝔫 = (𝑛1, 𝔫−) ∈ I>0. For each 𝔰, 𝔫 ∈ I>0, we put

𝐷Li
𝔰,𝔫 := 0 ∈ H. (2.8)

For each 𝑠, 𝑛 ≥ 1, H.-J. Chen showed in [15] that

ℒ
𝜁
𝑑 (𝑠)ℒ

𝜁
𝑑 (𝑛) = ℒ

𝜁
𝑑 (𝑠 + 𝑛) +

𝑠+𝑛−1∑
𝑗=1

Δ [ 𝑗 ]𝑠,𝑛ℒ
𝜁
𝑑 (𝑠 + 𝑛 − 𝑗 , 𝑗), (2.9)

where we set

Δ [ 𝑗 ]𝑠,𝑛 :=
⎧⎪⎪⎨⎪⎪⎩ (−1)𝑠−1

(
𝑗 − 1
𝑠 − 1

)
+ (−1)𝑛−1

(
𝑗 − 1
𝑛 − 1

)
if (𝑞 − 1) | 𝑗 and 1 ≤ 𝑗 < 𝑠 + 𝑛

0 otherwise
.

The q-shuffle product on H is denoted by ∗𝜁 . Thus, ∗𝜁 is a k-bilinear map H ×H→ H such that

[∅] ∗𝜁 𝑃 = 𝑃 ∗𝜁 [∅] = 𝑃,

[𝔰] ∗𝜁 [𝔫] = [𝑠1, 𝔰− ∗
𝜁 𝔫] + [𝑛1, 𝔰 ∗

𝜁 𝔫−] + [𝑠1 + 𝑛1, 𝔰− ∗
𝜁 𝔫−] + 𝐷

𝜁
𝔰,𝔫

for each 𝑃 ∈ H, 𝔰 = (𝑠1, 𝔰−), 𝔫 = (𝑛1, 𝔫−) ∈ I>0, where we set

𝐷
𝜁
𝔰,𝔫 :=

𝑠1+𝑛1−1∑
𝑗=1

Δ [ 𝑗 ]𝑠1 ,𝑛1 [𝑠1 + 𝑛1 − 𝑗 , ( 𝑗) ∗𝜁 (𝔰− ∗
𝜁 𝔫−)] (2.10)

(see Yamamoto’s definition in [35, p. 1006]). By the induction on 𝑤 + 𝑤′, we can show that 𝑃 ∗• 𝑄 ∈
H𝑤+𝑤′ for each 𝑤, 𝑤′ ∈ Z≥0, 𝑃 ∈ H𝑤 , 𝑄 ∈ H𝑤′ and • ∈ {Li, 𝜁 }. In particular, when 𝑤, 𝑤′ ∈ Z≥1, we
have 𝐷

𝜁
𝔰,𝔫 ∈ H𝑤+𝑤′ for each 𝔰 ∈ I𝑤 and 𝔫 ∈ I𝑤′ .
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Remark 2.6. When 𝑠 + 𝑛 ≤ 𝑞, we observe that Δ [ 𝑗 ]𝑠,𝑛 = 0 for all j. Thus, for 𝔰 = (𝑠1, . . .), 𝔫 = (𝑛1, . . .) ∈

I>0, if 𝑠1 + 𝑛1 ≤ 𝑞, then we have 𝐷
𝜁
𝔰,𝔫 = 0.

The following product formulae are crucial when proving Theorem 3.6, whose detailed proof is given
in the appendix.

Proposition 2.7. Let • ∈ {Li, 𝜁 }. Given any 𝑃,𝑄 ∈ H and 𝔰 = (𝑠1, 𝔰−), 𝔫 = (𝑛1, 𝔫−) ∈ I>0, we have
the following identities for each 𝑑 ∈ Z.

(1) ℒ•(𝑃)ℒ•(𝑄) = ℒ•(𝑃 ∗• 𝑄).
(2) ℒ•<𝑑 (𝑃)ℒ

•
<𝑑 (𝑄) = ℒ•<𝑑 (𝑃 ∗

• 𝑄).
(3)

ℒ•𝑑 (𝔰)ℒ
•
𝑑 (𝔫) = ℒ•𝑑 ([𝑠1 + 𝑛1, 𝔰− ∗

• 𝔫−]) +ℒ
•
𝑑 (𝐷

•
𝔰,𝔫)

= ℒ•𝑑 (𝔰 ∗
• 𝔫) −ℒ•𝑑 ([𝑠1, 𝔰− ∗

• 𝔫]) −ℒ•𝑑 ([𝑛1, 𝔰 ∗
• 𝔫−]).

Proof. We first mention that (3) for d follows from the second one for the same d. Indeed, for each
𝔰 = (𝑠1, . . .), 𝔫 = (𝑛1, . . .) ∈ I>0, we have

ℒLi
𝑑 (𝔰)ℒ

Li
𝑑 (𝔫) = ℒLi

𝑑 (𝑠1)ℒ
Li
𝑑 (𝑛1)ℒ

Li
<𝑑 (𝔰−)ℒ

Li
<𝑑 (𝔫−)

= ℒLi
𝑑 (𝑠1 + 𝑛1)ℒ

Li
<𝑑 (𝔰− ∗

Li 𝔫−)

= ℒLi
𝑑 ([𝑠1 + 𝑛1, 𝔰− ∗

Li 𝔫−]) +ℒ
Li
𝑑 (𝐷

Li
𝔰,𝔫),

where the second equality comes from (2) and the definition of ℒLi
𝑑 , and the third identity comes from

(2.8). Similarly, we have

ℒ
𝜁
𝑑 (𝔰)ℒ

𝜁
𝑑 (𝔫) = ℒ

𝜁
𝑑 (𝑠1)ℒ

𝜁
𝑑 (𝑛1)ℒ

𝜁
<𝑑 (𝔰−)ℒ

𝜁
<𝑑 (𝔫−)

=

(
ℒ

𝜁
𝑑 (𝑠1 + 𝑛1) +

∑
𝑗

Δ 𝑗
𝑠1 ,𝑛1ℒ

𝜁
𝑑 (𝑠1 + 𝑛1 − 𝑗)ℒ

𝜁
<𝑑 ( 𝑗)

)
ℒ

𝜁
<𝑑 (𝔰− ∗

𝜁 𝔫−)

= ℒ
𝜁
𝑑 ([𝑠1 + 𝑛1, 𝔰− ∗

𝜁 𝔫−]) +
∑
𝑗

Δ [ 𝑗 ]𝑠1 ,𝑛1ℒ
𝜁
𝑑 (𝑠1 + 𝑛1 − 𝑗)ℒ

𝜁
<𝑑 (( 𝑗) ∗

𝜁 (𝔰− ∗
𝜁 𝔫−))

= ℒ
𝜁
𝑑 ([𝑠1 + 𝑛1, 𝔰− ∗

𝜁 𝔫−]) +ℒ
𝜁
𝑑 (𝐷

𝜁
𝔰,𝔫),

where the second equality comes from (2.9) and (2), the third identity comes from (2) and the fourth
one comes from (2.10).

To prove the formula (2), we first mention that when 𝑑 < 0, the formula holds as both sides of the
identity are zero. We then prove the formula (2) by induction on d. Now, let d be any non-negative
integer. By bilinearity, we may assume that 𝑃 = 𝔰, 𝑄 = 𝔫 ∈ I>0. Then we have

ℒ•<𝑑 (𝔰)ℒ
•
<𝑑 (𝔫)

=
∑
𝑑1<𝑑

ℒ•𝑑1
(𝑠1)ℒ

•
<𝑑1
(𝔰−)ℒ

•
<𝑑1
(𝔫) +

∑
𝑑1<𝑑

ℒ•𝑑1
(𝑛1)ℒ

•
<𝑑1
(𝔰)ℒ•<𝑑1

(𝔫−) +
∑
𝑑1<𝑑

ℒ•𝑑1
(𝔰)ℒ•𝑑1

(𝔫)

=
∑
𝑑1<𝑑

ℒ•𝑑1
(𝑠1)ℒ

•
<𝑑1
(𝔰− ∗

• 𝔫) +
∑
𝑑1<𝑑

ℒ•𝑑1
(𝑛1)ℒ

•
<𝑑1
(𝔰 ∗• 𝔫−)

+
∑
𝑑1<𝑑

ℒ•𝑑1
([𝑠1 + 𝑛1, 𝔰− ∗

• 𝔫−] + 𝐷
•
𝔰,𝔫)

= ℒ•<𝑑 (𝔰 ∗
• 𝔫),

where the second equality comes from the induction hypothesis as well as (3) (as (2) holds for 𝑑1 < 𝑑
by induction hypothesis). Finally, the formula (1) follows from (2) by taking the limit 𝑑 →∞. �
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3. Generators

The purpose of this section is to establish Theorem 3.6, which allows us to obtain the desired generating
sets for Z𝑤 . To achieve it, we need to set up the box-plus operator on H⊕2 as well as the k-linear maps
𝒰• on H.

3.1. The box-plus operator

Definition 3.1. Let � : H⊕2 → H be the k-linear map defined by

∅ � 𝑃 = 𝑃 � ∅ := 0 and 𝔰 � 𝔫 := (𝔰+, 𝑠𝑟 + 𝑛1, 𝔫−)

for 𝑃 ∈ H and 𝔰 = (𝔰+, 𝑠𝑟 ), 𝔫 = (𝑛1, 𝔫−) ∈ I>0.

Remark 3.2. To avoid confusion, we mention that for each 𝑛 ≥ 1 and 𝑃 =
∑

𝔰∈I 𝑎𝔰 [𝔰] ∈ H,

[𝑛, 𝑃] =
∑

𝔰=(𝑠1 ,...,𝑠𝑟 ) ∈I
𝑎𝔰 [𝑛, 𝑠1, . . . , 𝑠𝑟 ] ∈ H>0,

(𝑛) � 𝑃 =
∑

𝔰=(𝑠1 ,...,𝑠𝑟 ) ∈I>0

𝑎𝔰 [𝑛 + 𝑠1, 𝑠2, . . . , 𝑠𝑟 ] ∈ H>0 (≠ [𝑛] + 𝑃).

Furthermore, in the depth one case for 𝔰 = (𝑠) and 𝔫 = (𝑛), we have 𝔰+ = ∅ = 𝔫−, and hence in this case,

𝔰 � 𝔫 = [𝑠 + 𝑛] .

3.2. Generating sets

We define a k-linear endomorphism 𝒰• : H→ H as follows. Let 𝔰 ∈ I. We write

𝔰 = (𝑠1, . . .) = (𝔰
T, 𝑞 {𝑚}, 𝔰′) (3.1)

with 𝔰T ∈ IT, 𝑚 ≥ 0 and 𝔰′ = (𝑠′1, . . .) with 𝑠′1 > 𝑞 or 𝔰′ = ∅. When 𝔰′ ≠ ∅, we set

𝔰′′ := (𝑠′1 − 𝑞, 𝔰′−). (3.2)

Example 3.3. Let 𝔰 = (𝑞 − 1, 𝑞, 𝑞, 𝑞 + 1, 1). Then 𝔰T = (𝑞 − 1), 𝑚 = 2 and 𝔰′ = (𝑞 + 1, 1). Since 𝔰′ ≠ ∅,
we also have 𝔰′′ = (1, 1).

We set

𝛼•𝑞 (𝑃) := [1, (𝑞 − 1) ∗• 𝑃] (3.3)

for each 𝑃 ∈ H. For 𝑚 = 0, 𝛼•,0𝑞 is defined to be the identity map on H, and for 𝑚 ∈ Z>0, 𝛼•,𝑚𝑞 is defined
to be the mth iteration of 𝛼•𝑞 .

Definition 3.4. For • ∈ {Li, 𝜁 }, we define the k-linear map 𝒰• : H→ H given by

𝒰•(𝔰) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−[𝔰T, 𝑞 {𝑚+1}, 𝔰′′] + 𝐿𝑚+11 [𝔰T, 𝛼•,𝑚+1𝑞 (𝔰′′)]

+𝐿𝑚+11 (𝔰T � 𝛼•,𝑚+1𝑞 (𝔰′′)) − [𝔰T, 𝑞 {𝑚}, 𝐷•𝑞,𝔰′′ ] (𝔰
′ ≠ ∅)

𝐿𝑚1 [𝔰
T, 𝛼•,𝑚𝑞 (∅)] + 𝐿

𝑚
1 (𝔰

T � 𝛼•,𝑚𝑞 (∅)) (𝔰′ = ∅)

Remark 3.5. From the definition, one sees that 𝒰•(H𝑤 ) ⊂ H𝑤 . We also mention that when 𝔰 ∈ IT,
then 𝒰•(𝔰) = 𝔰 since in this case, we have 𝑚 = 0 and 𝔰′ = ∅.
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Theorem 3.6. Let • ∈ {Li, 𝜁 }. For each 𝑃 ∈ H, the following statements hold.

(1) ℒ•(𝒰•(𝑃)) = ℒ•(𝑃).
(2) There exists an explicit integer 𝑒 ≥ 0 such that Supp((𝒰•)𝑒 (𝑃)) ⊂ IT, where (𝒰•)0 is defined to

be the identity map and for 𝑒 ∈ Z>0, (𝒰•)𝑒 is defined to be the eth iteration of 𝒰•.

Note that our 𝒰• is concrete and explicit and simultaneously deals with the two products ∗Li and
∗𝜁 . Our strategy for proving Theorem 3.6 arises from [26], and so we leave the detailed proof to the
appendix. However, we give an outline of the proof of Theorem 3.6 (1) as follows. Let • ∈ {Li, 𝜁 }.

(I) We first define the space of binary relations P• ⊂ H⊕2 in (A.1) and note that for (𝑃,𝑄) ∈ P•, we
have

ℒ•(𝑃,𝑄) := ℒ•(𝑃) +ℒ•(𝑄) = 0.

(II) For any 𝔰 ∈ I>0 and integer 𝑚 ≥ 0, we define in Sec. A.3 the following maps

ℬ•𝔰 ,𝒞
•
𝔰 ,ℬ𝒞•,𝑚𝑞 : H⊕2

>0 → H⊕2
>0 ,

and we further show in Proposition A.4 that they preserve P•.
(III) In order to give a clear outline, we drop the subscripts to avoid heavy notation as all details are

given in the proof of Theorem A.5. We start with 𝑅1 ∈ P•𝑞 , and consider 𝒟•(𝑅1) for choosing a
suitable 𝒟• arising from one of ℬ•,𝒞•,ℬ𝒞• as well as their composites (see (A.4), (A.5), (A.6)
and (A.7)). Based on (II), we have 𝒟•(𝑅1) ∈ P• and hence ℒ•(𝒟•(𝑅1)) = 0. In this case, the
expansion of ℒ•(𝒟•(𝑅1)) is equal to ℒ•(𝔰) −ℒ•(𝒰•(𝔰)), and hence ℒ•(𝔰) = ℒ•(𝒰•(𝔰)) as
desired.

As a consequence of Theorem 3.6, we obtain the following important equality.
Corollary 3.7. Let • ∈ {Li, 𝜁 }. For any 𝑤 ≥ 0, we let Z•𝑤 be the k-vector space spanned by the elements
ℒ•(𝔰) ∈ 𝑘∞ for 𝔰 ∈ I𝑤 . Then {

ℒ•(𝔰) |𝔰 ∈ IT
𝑤

}
is a generating set for Z•𝑤 . In particular, we have

ZLi
𝑤 = Z 𝜁

𝑤 (= Z𝑤 ).

Proof. The first assertion comes from Theorem 3.6. We note that for 𝔰 ∈ IT
𝑤 , we have

ℒLi(𝔰) := Li𝔰 (1) = 𝜁𝐴(𝔰) =: ℒ𝜁 (𝔰),

whence obtaining ZLi
𝑤 = Z 𝜁

𝑤 . �

Theorem 3.8. The k-vector space Z𝑤 is spanned by the elements Li𝔰 (1) for 𝔰 ∈ IND
𝑤 .

Proof. We set 𝑑 ′𝑤 := |IT
𝑤 | = |IND

𝑤 |. By the definition of 𝒰Li and Theorem 3.6 (2), there exists 𝑒 � 0
such that (𝒰Li)𝑒 (H𝑤/F𝑝 [𝐿1 ] ) ⊂ HT

𝑤/F𝑝 [𝐿1 ]
, where H𝑤/F𝑝 [𝐿1 ] (resp. HT

𝑤/F𝑝 [𝐿1 ]
) is the F𝑝 [𝐿1]-module

spanned by 𝔰 ∈ I𝑤 (resp. 𝔰 ∈ IT
𝑤 ) in H𝑤 . We note that according to Remark 3.5, (𝒰Li)𝑒 is independent

of e for 𝑒 � 0.
To show the desired result, it suffices to prove that the determinant of the matrix

𝑈 = (𝑢𝔰,𝔫)𝔰∈IND
𝑤 ,𝔫∈IT

𝑤
∈ Mat𝑑𝑤 (F𝑝 [𝐿1])

arising from
(𝒰Li)𝑒 (𝔰) =

∑
𝔫∈IT

𝑤

𝑢𝔰,𝔫 [𝔫] (𝔰 ∈ IND
𝑤 )
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is non-zero. We mention that IND
𝑤 is equal to IT

𝑤 when 𝑤 ≤ 𝑞, and in this case, the result is valid. So in
what follows, we assume that IND

𝑤 ≠ IT
𝑤 .

Taking any 𝔰 = (𝑠1, . . . , 𝑠𝑟 ) ∈ IND
𝑤 but 𝔰 ∉ IT

𝑤 , based on (3.1) and the definition of IND
𝑤 , we write

𝔰 = (𝔰T, 𝑞 {0}, 𝔰′) with 𝔰T ∈ IT (𝑞 {0} := ∅), and 𝔰′ ≠ ∅. Note that 𝔰′ is of the form: 𝔰′ = (𝑠′1, . . .) with
𝑠′1 > 𝑞. By definition (2.8), 𝐷Li

𝑞,𝔰′′ = 0. Thus,

𝒰Li(𝔰) = −[𝔰T, 𝑞, 𝔰′′] + 𝐿1 [𝔰
T, 𝛼Li

𝑞 (𝔰
′′)] + 𝐿1 (𝔰

T � 𝛼Li
𝑞 (𝔰

′′)), (3.4)

where 𝔰′′ := (𝑠′1 − 𝑞, 𝔰′−). Thus, for each 𝔰 = (𝑚1𝑞 + 𝑛1, . . . , 𝑚𝑟𝑞 + 𝑛𝑟 ) ∈ IND
𝑤 with 𝑚𝑖 ≥ 0 (𝑚𝑖 are not

all zero since 𝔰 ∉ IT
𝑤 ) and 1 ≤ 𝑛𝑖 ≤ 𝑞 − 1, we have

(𝒰Li)𝑒 (𝔰) = (𝒰Li)𝑒+𝑚1+···+𝑚𝑟 (𝔰)

∈ (𝒰Li)𝑒
(
(−1)𝑚1+···+𝑚𝑟 [𝑞 {𝑚1 }, 𝑛1, . . . , 𝑞

{𝑚𝑟 }, 𝑛𝑟 ] + 𝐿1 ·H𝑤/F𝑝 [𝐿1 ]

)
⊂ (−1)𝑚1+···+𝑚𝑟 [𝑞 {𝑚1 }, 𝑛1, . . . , 𝑞

{𝑚𝑟 }, 𝑛𝑟 ] + 𝐿1 ·HT
𝑤/F𝑝 [𝐿1 ]

.

Note that the first identity above comes from the fact that (𝒰Li)𝑒 (𝔰) ∈ HT
𝑤/F𝑝 [𝐿1 ]

, which is fixed
by (𝒰Li)𝑚1+···+𝑚𝑟 by Remark 3.5. The second belonging follows from (3.4), whence we have the last
inclusion because of (𝑞 {𝑚1 }, 𝑛1, . . . , 𝑞

{𝑚𝑟 }, 𝑛𝑟 ) ∈ IT
𝑤 and (𝒰Li)𝑒 (H𝑤/F𝑝 [𝐿1 ] ) ⊂ HT

𝑤/F𝑝 [𝐿1 ]
. Since

(𝑚1𝑞 + 𝑛1, . . . , 𝑚𝑟𝑞 + 𝑛𝑟 ) ↦→ (𝑞
{𝑚1 }, 𝑛1, . . . , 𝑞

{𝑚𝑟 }, 𝑛𝑟 )

gives a bijection betweenIND
𝑤 andIT

𝑤 , we have det(𝑈 mod 𝐿1) = ±1 inF𝑝 . In particular, det(𝑈) ≠ 0. �

4. Frobenius difference equations

In this section, we focus on a specific system (EM) of Frobenius difference equations arising from our
study of MZV’s, and the major result is Theorem 4.8 giving the precise dimension of the solution space
of (EM).

4.1. ABP-criterion

Let t be a new variable and C∞((𝑡)) be the field of Laurent series in t over C∞. For any integer n, we
define the following n-fold Frobenious twisting:

𝜏𝑛 :=
(
𝑓 ↦→ 𝑓 (𝑛)

)
: C∞((𝑡)) → C∞((𝑡)),

where 𝑓 (𝑛) :=
∑

𝑎𝑞
𝑛

𝑖 𝑡𝑖 for 𝑓 =
∑

𝑎𝑖𝑡
𝑖 ∈ C∞((𝑡)). We further extend 𝜏𝑛 to the action on Mat𝑟×𝑠 (C∞((𝑡)))

by entrywise action.
Note that as an automorphism of the field C∞((𝑡)), 𝜏𝑛 stabilizes several subrings such as the power

series ring C∞[[𝑡]], the Tate algebra

T := { 𝑓 ∈ C∞[[𝑡]] | 𝑓 converges on |𝑡 |∞ ≤ 1}

and the polynomial rings C∞[𝑡], 𝑘 [𝑡] as well as the subfields C∞(𝑡) and 𝑘 (𝑡). When 𝑛 = −1, we denote
by 𝜎 := 𝜏−1. For 𝑛 ∈ {1,−1}, the following fixed elements are particularly used in this paper:

T𝜏 = 𝑘 [𝑡]𝜏 = F𝑞 [𝑡] = T
𝜎 = 𝑘 [𝑡]𝜎 and 𝑘 (𝑡)𝜏 = F𝑞 (𝑡) = 𝑘 (𝑡)𝜎 .
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Following [2], we denote by E ⊂ C∞[[𝑡]] the subring consisting of power series 𝑓 =
∑∞
𝑖=0 𝑎𝑖𝑡

𝑖 with
algebraic coefficients (𝑎𝑖 ∈ 𝑘 , ∀𝑖 ∈ Z≥0) for which

lim
𝑖→∞

𝑖
√
|𝑎𝑖 |∞ = 0 and [𝑘∞ (𝑎0, 𝑎1, . . .) : 𝑘∞] < ∞.

It follows that such any power series in E converges on whole C∞, and we have

E 𝜏 = F𝑞 [𝑡] = E𝜎 .

The primary tool that we use in this paper to show linear independence results is the following ABP-
criterion

Theorem 4.1 [2, Theorem 3.1.1]. Let Φ ∈ Matℓ (𝑘 [𝑡]) be a matrix satisfying that as a polynomial in
𝑘 [𝑡], detΦ vanishes only (if at all) at 𝑡 = 𝜃. Suppose that a column vector 𝜓 = 𝜓(𝑡) ∈ Matℓ×1(E)
satisfies the following difference equation

𝜓 (−1) = Φ𝜓.

We denote by 𝜓(𝜃) ∈ Matℓ×1 (C∞) the evaluation of 𝜓 at 𝑡 = 𝜃. Then for any row vector 𝜌 ∈ Mat1×ℓ (𝑘)
for which

𝜌𝜓(𝜃) = 0,

there exists a row vector P ∈ Mat1×ℓ (𝑘 [𝑡]) such that

P𝜓 = 0, and P(𝜃) = 𝜌.

The spirit of ABP-criterion asserts any 𝑘-linear relation among the entries of 𝜓(𝜃) can be lifted to a
𝑘 [𝑡]-linear relation among the entries of 𝜓. We mention that the condition on Φ in the theorem above
arises from dual t-motives and refer the reader to [2, 27] and [1] also.

4.2. Some lemmas

For each 𝔰 = (𝑠1, . . . , 𝑠𝑟 ) ∈ I and 𝑀 ⊂ I, we set

ℐ(𝔰) := {∅, (𝑠1), (𝑠1, 𝑠2), . . . , (𝑠1, . . . , 𝑠𝑟 )} and ℐ(𝑀) :=
⋃
𝔰∈𝑀

ℐ(𝔰).

Throughout this paper, we denote by R the following F𝑞 (𝑡)-algebra:

R := { 𝑓 /𝑔 | 𝑓 ∈ 𝑘 [𝑡], 𝑔 ∈ F𝑞 [𝑡] \ {0}} ⊂ 𝑘 (𝑡).

For any finite nonempty set J, it is understood that R𝐽 refers to the F𝑞 (𝑡)-vector space
⊕

𝑥∈𝐽 R and any
element of 𝑅𝐽 is written in the form (𝑟𝑥)𝑥∈𝐽 with 𝑟𝑥 ∈ R.

Given any nonempty subset 𝑀 ⊂ I𝑤 for some 𝑤 ≥ 0, we consider the system of Frobenius equations

𝜀 (1)𝔰 = 𝜀𝔰 (𝑡 − 𝜃)𝑤−wt(𝔰) +
∑
𝑠′>0

(𝔰,𝑠′) ∈ℐ (𝑀 )

𝜀 (𝔰,𝑠′) (𝑡 − 𝜃)𝑤−wt(𝔰) (𝔰 ∈ ℐ(𝑀)) (EM)

with (𝜀𝔰)𝔰∈ℐ (𝑀 ) ∈ Rℐ (𝑀 ) . We mention that (EM) is basically the case of 𝑄𝑖 = 1 from [14, (3.1.3)],
which is derived from the study of establishing a criterion for the zeta-like MZV’s. Note that our 𝜀𝔰 is
essentially referring to 𝛿 (−1)

𝑖 used in [14, (3.1.3)] (with 𝑄𝑖 = 1 in [14]), but we follow [26] to express
(EM) with subscripts parameterized by indices. See also [26, (6.3), (6.4)] in the depth two case.
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Remark 4.2. Note that if 𝑤 = 0, we have 𝑀 = I0 = {∅} and so ℐ(𝑀) = {∅}. In this special case, the
equation (EM) becomes 𝜀 (1)

∅
= 𝜀∅.

Lemma 4.3. Let 𝐹 =
∑𝑛
𝑖=0 𝑓𝑖𝑡

𝑖 , 𝐺 ∈ 𝐴[𝑡] be polynomials over A such that 𝑛 = deg𝑡 𝐹 ≥ 1 and 𝑓𝑛 ∈ F
×
𝑞 .

If 𝜀 ∈ R satisfies 𝜀 (1) = 𝜀𝐹 + 𝐺, then we have 𝜀 ∈ F𝑞 (𝑡) [𝜃].

Proof. Our method is inspired by H.-J. Chen’s formulation in the proof of [24, Thm. 2 (a)] (see Step I of
the proof of [10, Thm. 6.1.1] also). By multiplying the denominator of 𝜀 on the equation, without loss of
generality we assume that 𝜀 ∈ 𝑘 [𝑡] \{0}. We put 𝑚 := deg𝑡 𝜀 ≥ 0. Since deg𝑡 𝜀 (1) = deg𝑡 𝜀 < deg𝑡 (𝜀𝐹),
we have deg𝑡 𝐺 = 𝑚 + 𝑛. We set

𝜀 =
𝑚∑
𝑖=0

𝑎𝑖𝑡
𝑖 (𝑎𝑖 ∈ 𝑘) and 𝐺 =

𝑚+𝑛∑
𝑖=0

𝑔𝑖𝑡
𝑖 (𝑔𝑖 ∈ 𝐴).

Moreover, we set 𝑎𝑖 := 0 (resp. 𝑓𝑖 := 0) when i does not satisfy 0 ≤ 𝑖 ≤ 𝑚 (resp. 0 ≤ 𝑖 ≤ 𝑛). Then we
have

𝑚∑
𝑖=0

𝑎𝑞𝑖 𝑡
𝑖 =

𝑚∑
𝑗=0

𝑎 𝑗 𝑡
𝑗
𝑛∑
ℓ=0

𝑓ℓ 𝑡
ℓ +

𝑚+𝑛∑
𝑖=0

𝑔𝑖𝑡
𝑖 =

𝑚+𝑛∑
𝑖=0

∑
𝑗+ℓ=𝑖

𝑎 𝑗 𝑓ℓ 𝑡
𝑖 +

𝑚+𝑛∑
𝑖=0

𝑔𝑖𝑡
𝑖 .

By comparing the coefficients of 𝑡𝑖 for 𝑚 + 1 ≤ 𝑖 ≤ 𝑚 + 𝑛, we have

𝑎𝑖−𝑛 𝑓𝑛 = −𝑔𝑖 −
∑
𝑗>𝑖−𝑛

𝑎 𝑗 𝑓𝑖− 𝑗 .

Then we can show that 𝑎𝑚, 𝑎𝑚−1, . . . , 𝑎𝑚+1−𝑛 ∈ 𝐴 inductively.
Suppose that 𝑚 + 1 − 𝑛 ≥ 1(⇔ 𝑚 ≥ 𝑛). Then by comparing the coefficients of 𝑡𝑖 for 𝑛 ≤ 𝑖 ≤ 𝑚, we

have

𝑎𝑖−𝑛 𝑓𝑛 = 𝑎𝑞𝑖 − 𝑔𝑖 −
∑
𝑗>𝑖−𝑛

𝑎 𝑗 𝑓𝑖− 𝑗 .

Then we can show that 𝑎𝑚−𝑛, 𝑎𝑚−𝑛−1, . . . , 𝑎0 ∈ 𝐴 inductively. Therefore, in any case, we have 𝜀 ∈
𝐴[𝑡]. �

The next lemma can be viewed as an improvement of Step II of [10, Thm. 6.1.1] and [24, Thm. 2
(b)] which gives a better upper bound for the degree of solutions (𝜀𝔰)𝔰∈ℐ (𝑀 ) ∈ Rℐ (𝑀 ) satisfying (EM).

Lemma 4.4. Let 𝑤 ≥ 0 and ∅ ≠ 𝑀 ⊂ I𝑤 . If (𝜀𝔰)𝔰∈ℐ (𝑀 ) ∈ Rℐ (𝑀 ) satisfies (EM)

𝜀 (1)𝔰 = 𝜀𝔰 (𝑡 − 𝜃)𝑤−wt(𝔰) +
∑
𝑠′>0

(𝔰,𝑠′) ∈ℐ (𝑀 )

𝜀 (𝔰,𝑠′) (𝑡 − 𝜃)𝑤−wt(𝔰) (𝔰 ∈ ℐ(𝑀)),

then we have 𝜀𝔰 ∈ F𝑞 (𝑡) [𝜃] and deg𝜃 𝜀𝔰 ≤
𝑤 − wt(𝔰)

𝑞 − 1
for each 𝔰 ∈ ℐ(𝑀).

Proof. When 𝔰 ∈ 𝑀 , then we have 𝜀𝔰 ∈ F𝑞 (𝑡) since in this case, 𝜀 (1)𝔰 = 𝜀𝔰 . Thus, the statements are
clearly valid. By Lemma 4.3 and the induction on 𝑤 −wt(𝔰), we have 𝜀𝔰 ∈ F𝑞 (𝑡) [𝜃] for all 𝔰 ∈ ℐ(𝑀).

We now consider 𝔰 ∈ ℐ(𝑀) \ 𝑀 and suppose that deg𝜃 𝜀 (𝔰,𝑠′) ≤
𝑤 − wt(𝔰, 𝑠)

𝑞 − 1
for all 𝑠′ > 0 with

(𝔰, 𝑠′) ∈ ℐ(𝑀).

Suppose on the contrary that deg𝜃 𝜀𝔰 >
𝑤 − wt(𝔰)

𝑞 − 1
. Then we have deg𝜃 𝜀

(1)
𝔰 >

𝑞(𝑤 − wt(𝔰))
𝑞 − 1

.
However, the induction hypothesis implies
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deg𝜃 (𝜀 (𝔰,𝑠′) (𝑡 − 𝜃)𝑤−wt(𝔰) ) ≤
𝑤 − wt(𝔰, 𝑠′)

𝑞 − 1
+ 𝑤 − wt(𝔰) <

𝑞(𝑤 − wt(𝔰))
𝑞 − 1

.

It follows that deg𝜃 𝜀
(1)
𝔰 = deg𝜃 (𝜀𝔰 (𝑡 − 𝜃)𝑤−wt(𝔰) ), and hence deg𝜃 𝜀𝔰 =

𝑤 − wt(𝔰)
𝑞 − 1

, which is a contra-
diction. �

4.3. Dimension of 𝓧𝒘

For 𝑤 ∈ Z𝑤≥0, we define IND0
𝑤 ⊂ IND

𝑤 as follows:

IND0
𝑤 =

{
{∅} if 𝑤 = 0{
(𝑠1, . . . , 𝑠𝑟 ) ∈ IND

𝑤 |𝑠2, . . . , 𝑠𝑟 are divisible by 𝑞 − 1
}

if 𝑤 > 0 (4.1)

Note that the description of indices in IND0
𝑤 comes from the simultaneously Eulerian phenomenon in

[14, Cor. 4.2.3]. For each 𝑤 ≥ 0, we consider the system of Frobenius equations (EM) for 𝑀 = IND0
𝑤 :

𝜀 (1)𝔰 = 𝜀𝔰 (𝑡 − 𝜃)𝑤−wt(𝔰) +
∑
𝑠′>0

(𝔰,𝑠′) ∈ℐ (IND0
𝑤 )

𝜀 (𝔰,𝑠′) (𝑡 − 𝜃)𝑤−wt(𝔰) (𝔰 ∈ ℐ(IND0
𝑤 )) (Ew)

with (𝜀𝔰)𝔰∈ℐ (IND0
𝑤 )
∈ Rℐ (IND0

𝑤 ) . We emphasize that (𝐸𝑤 ) = (𝐸IND0
𝑤
) but (𝐸𝑤 ) ≠ (𝐸 {𝑤 }).

Example 4.5. We give some explicit examples for the system of Frobenius equations (Ew). The simplest
example is the case 𝑤 = 0. We note that IND0

0 = ℐ(IND0
0 ) = {∅}. Thus, (Ew) consists of a single equation

𝜀 (1)
∅

= 𝜀∅ .

The second example is the case 𝑤 = 𝑞. In this case, IND0
𝑞 = {(1, 𝑞 − 1)} and

ℐ(IND0
𝑞 ) = {∅, (1), (1, 𝑞 − 1)}.

Thus, (Ew) consists of three equations⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜀 (1)
(1,𝑞−1) = 𝜀 (1,𝑞−1)

𝜀 (1)
(1) = 𝜀 (1) (𝑡 − 𝜃)𝑞−1 + 𝜀 (1,𝑞−1) (𝑡 − 𝜃)𝑞−1

𝜀 (1)
∅

= 𝜀∅ (𝑡 − 𝜃)𝑞 + 𝜀 (1) (𝑡 − 𝜃)𝑞 .

The third example is the case 𝑤 = 2𝑞−2 with 𝑞 ≥ 3. Since IND0
2𝑞−2 = {(𝑞−1, 𝑞−1), (2𝑞−2)}, we have

ℐ(IND0
2𝑞−2) = {∅, (𝑞 − 1), (𝑞 − 1, 𝑞 − 1), (2𝑞 − 2)}.

Then (Ew) consists of four equations⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝜀 (1)
(2𝑞−2) = 𝜀 (2𝑞−2)

𝜀 (1)
(𝑞−1,𝑞−1) = 𝜀 (𝑞−1,𝑞−1)

𝜀 (1)
(𝑞−1) = 𝜀 (𝑞−1) (𝑡 − 𝜃)𝑞−1 + 𝜀 (𝑞−1,𝑞−1) (𝑡 − 𝜃)𝑞−1

𝜀 (1)
∅

= 𝜀∅ (𝑡 − 𝜃)2𝑞−2 + 𝜀 (𝑞−1) (𝑡 − 𝜃)2𝑞−2 + 𝜀 (2𝑞−2) (𝑡 − 𝜃)2𝑞−2.

Definition 4.6. For each 𝑤 ∈ Z≥0, we let 𝒳𝑤 be the set of R-valued solutions of (Ew).
Remark 4.7. Since 𝑓 (1) = 𝑓 for any 𝑓 ∈ F𝑞 (𝑡) ⊂ R, we see that 𝒳𝑤 forms an F𝑞 (𝑡)-vector subspace of
Rℐ (IND0

𝑤 ) .
The main result of this section is the following dimension formula for 𝒳𝑤 .
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Theorem 4.8. For any 𝑤 ∈ Z≥0, we have

dimF𝑞 (𝑡) 𝒳𝑤 =

{
1 if (𝑞 − 1) | 𝑤
0 if (𝑞 − 1) � 𝑤 .

When 𝑤 = ℓ(𝑞 − 1) for some ℓ ∈ Z≥0, we can choose a generator (𝜂ℓ;𝔰)𝔰∈ℐ (IND0
𝑤 )
∈ 𝒳𝑤 such that

𝜂ℓ;∅ =
ℓ∑
𝑖=0

𝑏ℓ𝑖 (𝑡 − 𝜃)𝑖 , 𝑏ℓ𝑖 ∈ 𝑇F𝑝 [𝑇](𝑇 ) (0 ≤ 𝑖 < ℓ) 𝑎𝑛𝑑 𝑏ℓℓ = 1,

where 𝑇 := 𝑡 − 𝑡𝑞 and F𝑝 [𝑇](𝑇 ) ⊂ F𝑝 (𝑡) is the localization of F𝑝 [𝑇] at the prime ideal (𝑇).

Proof. Note that by Lemma 4.4, we have 𝒳𝑤 ⊂ F𝑞 (𝑡) [𝜃]
ℐ (IND0

𝑤 ) . We write

𝑤 = ℓ(𝑞 − 1) + 𝑠 (ℓ ≥ 0, 0 ≤ 𝑠 < 𝑞 − 1),
ℓ = 𝑚𝑞 + 𝑛 (𝑚 ≥ 0, 0 ≤ 𝑛 < 𝑞).

First, we assume that 𝑠 = 0 and hence 𝑤 = ℓ(𝑞−1) with ℓ ≥ 0. When ℓ = 0, we have ℐ(IND0
0 ) = {∅}

and the equation is 𝜀 (1)
∅

= 𝜀∅. Thus, 𝒳0 = F𝑞 (𝑡), and we have a generator 𝜂0;∅ = 1. Let ℓ ≥ 1 and
suppose that the desired properties hold for weight ℓ′(𝑞 − 1) with ℓ′ < ℓ. The system of Frobenius
equations (Eℓ (𝑞−1) ) becomes

𝜀 (1)
∅

= 𝜀∅ (𝑡 − 𝜃)ℓ (𝑞−1) +
∑

0≤ 𝑗<ℓ
𝑗�ℓ mod 𝑞

𝜀 ( (ℓ− 𝑗) (𝑞−1)) (𝑡 − 𝜃)ℓ (𝑞−1) (4.2)

and

𝜀 (1)
( (ℓ− 𝑗) (𝑞−1) ,𝔰) = 𝜀 ( (ℓ− 𝑗) (𝑞−1) ,𝔰) (𝑡 − 𝜃) 𝑗 (𝑞−1)−wt(𝔰)

+
∑
𝑠′>0

(𝔰,𝑠′) ∈ℐ (IND0
𝑗 (𝑞−1) )

𝜀 ( (ℓ− 𝑗) (𝑞−1) ,𝔰,𝑠′) (𝑡 − 𝜃) 𝑗 (𝑞−1)−wt(𝔰)

for 0 ≤ 𝑗 < ℓ with 𝑗 � ℓ mod 𝑞 and 𝔰 ∈ ℐ(IND0
𝑗 (𝑞−1) ). Since (𝜀 ( (ℓ− 𝑗) (𝑞−1) ,𝔰) )𝔰∈ℐ (IND0

𝑗 (𝑞−1) )
∈ 𝒳𝑗 (𝑞−1) for

each j, the induction hypothesis implies that we have

𝜀 ( (ℓ− 𝑗) (𝑞−1)) = 𝑓 𝑗

𝑗∑
𝑖=0

𝑏 𝑗𝑖 (𝑡 − 𝜃)𝑖 , 𝑓 𝑗 ∈ F𝑞 (𝑡), 𝑏 𝑗𝑖 ∈ 𝑇F𝑝 [𝑇](𝑇 ) and 𝑏 𝑗 𝑗 = 1.

By Lemma 4.4, we have deg𝜃 𝜀∅ ≤ ℓ. We write 𝜀∅ =
∑ℓ
𝑖=0 𝑎𝑖 (𝑡 − 𝜃)𝑖 with 𝑎𝑖 ∈ F𝑞 (𝑡) and plug it into

(4.2). Then we obtain
ℓ∑
𝑗=0

𝑎 𝑗 (𝑡 − 𝜃𝑞) 𝑗 =
ℓ∑
𝑖=0

𝑎𝑖 (𝑡 − 𝜃)ℓ (𝑞−1)+𝑖 +
∑

0≤ 𝑗<ℓ
𝑗�ℓ mod 𝑞

𝑓 𝑗

𝑗∑
𝑖=0

𝑏 𝑗𝑖 (𝑡 − 𝜃)ℓ (𝑞−1)+𝑖 .

Note that the equation above can be expressed as
ℓ−1∑
𝑖=0

ℓ−1∑
𝑗=𝑖

(
𝑗

𝑖

)
𝑇 𝑗−𝑖𝑎 𝑗 (𝑡 − 𝜃)𝑖𝑞 −

ℓ−1∑
𝑖=0

𝑎𝑖 (𝑡 − 𝜃)ℓ (𝑞−1)+𝑖 −

ℓ−1∑
𝑖=0

∑
𝑖≤ 𝑗<ℓ

𝑗�ℓ mod 𝑞

𝑏 𝑗𝑖 𝑓 𝑗 (𝑡 − 𝜃)ℓ (𝑞−1)+𝑖

= −𝑎ℓ
ℓ−1∑
𝑖=0

(
ℓ

𝑖

)
𝑇ℓ−𝑖 (𝑡 − 𝜃)𝑖𝑞 .
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Note further that
𝑖𝑞 < 𝑤 = (ℓ − 𝑚)𝑞 − 𝑛 ⇐⇒ 𝑖 < ℓ − 𝑚 −

𝑛

𝑞
.

By comparing the coefficients of (𝑡 − 𝜃)𝜈 for 𝜈 = 𝑖𝑞 (0 ≤ 𝑖 < ℓ − 𝑚) or ℓ(𝑞 − 1) ≤ 𝜈 < ℓ𝑞,
this gives a system of linear equations with (2ℓ − 𝑚)-equations and (2ℓ − 𝑚 + 1)-variables. We write
a := (𝑎0, . . . , 𝑎ℓ−1)

tr and f := ( 𝑓0, . . . , 𝑓ℓ−1)
tr (excluding 𝑓𝑛, 𝑓𝑞+𝑛, . . . , 𝑓(𝑚−1)𝑞+𝑛). Then the system

mentioned above can be expressed as

𝑈

(
a
f

)
= 𝑎ℓb, 𝑈 ∈ Mat2ℓ−𝑚(F𝑝 [𝑇](𝑇 ) ) and b ∈ (𝑇F𝑝 [𝑇](𝑇 ) )2ℓ−𝑚. (4.3)

As our goal of this case 𝑤 = ℓ(𝑞−1) is to show dimF𝑞 (𝑡) 𝒳𝑤 = 1, it is to show that the existence of
(
a
f

)
is unique up to F𝑞 (𝑡)-scalar multiple. Therefore, from (4.3), it suffices to show that det(𝑈 mod 𝑇) ≠ 0
in F𝑝 . Indeed, we have

(𝑈 mod 𝑇) +

(
𝑂 𝑂
Idℓ 𝑂

)

=

ℓ︷������������︸︸������������︷ ℓ−𝑚︷���������������������������������������������������������������︸︸���������������������������������������������������������������︷
�������������������������������������������������

1 �                                               !

⎫⎪⎪⎬⎪⎪⎭ℓ −𝑚. . .

1

−1 ⎫⎪⎪⎬⎪⎪⎭𝑛. . .

−1
1 0

−1 ⎫⎪⎪⎬⎪⎪⎭𝑞 − 1. . .

−1
1 0

. . .

. . .
. . .

...
. . .

−1 ⎫⎪⎪⎬⎪⎪⎭𝑞 − 1. . .

−1
1 0

−1 ⎫⎪⎪⎬⎪⎪⎭𝑞 − 1. . .

−1

.

The matrix (𝑈 mod 𝑇) +

(
𝑂 𝑂
Idℓ 𝑂

)
can be described as follows:

(i) We first set up the lower right submatrix by beginning with a matrix of diagonal blocks, the first
one being − Id𝑛 and the remaining m of them being equal to − Id𝑞−1. Then we insert zero rows
between the blocks to obtain our submatrix of size ℓ × (ℓ − 𝑚).

(ii) We then put the identity matrix Idℓ−𝑚 on the upper left corner.
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(iii) Finally, we define the ((ℓ − 𝑚) + 1)st column to the ℓth column, each of length 2ℓ − 𝑚. In the
((ℓ − 𝑚) + 𝑖)th column, all entries are zero except for the entry 1 occurring in the same row as the
ith row of zeroes inserted into the matrix constructed in step (i) (i.e., the row of zeroes lying above
the ith diagonal block equal to − Id𝑞−1 in step (i)). Thus, we have our 2(ℓ − 𝑚) × 2(ℓ − 𝑚) matrix

(𝑈 mod 𝑇) +

(
𝑂 𝑂
Idℓ 𝑂

)
.

For example, let 𝑞 = 3, 𝑤 = 14 = 7(3 − 1) (ℓ = 7 = 2 · 3 + 1, 𝑚 = 2, 𝑛 = 1). Then we have

𝑈 mod 𝑇 =

���������������������

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 −1 0 0 0 0
0 −1 0 0 0 1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 −1 0 0 0
0 0 0 −1 0 0 0 0 0 −1 0 0
0 0 0 0 −1 0 1 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 −1 0
0 0 0 0 0 0 −1 0 0 0 0 −1

�                   !
To evaluate det (𝑈 mod 𝑇), we appeal to elementary row operations which do not change the value

of the determinant. Adding each of the top ℓ−𝑚 rows to the corresponding rows in the lower left matrix
kills all entries there coming from − Idℓ except the m bottom ones, which lie in the ((ℓ−𝑚) +1)st one to
the ℓth column. But each −1 in these last m rows can be killed by adding the appropriate row from step
(iii) which has all zero entries except 1 in a unique column between ℓ − 𝑚 + 1 and ℓ. Doing this leaves
only the non-zero entries in those m columns the ones inserted in step (iii). We end up with a matrix
which has a unique ±1 in each row and column. So the elementary product expansion evaluates the
determinant as±1. Note that one can also use elementary column operations to show the desired identity.

Next, we assume that 1 ≤ 𝑠 < 𝑞 − 1 and put 𝑤 := ℓ(𝑞 − 1) + 𝑠. The system of Frobenius equations
(Ew) is

𝜀 (1)
∅

= 𝜀∅ (𝑡 − 𝜃)𝑤 +
∑

0≤ 𝑗≤ℓ
𝑗�ℓ−𝑠 mod 𝑞

𝜀 ( (ℓ− 𝑗) (𝑞−1)+𝑠) (𝑡 − 𝜃)𝑤 (4.4)

and
𝜀 (1)
( (ℓ− 𝑗) (𝑞−1)+𝑠,𝔰) = 𝜀 ( (ℓ− 𝑗) (𝑞−1)+𝑠,𝔰) (𝑡 − 𝜃) 𝑗 (𝑞−1)−wt(𝔰)

+
∑
𝑠′>0

(𝔰,𝑠′) ∈ℐ (IND0
𝑗 (𝑞−1) )

𝜀 ( (ℓ− 𝑗) (𝑞−1)+𝑠,𝔰,𝑠′) (𝑡 − 𝜃) 𝑗 (𝑞−1)−wt(𝔰)

for 0 ≤ 𝑗 ≤ ℓ with 𝑗 � ℓ − 𝑠 mod 𝑞 and 𝔰 ∈ ℐ(IND0
𝑗 (𝑞−1) ). Since (𝜀 ( (ℓ− 𝑗) (𝑞−1)+𝑠,𝔰) )𝔰∈ℐ (IND0

𝑗 (𝑞−1) )
∈ 𝒳𝑗 (𝑞−1)

for each j, we have

𝜀 ( (ℓ− 𝑗) (𝑞−1)+𝑠) = 𝑓 𝑗

𝑗∑
𝑖=0

𝑏 𝑗𝑖 (𝑡 − 𝜃)𝑖 , 𝑓 𝑗 ∈ F𝑞 (𝑡), 𝑏 𝑗𝑖 ∈ 𝑇F𝑝 [𝑇](𝑇 ) and 𝑏 𝑗 𝑗 = 1.

By Lemma 4.4, we have deg𝜃 𝜀∅ ≤ ℓ. We write 𝜀∅ =
∑ℓ
𝑖=0 𝑎𝑖 (𝑡 − 𝜃)𝑖 with 𝑎𝑖 ∈ F𝑞 (𝑡). Then (4.4)

becomes
ℓ∑
𝑗=0

𝑎 𝑗 (𝑡 − 𝜃𝑞) 𝑗 =
ℓ∑
𝑖=0

𝑎𝑖 (𝑡 − 𝜃)𝑤+𝑖 +
∑

0≤ 𝑗≤ℓ
𝑗�ℓ−𝑠 mod 𝑞

𝑓 𝑗

𝑗∑
𝑖=0

𝑏 𝑗𝑖 (𝑡 − 𝜃)𝑤+𝑖 .
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This identity can be written as
ℓ∑
𝑖=0

ℓ∑
𝑗=𝑖

(
𝑗

𝑖

)
𝑇 𝑗−𝑖𝑎 𝑗 (𝑡 − 𝜃)𝑖𝑞 −

ℓ∑
𝑖=0

𝑎𝑖 (𝑡 − 𝜃)𝑤+𝑖 −
ℓ∑
𝑖=0

∑
𝑖≤ 𝑗≤ℓ

𝑗�ℓ−𝑠 mod 𝑞

𝑏 𝑗𝑖 𝑓 𝑗 (𝑡 − 𝜃)𝑤+𝑖 = 0.

We note that
𝑖𝑞 < 𝑤 = (ℓ − 𝑚)𝑞 + (𝑠 − 𝑛) ⇐⇒ 𝑖 < ℓ − 𝑚 +

𝑠 − 𝑛

𝑞
.

When 𝑠 ≤ 𝑛, by comparing the coefficients of (𝑡 − 𝜃)𝜈 for 𝜈 = 𝑖𝑞 (0 ≤ 𝑖 < ℓ −𝑚) or 𝑤 ≤ 𝜈 ≤ 𝑤 + ℓ,
this gives a system of linear equations with (2ℓ −𝑚 + 1)-equations and (2ℓ −𝑚 + 1)-variables. We write
a := (𝑎0, . . . , 𝑎ℓ)

tr and f := ( 𝑓0, . . . , 𝑓ℓ)tr (excluding 𝑓𝑛−𝑠 , 𝑓𝑞+𝑛−𝑠 , . . . , 𝑓ℓ−𝑠). Then the system can be
written as

𝑈

(
a
f

)
= 0 and 𝑈 ∈ Mat2ℓ−𝑚+1(F𝑝 [𝑇](𝑇 ) ).

Since we aim to show that the solution space 𝒳𝑤 is trivial in this case, it suffices to show that
det(𝑈 mod 𝑇) ≠ 0 in F𝑝 . Indeed, we have

(𝑈 mod 𝑇) +

(
𝑂 𝑂

Idℓ+1 𝑂

)

=

ℓ+1︷������������︸︸������������︷ ℓ−𝑚︷���������������������������������������������������������������︸︸���������������������������������������������������������������︷
�������������������������������������������������

1 �                                               !

⎫⎪⎪⎬⎪⎪⎭ℓ −𝑚. . .

1

−1 ⎫⎪⎪⎬⎪⎪⎭𝑛 − 𝑠. . .

−1
1 0

−1 ⎫⎪⎪⎬⎪⎪⎭𝑞 − 1. . .

−1
1 0

. . .

. . .
. . .

...
. . .

−1 ⎫⎪⎪⎬⎪⎪⎭𝑞 − 1. . .

−1
1 0

−1 ⎫⎪⎪⎬⎪⎪⎭𝑠. . .

−1

and hence det(𝑈 mod 𝑇) = ±1.
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When 𝑠 > 𝑛, by comparing the coefficients of (𝑡 − 𝜃)𝜈 for 𝜈 = 𝑖𝑞 (0 ≤ 𝑖 ≤ ℓ −𝑚) or 𝑤 ≤ 𝜈 ≤ 𝑤 + ℓ,
this gives a system of linear equations with (2ℓ −𝑚 + 2)-equations and (2ℓ −𝑚 + 2)-variables. We write
a := (𝑎0, . . . , 𝑎ℓ)

tr and f := ( 𝑓0, . . . , 𝑓ℓ)tr (excluding 𝑓𝑞+𝑛−𝑠 , 𝑓2𝑞+𝑛−𝑠 , . . . , 𝑓ℓ−𝑠). Then the system can
be written as

𝑈

(
a
f

)
= 0 and 𝑈 ∈ Mat2ℓ−𝑚+2(F𝑝 [𝑇](𝑇 ) ).

It is enough to show that det(𝑈 mod 𝑇) ≠ 0 in F𝑝 . Indeed, we have

(𝑈 mod 𝑇) +

(
𝑂 𝑂

Idℓ+1 𝑂

)

=

ℓ+1︷������������︸︸������������︷ ℓ−𝑚+1︷���������������������������������������������������������������︸︸���������������������������������������������������������������︷
�������������������������������������������������

1 �                                               !

⎫⎪⎪⎬⎪⎪⎭ℓ −𝑚 + 1. . .

1

−1 ⎫⎪⎪⎬⎪⎪⎭𝑞 + 𝑛 − 𝑠. . .

−1
1 0

−1 ⎫⎪⎪⎬⎪⎪⎭𝑞 − 1. . .

−1
1 0

. . .

. . .
. . .

...
. . .

−1 ⎫⎪⎪⎬⎪⎪⎭𝑞 − 1. . .

−1
1 0

−1 ⎫⎪⎪⎬⎪⎪⎭𝑠. . .

−1

and hence det(𝑈 mod 𝑇) = ±1. �

5. Linear independence

In this section, we aim to show that {Li𝔰 (1) ∈ 𝑘∞ | 𝔰 ∈ IND
𝑤 } is a k-linearly independent set. To begin

with, we adopt the following setting. Let (−𝜃)
1

𝑞−1 ∈ 𝑘
×

be a fixed (𝑞 − 1)st root of −𝜃. Following [2],
we consider the following power series:

Ω(𝑡) := (−𝜃)
−𝑞
𝑞−1

∞∏
𝑖=1

(
1 −

𝑡

𝜃𝑞
𝑖

)
∈ 𝑘∞[[𝑡]] .
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Note that it satisfies the Frobenius difference equation

Ω(−1) (𝑡) = (𝑡 − 𝜃)Ω(𝑡).

In addition, we have Ω(𝑡) ∈ E and �̃� := 1/Ω(𝜃) is the fundamental period of the Carlitz module (see [2,
Sec. 3.1.2]). We also set L0 := 1 and L𝑑 := (𝑡 − 𝜃𝑞) · · · (𝑡 − 𝜃𝑞

𝑑
) for 𝑑 ≥ 1. Put L(∅) := 1 and for each

index 𝔰 = (𝑠1, . . . , 𝑠𝑟 ) ∈ I>0, we define the following deformation series:

L(𝔰) := Ωwt(𝔰)
∑

𝑑1> · · ·>𝑑𝑟 ≥0

1
L
𝑠1
𝑑1
· · ·L

𝑠𝑟
𝑑𝑟

∈ T,

which was first introduced by Papanikolas [27] for dep(𝔰) = 1. It is shown in [9, Lemma 5.3.1] that
L(𝔰) ∈ E . Moreover, by [14, Proposition 2.3.3], we have

L(𝔰) |
𝑡=𝜃𝑞 𝑗 = (L(𝔰) |𝑡=𝜃 )𝑞

𝑗
= (Li𝔰 (1)/�̃�wt(𝔰) )𝑞

𝑗

for all 𝑗 ≥ 0 (see also [9, Lemma 5.3.5]). Let 𝑃 =
∑

𝔰∈I 𝑎𝔰 [𝔰] ∈ H(𝑎𝔰 ∈ 𝑘). For the convenience of
later use, we set

Li𝑃 (1) :=
∑
𝔰

𝑎𝔰 Li𝔰 (1).

5.1. The key lemma

The fundamental system of Frobenius difference equations that {L(n)}n∈ℐ (𝔰) satisfy is given in [9,
(5.3.3),(5.3.4)] as well as [14, (2.3.4), (2.3.7)] with all𝑄𝑖 = 1 there, and it plays a crucial role in the proof
of the following Lemma when applying ABP-criterion. We further mention that the first formulation of
the following Lemma arises from the ideas in the proof of [14, Thm. 2.5.2], and the second one is an
extension of part of Step 3 in the proof of [26, Thm. 6], which dealt with 𝑤 ≤ 2𝑞 − 2.

Lemma 5.1. Let 𝑤 ≥ 0 and ∅ ≠ 𝑀 ⊂ I𝑤 . Let 𝑃 =
∑

𝔰∈I 𝑎𝔰 [𝔰] ∈ H(𝑎𝔰 ∈ 𝑘) and suppose that

• Supp(𝑃) ⊂ 𝑀 ,
• Li𝑃 (1) is Eulerian; that is, Li𝑃 (1) =

∑
𝔰 𝑎𝔰 Li𝔰 (1) ∈ 𝑘 · �̃�𝑤 ,

• Li𝔰 (1) (𝔰 ∈ ℐ(𝑀) ∩ Iℓ) are linearly independent over k for each 0 ≤ ℓ < 𝑤.

Then the following hold:

(1) We have ∑
𝔰′ ∈I𝑤−wt(𝔰)

𝑎 (𝔰,𝔰′) Li𝔰′ (1) = 0 or (𝑞 − 1) | (𝑤 − wt(𝔰))

for each 𝔰 ∈ ℐ(𝑀). In particular, if Li𝔰′ (1) (𝔰′ ∈ I𝑤−wt(𝔰) , (𝔰, 𝔰′) ∈ Supp(𝑃)) are linearly inde-
pendent over k for each 𝔰 ∈ ℐ(Supp(𝑃)) \ {∅}, then

Supp(𝑃) ⊂ {(𝑠1, . . . , 𝑠𝑟 ) ∈ I𝑤 | (𝑞 − 1) | 𝑠2, . . . , 𝑠𝑟 }.

(2) The system of Frobenius equations (EM) has a solution (𝜀𝔰)𝔰∈ℐ (𝑀 ) ∈ F𝑞 (𝑡) [𝜃]ℐ (𝑀 ) such that
𝜀𝔰 = 𝑎𝔰 |𝜃=𝑡 for each 𝔰 ∈ 𝑀 .

Proof. In what follows, our essential arguments are rooted in the ideas of the proof of [14]. Let
𝛼𝔰 = 𝛼𝔰 (𝑡) := 𝑎𝔰 |𝜃=𝑡 ∈ F𝑞 (𝑡), 𝑐 := Li𝑃 (1)/�̃�𝑤 ∈ 𝑘 and ℐ(𝑀)′ := ℐ(𝑀) \ 𝑀 . We may assume
that 𝑤 > 0, 𝑃 ≠ 0 and 𝛼𝔰 ∈ F𝑞 [𝑡] (𝔰 ∈ I). In particular, ℐ(𝑀)′ ≠ ∅. We define matrices Φ′ =
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(Φ′𝔫,𝔰)𝔫,𝔰∈ℐ (𝑀 )′ ∈ Mat |ℐ (𝑀 )′ | (𝑘 [𝑡]) and Ψ′ = (Ψ′𝔫,𝔰)𝔫,𝔰∈ℐ (𝑀 )′ ∈ GL |ℐ (𝑀 )′ | (T) indexed by the set
ℐ(𝑀)′. They are defined by

Φ′𝔫,𝔰 :=
{
(𝑡 − 𝜃)𝑤−wt(𝔰) (𝔰 = 𝔫 or 𝔰 = 𝔫+)
0 (otherwise) and Ψ′𝔫,𝔰 :=

{
L(𝔰′)Ω𝑤−wt(𝔫) (𝔫 = (𝔰, 𝔰′))
0 (otherwise) .

In particular, we have Ψ′𝔫,∅ = L(𝔫)Ω𝑤−wt(𝔫) . We also define row vectors v = (𝑣𝔰)𝔰∈ℐ (𝑀 )′ ∈

Mat1×|ℐ (𝑀 )′ | (𝑘 [𝑡]) and f = ( 𝑓𝔰)𝔰∈ℐ (𝑀 )′ ∈ Mat1×|ℐ (𝑀 )′ | (T) by

𝑣𝔰 :=
{
𝛼(𝔰,𝑤−wt(𝔰)) (𝑡 − 𝜃)𝑤−wt(𝔰) ((𝔰, 𝑤 − wt(𝔰)) ∈ 𝑀)
0 (otherwise) and 𝑓𝔰 :=

∑
𝔰′ ∈I𝑤−wt(𝔰)

𝛼(𝔰,𝔰′)L(𝔰′).

In particular, we have 𝑓∅ :=
∑

𝔰′ ∈I𝑤
𝛼𝔰′L(𝔰′) = L(𝑃). Then we set

Φ :=
(
Φ′ 0
v 1

)
∈ Mat |ℐ (𝑀 )′ |+1(𝑘 [𝑡]) and Ψ :=

(
Ψ′ 0
f 1

)
∈ GL |ℐ (𝑀 )′ |+1(T).

We further set

Φ̃ :=
(

1 0
0 Φ

)
∈ Mat |ℐ (𝑀 )′ |+2(𝑘 [𝑡]) and 𝜓 := ���

1
(Ψ′𝔫,∅)𝔫∈ℐ (𝑀 )′

𝑓∅

� ! ∈ Mat( |ℐ (𝑀 )′ |+2)×1(T).

Then using [14, (2.3.4), (2.3.7)], one checks that

Ψ (−1) = ΦΨ and 𝜓 (−1) = Φ̃𝜓.

We mention that we follow [26] to use double indices to indicate the entries of Φ here, and putting such
𝑓𝜙 into a system of Frobenius difference equations was first used by the first named author in [10], and
later used in [12, 26]. Such 𝑓𝜙 naturally appears in the period matrix of the fiber coproduct of rigid
analytically trivial dual t-motives in [13].

By [2, Theorem 3.1.1], there exist 𝑔 ∈ 𝑘 (𝑡) and g = (𝑔𝔰)𝔰∈ℐ (𝑀 )′ ∈ Mat1×|ℐ (𝑀 )′ | (𝑘 (𝑡)) such that

g̃𝜓 = 0, 𝑔 and g are regular at 𝑡 = 𝜃 and g̃|𝑡=𝜃 = (−𝑐, 0, . . . , 0, 1),

where g̃ := (𝑔, g, 1).
We set 𝐵 = 𝐵(𝑡) and 𝐵𝔰 = 𝐵𝔰 (𝑡) in 𝑘 (𝑡) by

(𝐵, (𝐵𝔰)𝔰∈ℐ (𝑀 )′ , 0) := g̃ − g̃(−1)Φ̃ ∈ Mat1×( |ℐ (𝑀 )′ |+2) (𝑘 (𝑡)).

We claim that g̃(−1)Φ̃ = g̃; that is, 𝐵 = 𝐵𝔰 = 0 for all 𝔰 ∈ ℐ(𝑀)′. Indeed,

𝐵 +
∑

𝔰∈ℐ (𝑀 )′
𝐵𝔰L(𝔰)Ω𝑤−wt(𝔰) = (𝐵, (𝐵𝔰)𝔰∈ℐ (𝑀 )′ , 0)𝜓 = (g̃ − g̃(−1)Φ̃)𝜓 = g̃𝜓 − (g̃𝜓) (−1) = 0

and ℐ(𝑀)′ =
⊔𝑤−1
ℓ=0 ℐ(𝑀) ∩ Iℓ imply the equality

𝐵 +
∑

𝔰∈ℐ (𝑀 )∩I𝑤−1

𝐵𝔰L(𝔰)Ω +
∑

𝔰∈ℐ (𝑀 )∩I𝑤−2

𝐵𝔰L(𝔰)Ω2 + · · · +
∑

𝔰∈ℐ (𝑀 )∩I0

𝐵𝔰L(𝔰)Ω𝑤 = 0. (5.1)

We note that

• B and 𝐵𝔰 (𝔰 ∈ ℐ(𝑀)′) are regular at 𝑡 = 𝜃𝑞
𝑖 for 𝑗 � 0,

• Ω and L(𝔰) (𝔰 ∈ I) are entire,
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• Ω(𝜃𝑞
𝑗
) = 0 for 𝑗 ≥ 1,

• L(𝔰) |
𝑡=𝜃𝑞 𝑗 = (Li𝔰 (1)/�̃�wt(𝔰) )𝑞

𝑗 for 𝔰 ∈ I and 𝑗 ≥ 0.

Thus, evaluating at 𝑡 = 𝜃𝑞
𝑗 for 𝑗 � 0 in (5.1) implies 𝐵(𝜃𝑞

𝑗
) = 0. Since B is rational, we have 𝐵 = 0.

Then dividing (5.1) by Ω and evaluating at 𝑡 = 𝜃𝑞
𝑗 for 𝑗 � 0 imply∑

𝔰∈ℐ (𝑀 )∩I𝑤−1

𝐵𝔰 (𝜃
𝑞 𝑗
) (Li𝔰 (1)/�̃�𝑤−1)𝑞

𝑗
= 0.

This is equivalent to ∑
𝔰∈ℐ (𝑀 )∩I𝑤−1

𝐵𝔰 (𝜃
𝑞 𝑗
)𝑞
− 𝑗

Li𝔰 (1) = 0.

By the assumption of linear independence and [9, Theorem 2.2.1], we have 𝐵𝔰 (𝜃
𝑞 𝑗
) = 0. Thus, we have

𝐵𝔰 = 0 for all 𝔰 ∈ ℐ(𝑀) ∩ I𝑤−1. Repeating this process, we have 𝐵𝔰 = 0 for all 𝔰 ∈ ℐ(𝑀)′. We note
that the claim implies (

Id 0
g 1

) (−1) (
Φ′ 0
v 1

)
=

(
Φ′ 0
0 1

) (
Id 0
g 1

)
. (5.2)

(1) We set

𝑋 :=
(

Id 0
g 1

)
Ψ =

(
Ψ′ 0

gΨ′ + f 1

)
∈ GL |ℐ (𝑀 )′ |+1(Frac(T)).

By using (5.2), we can verify that 𝑋 (−1) =

(
Φ′ 0
0 1

)
𝑋 . Thus, by [27, §4.1.6],

GL |ℐ (𝑀 )′ |+1(F𝑞 (𝑡)) �
(
Ψ′ 0
0 1

)−1
𝑋 =

(
Id 0

gΨ′ + f 1

)
=:

(
Id 0

(ℎ𝔰)𝔰∈ℐ (𝑀 )′ 1

)
.

Then evaluating at 𝑡 = 𝜃𝑞
𝑗 for 𝑗 � 0 in gΨ′ + f = (ℎ𝔰)𝔰∈ℐ (𝑀 )′ , we have 𝑓𝔰 (𝜃

𝑞 𝑗
) = ℎ𝔰 (𝜃

𝑞 𝑗
) = ℎ𝔰 (𝜃)

𝑞 𝑗 .
Since

𝑓𝔰 (𝜃
𝑞 𝑗
) =

∑
𝔰′ ∈I𝑤−wt(𝔰)

𝛼(𝔰,𝔰′) (𝜃
𝑞 𝑗
)L(𝔰′) |

𝑡=𝜃𝑞 𝑗 =
∑

𝔰′ ∈I𝑤−wt(𝔰)

𝛼(𝔰,𝔰′) (𝜃)
𝑞 𝑗
(Li𝔰′ (1)/�̃�𝑤−wt(𝔰) )𝑞

𝑗
= 𝑓𝔰 (𝜃)

𝑞 𝑗
,

we have 𝑓𝔰 (𝜃) = ℎ𝔰 (𝜃) ∈ 𝑘 for each 𝔰 ∈ ℐ(𝑀)′. Thus, we have∑
𝔰′ ∈I𝑤−wt(𝔰)

𝑎 (𝔰,𝔰′) Li𝔰′ (1) ∈ 𝑘 · �̃�𝑤−wt(𝔰)

for each 𝔰 ∈ ℐ(𝑀)′. We note that this holds whenever 𝔰 ∈ 𝑀 . Then the first statement of (1) follows
from this relation because �̃� ∈ (−𝜃)

1
𝑞−1 · 𝑘×∞.

Next we prove the second statement of (1). Let (𝔰, 𝔰′′) ∈ Supp(𝑃) with 𝔰 ≠ ∅. Then by the first
statement of (1) and the assumption on the linear independence of the second statement of (1), we have
(𝑞 − 1) | (𝑤 − wt(𝔰)) = wt(𝔰′′).

(2) By (5.2) and [14, Proposition 2.2.1], there exists 𝛼 ∈ F𝑞 [𝑡] \ {0} such that 𝛼g ∈
Mat1×|ℐ (𝑀 )′ | (𝑘 [𝑡]). If we set 𝜀𝔰 := 𝑔 (−1)

𝔰 (𝔰 ∈ ℐ(𝑀)′) and 𝜀𝔰 := 𝛼𝔰 ∈ F𝑞 (𝑡) (𝔰 ∈ 𝑀), then

((𝜀𝔰)𝔰∈ℐ (𝑀 )′ , 1)
(
Φ′

v

)
= (𝜀 (1)𝔰 )𝔰∈ℐ (𝑀 )′ and 𝜀 (1)𝔰 = 𝜀𝔰 (𝔰 ∈ 𝑀)

give the desired equations. �
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5.2. Linear independence

With the crucial properties of Lemma 5.1 established, we are able to show the following linear indepen-
dence result.

Theorem 5.2. For each 𝑤 ≥ 0, the elements

Li𝔰 (1) with 𝔰 ∈ IND
𝑤

form a basis of Z𝑤 .

Proof. (cf. [26, p. 388] for the special case of k-linear independence of 𝜁𝐴(𝑤) and 𝜁𝐴(𝑤− (𝑞−1), 𝑞−1)
with 𝑤 ≤ 2𝑞 − 2.) By Theorem 3.8,

{
Li𝔰 (1) |𝔰 ∈ IND

𝑤

}
is a generating set for Z𝑤 . Thus, it is enough to

show that the given elements are linearly independent over k. This is proved by induction on w. When
𝑤 = 0, we have IND

0 = {∅}, and Li∅ (1) = 1 is linearly independent over k.
Let 𝑤 ≥ 1 and assume that the elements Li𝔰 (1) with 𝔰 ∈ IND

𝑤′ are linearly independent over k for
𝑤′ < 𝑤. Let 𝑃 =

∑
𝔰∈I 𝛼𝔰 (𝜃) [𝔰] ∈ H(𝛼𝔰 = 𝛼𝔰 (𝑡) ∈ F𝑞 (𝑡)) be a linear relation among Li𝔰 (1)’s over k

such that Supp(𝑃) ⊂ IND
𝑤 . By Lemma 5.1 (1) for 𝑀 = Supp(𝑃) and the induction hypothesis, we have

Supp(𝑃) ⊂ IND0
𝑤 . By Lemma 5.1 (2) for 𝑀 = IND0

𝑤 , there exists a solution (𝜀𝔰) ∈ 𝒳𝑤 such that 𝜀𝔰 = 𝛼𝔰
for all 𝔰 ∈ IND0

𝑤 .
When (𝑞 − 1) � 𝑤, Theorem 4.8 implies that 𝛼𝔰 = 0 for all 𝔰 ∈ IND0

𝑤 . When (𝑞 − 1) | 𝑤, we have
�̃�𝑤 ∈ Z𝑤 and hence Theorem 3.8 implies that there exists 𝑃𝑤 =

∑
𝔰∈I 𝛽𝔰 (𝜃) [𝔰] ∈ H𝑤 (𝛽𝔰 (𝑡) ∈ F𝑞 (𝑡))

such that Supp(𝑃𝑤 ) ⊂ IND
𝑤 and Li𝑃𝑤 (1) = �̃�𝑤 . It is clear that 𝑃𝑤 ≠ 0. By Lemma 5.1 (1) for

𝑀 = Supp(𝑃𝑤 ), we have Supp(𝑃𝑤 ) ⊂ IND0
𝑤 . By Lemma 5.1 (2) for 𝑀 = IND0

𝑤 , there exists a solution
(𝜀′𝔰) ∈ 𝒳𝑤 such that 𝜀′𝔰 = 𝛽𝔰 for all 𝔰 ∈ IND0

𝑤 . Then by Theorem 4.8, there exists an 𝛼 ∈ F𝑞 (𝑡) for which
(𝜀𝔰) = 𝛼(𝜀′𝔰), and hence we have 𝑃 = 𝛼(𝜃)𝑃𝑤 . Then we have

0 = Li𝑃 (1) = Li𝛼(𝜃)𝑃𝑤 (1) = 𝛼(𝜃)�̃�𝑤 .

Thus, 𝛼 = 0 and 𝑃 = 0. �

5.3. Proof of Theorem 1.5

With the fundamental results established, we can now give a short proof of Theorem 1.5. Given 𝑤 ∈ Z>0,
we claim that BT

𝑤 is a basis of the k-vector space Z𝑤 . By Theorem 5.2,
{
Li𝔰 (1) |𝔰 ∈ IND

𝑤

}
is a k-basis

of Z𝑤 . Since |IND
𝑤 | = |IT

𝑤 | by Proposition 2.1, and BT
𝑤 is a generating set of Z𝑤 by Corollary 3.7, we

have that

|BT
𝑤 | ≥ dim𝑘 Z𝑤 = |IND

𝑤 | = |IT
𝑤 | ≥ |BT

𝑤 |,

whence the desired result follows.

5.4. Generating set of linear relations

Recall the k-linear map 𝒰𝜁 defined in Definition 3.4, and Theorem 3.6 asserts that for 𝔰 ∈ I𝑤 \ IT
𝑤 ,

ℒ𝜁
(
[𝔰] −𝒰𝜁 (𝔰)

)
= 0. (5.3)

We prove in the following theorem, which verifies the ℬ∗-version of [30, Conjecture 5.1], that these
relations account for all k-linear relations among MZV’s of the same weight.

Theorem 5.3. Let w be a positive integer. Then all the k-linear relations among the MZV’s of weight w
are generated by (5.3) for𝔰 ∈ I𝑤 \IT

𝑤 . In other words, if we denote byℒ𝜁
𝑤 := ℒ𝜁 |H𝑤 := ( [𝔰] ↦→ 𝜁𝐴(𝔰)) :
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H𝑤 � Z𝑤 and put

ℛ𝑤 := Span𝑘
{
[𝔰] −𝒰𝜁 (𝔰) | 𝔰 ∈ I𝑤 \ IT

𝑤

}
⊂ H𝑤 ,

then

Kerℒ𝜁
𝑤 = ℛ𝑤 .

Moreover, we have

Kerℒ𝜁 =
⊕
𝑤 ∈N

ℛ𝑤 .

Proof. Theorem 3.6 implies the inclusion Kerℒ𝜁
𝑤 ⊃ ℛ𝑤 , and Remark 3.5 implies

ℛ𝑤 = Span𝑘
{
𝑃 −𝒰𝜁 (𝑃) | 𝑃 ∈ H𝑤

}
.

We fix a positive integer e given in Theorem 3.6. Then for each 𝑃 ∈ H𝑤 , we have

𝑃 ≡ 𝒰𝜁 (𝑃) ≡ · · · ≡ (𝒰𝜁 )𝑒 (𝑃) mod ℛ𝑤 .

By these relations and Theorem 3.6, the quotient space H𝑤/ℛ𝑤 is spanned by the image of IT
𝑤 . It

follows that

|IT
𝑤 | ≥ dim𝑘 H𝑤/ℛ𝑤 ≥ dim𝑘 H𝑤/Kerℒ𝜁

𝑤 = dim𝑘 Z𝑤 = |IT
𝑤 |,

where the last equality comes from Theorem 1.5. So we have Kerℒ𝜁
𝑤 = ℛ𝑤 . By [9, Thm. 2.2.1], the

last assertion follows. �

Remark 5.4. According to [9, Thm. 2.2.1], all 𝑘-linear relations among MZV’s are decent to k-linear
relations, and hence, (5.3) accounts for all 𝑘-linear relations among MZV’s.

A. Proof of Theorem 3.6

The aim of this appendix is to give a detailed proof of Theorem 3.6.

A.1. Inequalities of depth

Proposition A.1. Let • ∈ {Li, 𝜁 } and 𝔰, 𝔫 ∈ I be indices. Then for each 𝔲 ∈ Supp(𝔰 ∗• 𝔫), we have

max{dep(𝔰), dep(𝔫)} ≤ dep(𝔲) ≤ dep(𝔰) + dep(𝔫).

Proof. Put 𝑟 := dep(𝔰) and ℓ := dep(𝔫). We prove the inequalities by induction on 𝑟 + ℓ. Note that in
the case of 𝑟 = 0 or ℓ = 0 (namely, 𝔰 = ∅ or 𝔫 = ∅), the result follows from the definition of ∗•.

Suppose that 𝑟 ≥ 1 and ℓ ≥ 1. Since the binary operation ∗• is commutative, without loss of generality
we may assume that 𝑟 ≥ ℓ ≥ 1. We first consider the case that 𝑟 > ℓ. By the induction hypothesis, we
have:

• when 𝔲 ∈ Supp([𝑠1, 𝔰− ∗• 𝔫]), then 1 + (𝑟 − 1) ≤ dep(𝔲) ≤ 1 + (𝑟 − 1) + ℓ;
• when 𝔲 ∈ Supp([𝑛1, 𝔰 ∗• 𝔫−]), then 1 + 𝑟 ≤ dep(𝔲) ≤ 1 + 𝑟 + (ℓ − 1);
• when 𝔲 ∈ Supp([𝑠1 + 𝑛1, 𝔰− ∗• 𝔫−]), then 1 + (𝑟 − 1) ≤ dep(𝔲) ≤ 1 + (𝑟 − 1) + (ℓ − 1);
• when 𝔲 ∈ Supp(𝐷𝜁

𝔰,𝔫), then there exist j, 𝔲′ and 𝔲′′ such that 1 ≤ 𝑗 < 𝑠1 + 𝑛1, 𝔲′′ ∈ Supp(𝔰− ∗𝜁 𝔫−)
and 𝔲′ ∈ Supp(( 𝑗) ∗𝜁 𝔲′′) with 𝔲 = (𝑠1+𝑛1− 𝑗 , 𝔲′). It follows that 𝑟−1 ≤ dep(𝔲′′) ≤ (𝑟−1) + (ℓ−1),
and hence, 𝑟 − 1 ≤ dep(𝔲′) ≤ 1 + (𝑟 − 1) + (ℓ − 1).
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In any case, we have 𝑟 ≤ dep(𝔲) ≤ 𝑟 + ℓ. In the case of 𝑟 = ℓ, we can verify that 𝑟 ≤ dep(𝔲) ≤ 2𝑟 by a
similar argument as above. �

Corollary A.2. Let 𝔰, 𝔫 ∈ I be indices.

(1) Suppose that both 𝔰 and 𝔫 are nonempty indices. Let 𝐷
𝜁
𝔰,𝔫 be defined in (2.10). Then for each

𝔲 ∈ Supp(𝐷𝜁
𝔰,𝔫), we have

max{dep(𝔰), dep(𝔫)} ≤ dep(𝔲) ≤ dep(𝔰) + dep(𝔫).

(2) For any integer 𝑚 ≥ 0, we let 𝛼•,𝑚𝑞 be the m-th iteration of 𝛼•𝑞 defined in (3.3). Then for each
𝔲 ∈ Supp(𝛼•,𝑚𝑞 (𝔰)), we have

dep(𝔲) ≥
{
1 + 𝑚 (𝔰 = ∅, 𝑚 ≥ 1)
dep(𝔰) + 𝑚 (𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒) 𝑎𝑛𝑑 dep(𝔲) ≤ dep(𝔰) + 2𝑚.

Proof. This is a direct consequence of Proposition A.1. �

A.2. Binary relations

Let • ∈ {Li, 𝜁 }. For each 𝑑 ∈ Z and 𝑅 = (𝑃,𝑄) ∈ H⊕2, we define

ℒ•(𝑅) := ℒ•(𝑃) +ℒ•(𝑄) and ℒ•𝑑 (𝑅) := ℒ•𝑑 (𝑃) +ℒ
•
𝑑+1 (𝑄).

We set

P• := {(𝑃,𝑄) ∈ H⊕2 | ℒ•𝑑 (𝑃) +ℒ
•
𝑑+1 (𝑄) = 0 forall 𝑑 ∈ Z} (A.1)

and

P•𝑤 := P• ∩H⊕2
𝑤 (A.2)

for 𝑤 ≥ 0. Elements inP• are called binary relations. We note that each binary relation 𝑅 = (𝑃,𝑄) ∈ P•
induces a k-linear relation ℒ•(𝑅) = ℒ•(𝑃) +ℒ•(𝑄) = 0. Indeed, we have

ℒ•(𝑃) +ℒ•(𝑄) =
∑
𝑑∈Z

ℒ•𝑑 (𝑃) +
∑
𝑑∈Z

ℒ•𝑑+1 (𝑄) =
∑
𝑑∈Z

(ℒ•𝑑 (𝑃) +ℒ
•
𝑑+1 (𝑄)) = 0.

The above ideas were introduced by Todd [30].

Example A.3. Thakur proved the identity [33, Thm. 5]

ℒ
𝜁
𝑑 (𝑞) − 𝐿1ℒ

𝜁
𝑑+1 (1, 𝑞 − 1) = 0 (𝑑 ∈ Z).

Note that by Remark 2.5 we can replace ‘𝜁’ by ‘Li’ in the above equation. It follows that for • ∈ {Li, 𝜁 },
we have a binary relation

𝑅1 := ([𝑞], −𝐿1 [1, 𝑞 − 1]) ∈ P•𝑞; (A.3)

namely, for each 𝑑 ∈ Z, the following equation holds:

ℒ•𝑑 (𝑞) − 𝐿1ℒ
•
𝑑+1 (1, 𝑞 − 1) = 0.
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A.3. Maps between relations

In what follows, the essential ideas we use are rooted in [30, 26]. Let 𝔰 = (𝑠1, . . . , 𝑠𝑟 ) ∈ I>0 be a
nonempty index. We recall that 𝔰+ := (𝑠1, . . . , 𝑠𝑟−1) and 𝔰− := (𝑠2, . . . , 𝑠𝑟 ), and the operator � : H⊕2 →
H is defined in Definition 3.1, and the notations 𝐷Li

𝔰,𝔫 in (2.8) and 𝐷
𝜁
𝔰,𝔫 in (2.10). For • ∈ {Li, 𝜁 }, we define

the maps ℬ•𝔰 ,𝒞•𝔰 : H⊕2
>0 → H⊕2

>0 as follows: For each 𝑅 = (𝑃,𝑄) = (
∑

𝔫∈I>0 𝑎𝔫 [𝔫],
∑

𝔫∈I>0 𝑏𝔫 [𝔫]) ∈
H⊕2
>0, we set

ℬ•𝔰 (𝑅) :=
(
[𝔰, 𝑃] + [𝔰, 𝑄] + (𝔰 �𝑄) + [𝔰+, 𝐷

•
𝑠𝑟 ,𝑄
], 0

)
,

𝒞•𝔰 (𝑅) :=
∑

𝔫=(𝑛1 ,𝔫−) ∈I>0

(
𝑎𝔫 [𝑛1 + 𝑠1, 𝔫− ∗

• 𝔰−] + 𝑎𝔫 [𝑛1, 𝔫− ∗
• 𝔰] + 𝑎𝔫𝐷

•
𝔫,𝔰 , 𝑏𝔫 [𝑛1, 𝔫− ∗

• 𝔰]
)
,

where

𝐷•𝑠,𝑄 :=
∑

𝔫∈I>0

𝑏𝔫𝐷
•
𝑠,𝔫 .

For any integer 𝑚 ≥ 0, we further define the map ℬ𝒞•,𝑚𝑞 : H⊕2
>0 → H⊕2

>0 given by

ℬ𝒞•,𝑚𝑞 (𝑅) :=
(
[𝑞 {𝑚}, 𝑃], 𝐿𝑚1 𝛼•,𝑚𝑞 (𝑄)

)
.

It is clear that these maps are k-linear endomorphisms on H⊕2
>0.

Proposition A.4. Let • ∈ {Li, 𝜁 }. For each 𝔰 ∈ I>0, and integers 𝑚, 𝑤 satisfying 𝑚 ≥ 0, 𝑤 > 0, the
maps ℬ•𝔰 , 𝒞•𝔰 and ℬ𝒞•,𝑚𝑞 satisfy

ℬ•𝔰 (P•𝑤 ) ⊂ P•𝑤+wt(𝔰) , 𝒞•𝔰 (P•𝑤 ) ⊂ P•𝑤+wt(𝔰) and ℬ𝒞•,𝑚𝑞 (P•𝑤 ) ⊂ P•𝑤+𝑚𝑞 ,

where P•𝑤 is defined in (A.2).

Proof. When 𝑅 ∈ P•𝑤 , it is clear that

ℬ•𝔰 (𝑅) ∈ H⊕2
𝑤+wt(𝔰) , 𝒞•𝔰 (𝑅) ∈ H⊕2

𝑤+wt(𝔰) and ℬ𝒞•𝔰 (𝑅) ∈ H⊕2
𝑤+wt(𝔰) .

Thus, it suffices to show that ℬ•𝔰 (𝑅),𝒞•𝔰 (𝑅),ℬ𝒞•,𝑚𝑞 (𝑅) ∈ P•.
For each 𝑅 = (

∑
𝔫∈I𝑤

𝑎𝔫 [𝔫],
∑

𝔫∈I𝑤
𝑏𝔫 [𝔫]) ∈ P•𝑤 , the corresponding equalities∑

𝔫∈I𝑤

𝑎𝔫ℒ
•
𝑖 (𝔫) +

∑
𝔫∈I𝑤

𝑏𝔫ℒ
•
𝑖+1(𝔫) = 0 (𝑖 ∈ Z)

hold. Thus, for each 𝑠 ≥ 1 and 𝑑 ∈ Z, we have

0 = ℒ•𝑑 (𝑠)
∑
𝑖<𝑑

( ∑
𝔫∈I𝑤

𝑎𝔫ℒ
•
𝑖 (𝔫) +

∑
𝔫∈I𝑤

𝑏𝔫ℒ
•
𝑖+1(𝔫)

)
=

∑
𝔫∈I𝑤

𝑎𝔫ℒ
•
𝑑 (𝑠)ℒ

•
<𝑑 (𝔫) +

∑
𝔫∈I𝑤

𝑏𝔫ℒ
•
𝑑 (𝑠)ℒ

•
<𝑑 (𝔫) +

∑
𝔫∈I𝑤

𝑏𝔫ℒ
•
𝑑 (𝑠)ℒ

•
𝑑 (𝔫)

=
∑
𝔫∈I𝑤

𝑎𝔫ℒ
•
𝑑 (𝑠, 𝔫) +

∑
𝔫∈I𝑤

𝑏𝔫ℒ
•
𝑑 (𝑠, 𝔫) +

∑
𝔫=(𝑛1 ,𝔫−) ∈I𝑤

𝑏𝔫ℒ
•
𝑑 (𝑠 + 𝑛1, 𝔫−) +

∑
𝔫∈I𝑤

𝑏𝔫ℒ
•
𝑑 (𝐷

•
𝑠,𝔫)

= ℒ•𝑑 (ℬ
•
𝑠 (𝑅)),
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where the third equality comes from Proposition 2.7. This means that ℬ•𝑠 (𝑅) ∈ P•. Note that for each
𝔰 = (𝑠1, . . . , 𝑠𝑟 ) ∈ I>0, we have ℬ•𝔰 (𝑅) ∈ P• since from the definition of ℬ•𝔰 we have

ℬ•𝔰 = ℬ•𝑠1 ◦ · · · ◦ℬ
•
𝑠𝑟 .

Similarly, we have

0 =

( ∑
𝔫∈I𝑤

𝑎𝔫ℒ
•
𝑑 (𝔫) +

∑
𝔫∈I𝑤

𝑏𝔫ℒ
•
𝑑+1 (𝔫)

)
ℒ•<𝑑+1 (𝔰)

=
∑
𝔫∈I𝑤

𝑎𝔫ℒ
•
𝑑 (𝔫)ℒ

•
𝑑 (𝔰) +

∑
𝔫=(𝑛1 ,𝔫−) ∈I𝑤

𝑎𝔫ℒ
•
𝑑 (𝑛1)ℒ

•
<𝑑 (𝔫−)ℒ

•
<𝑑 (𝔰)

+
∑

𝔫=(𝑛1 ,𝔫−) ∈I𝑤

𝑏𝔫ℒ
•
𝑑+1 (𝑛1)ℒ

•
<𝑑+1 (𝔫−)ℒ

•
<𝑑+1(𝔰)

=
∑

𝔫=(𝑛1 ,𝔫−) ∈I𝑤

𝑎𝔫
(
ℒ•𝑑 ([𝑛1 + 𝑠1, 𝔫− ∗

• 𝔰−]) +ℒ
•
𝑑 (𝐷

•
𝔫,𝔰)

)
+

∑
𝔫=(𝑛1 ,𝔫−) ∈I𝑤

𝑎𝔫ℒ
•
𝑑 ([𝑛1, 𝔫− ∗

• 𝔰])

+
∑

𝔫=(𝑛1 ,𝔫−) ∈I𝑤

𝑏𝔫ℒ
•
𝑑+1 ([𝑛1, 𝔫− ∗

• 𝔰])

= ℒ•𝑑 (𝒞
•
𝔰 (𝑅)),

where the third equality comes from Proposition 2.7. Thus, we have 𝒞•𝔰 (𝑅) ∈ P•.
Finally, we have

P• � ℬ•𝑞 (𝑅) −
∑
𝔫∈I𝑤

𝑏𝔫𝒞
•
𝔫 (𝑅1)

=
∑

𝔫=(𝑛1 ,𝔫−) ∈I𝑤

(
𝑎𝔫 [𝑞, 𝔫] + 𝑏𝔫 [𝑞, 𝔫] + 𝑏𝔫 [𝑞 + 𝑛1, 𝔫−] + 𝑏𝔫𝐷

•
𝑞,𝔫 , 0

)
−

∑
𝔫=(𝑛1 ,𝔫−) ∈I𝑤

𝑏𝔫

((
[𝑞 + 𝑛1, 𝔫−] + [𝑞, 𝔫] + 𝐷

•
𝑞,𝔫

)
, −𝐿1 [1, (𝑞 − 1) ∗• 𝔫]

)
=

∑
𝔫∈I𝑤

(
𝑎𝔫 [𝑞, 𝔫], 𝑏𝔫𝐿1𝛼

•
𝑞 (𝔫)

)
= ℬ𝒞•𝑞 (𝑅),

where the second equality comes from the definition of 𝛼•𝑞 given in (3.3). Since

ℬ𝒞•,𝑚𝑞 = ℬ𝒞•𝑞 ◦ · · · ◦ℬ𝒞•𝑞 (𝑚th iterate of ℬ𝒞•𝑞),

it shows that ℬ𝒞•,𝑚𝑞 (𝑅) ∈ P•. �

Let 𝔰 ∈ I. We write 𝔰 = (𝑠1, . . .) = (𝔰T, 𝑞 {𝑚}, 𝔰′) with 𝔰T ∈ IT, 𝑚 ≥ 0 and 𝔰′ = (𝑠′1, . . .) with 𝑠′1 > 𝑞

or 𝔰′ = ∅, and set Init(𝔰) := (𝔰T, 𝑞 {𝑚}) and ℓ1 := dep(Init(𝔰)). When 𝔰′ ≠ ∅, we set

𝔰′′ := (𝑠′1 − 𝑞, 𝔰′−) = (𝑠ℓ1+1 − 𝑞, 𝔰′−).

We recall 𝒰•(𝔰) given in Definition 3.4 by

𝒰•(𝔰) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−[𝔰T, 𝑞 {𝑚+1}, 𝔰′′] + 𝐿𝑚+11 [𝔰T, 𝛼•,𝑚+1𝑞 (𝔰′′)]

+𝐿𝑚+11 (𝔰T � 𝛼•,𝑚+1𝑞 (𝔰′′)) − [𝔰T, 𝑞 {𝑚}, 𝐷•𝑞,𝔰′′ ] (𝔰
′ ≠ ∅)

𝐿𝑚1 [𝔰
T, 𝛼•,𝑚𝑞 (∅)] + 𝐿

𝑚
1 (𝔰

T � 𝛼•,𝑚𝑞 (∅)) (𝔰′ = ∅)

.

It is clear that 𝒰•(𝔰) ∈ Hwt(𝔰) .
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Theorem A.5 (Theorem 3.6 (1)). For each 𝑃 ∈ H, we have ℒ•(𝒰•(𝑃)) = ℒ•(𝑃).

Proof. We may assume that 𝑃 = 𝔰 ∈ I as above. By the definition of 𝒰•, it suffices to show the desired
result in the case 𝔰 ∉ IT. We first consider the case that 𝔰′ ≠ ∅. Recall that 𝑅1 is given in (A.3) and 𝛼•𝑞
is defined in (3.3). Note that by definition, we have

ℬ𝒞•,𝑚𝑞
(
(𝒞•𝔰′′ (𝑅1))

)
= ℬ𝒞•,𝑚𝑞

(
[𝔰′] + [𝑞, 𝔰′′] + 𝐷•𝑞,𝔰′′ , −𝐿1𝛼

•
𝑞 (𝔰
′′)

)
=

(
[𝑞 {𝑚}, 𝔰′] + [𝑞 {𝑚+1}, 𝔰′′] + [𝑞 {𝑚}, 𝐷•𝑞,𝔰′′ ], −𝐿

𝑚+1
1 𝛼•,𝑚+1𝑞 (𝔰′′)

)
.

If 𝔰T = ∅, we can express

ℬ𝒞•,𝑚𝑞 (𝒞
•
𝔰′′ (𝑅1)) =

(
[𝔰] + [𝔰T, 𝑞 {𝑚+1}, 𝔰′′] + [𝔰T, 𝑞 {𝑚}, 𝐷•𝑞,𝔰′′ ], −𝐿

𝑚+1
1 [𝔰T, 𝛼•,𝑚+1𝑞 (𝔰′′)]

)
. (A.4)

If 𝔰T ≠ ∅, we have

ℬ•𝔰T (ℬ𝒞•,𝑚𝑞 (𝒞
•
𝔰′′ (𝑅1))) (A.5)

=
(
[𝔰] + [𝔰T, 𝑞 {𝑚+1}, 𝔰′′] + [𝔰T, 𝑞 {𝑚}, 𝐷•𝑞,𝔰′′ ] − 𝐿𝑚+11 [𝔰T, 𝛼•,𝑚+1𝑞 (𝔰′′)] − 𝐿𝑚+11 [𝔰T � 𝛼•,𝑚+1𝑞 (𝔰′′)], 0

)
,

where we use Remark 2.6 and the fact [𝔰T
+ , 0] = 0 ∈ H from Remark 2.3.

Next, we suppose that 𝔰′ = ∅. Then 𝑚 ≥ 1 and we have

ℬ𝒞•,𝑚−1
𝑞 (𝑅1) =

(
[𝑞 {𝑚}], 𝐿𝑚−1

1 𝛼•,𝑚−1
𝑞 (−𝐿1 [1, 𝑞 − 1])

)
=

(
[𝑞 {𝑚}], −𝐿𝑚1 𝛼•,𝑚𝑞 (∅)

)
.

If 𝔰T = ∅, then we have

ℬ𝒞•,𝑚−1
𝑞 (𝑅1) =

(
[𝔰], −𝐿𝑚1 [𝔰

T, 𝛼•,𝑚𝑞 (∅)]
)
, (A.6)

and if 𝔰T ≠ ∅, then by Remark 2.6 and [𝔰T
+ , 0] = 0 ∈ H, we have

ℬ•𝔰T (ℬ𝒞•,𝑚−1
𝑞 (𝑅1)) =

(
[𝔰] − 𝐿𝑚1 [𝔰

T, 𝛼•,𝑚𝑞 (∅)] − 𝐿𝑚1 (𝔰
T � 𝛼•,𝑚𝑞 (∅)), 0

)
. (A.7)

Recall from (A.3) that 𝑅1 ∈ P•𝑞 . It follows by Theorem A.4 that the left-hand side (LHS) of each of
the equations (A.4), (A.5), (A.6) and (A.7) belongs to P•wt(𝔰) . Thus, in any case of the four equations
above, we have that

0 = ℒ•(LHS) = ℒ•(RHS) = ℒ•(𝔰) −ℒ•(𝒰•(𝔰)),

whence we obtain

ℒ•(𝔰) = ℒ•(𝒰•(𝔰)). �

We set

𝒰•1 (𝔰) :=
{
−[𝔰T, 𝑞 {𝑚+1}, 𝔰′′] + 𝐿𝑚+11 [𝔰T, 𝛼•,𝑚+1𝑞 (𝔰′′)] (𝔰′ ≠ ∅)
𝐿𝑚1 [𝔰

T, 𝛼•,𝑚𝑞 (∅)] (𝔰′ = ∅)
,

𝒰•2 (𝔰) :=
{
𝐿𝑚+11 (𝔰T � 𝛼•,𝑚+1𝑞 (𝔰′′)) (𝔰′ ≠ ∅)
𝐿𝑚1 (𝔰

T � 𝛼•,𝑚𝑞 (∅)) (𝔰′ = ∅)
,

𝒰•3 (𝔰) :=
{
−[𝔰T, 𝑞 {𝑚}, 𝐷•𝑞,𝔰′′ ] (𝔰

′ ≠ ∅)
0 (𝔰′ = ∅)

.

It is clear that 𝒰•𝑖 (𝔰) ∈ Hwt(𝔰) for 1 ≤ 𝑖 ≤ 3 and 𝒰•(𝔰) = 𝒰•1 (𝔰) +𝒰
•
2 (𝔰) +𝒰

•
3 (𝔰).
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Lemma A.6. Let 𝔰 ∈ I \ IT. Then the following hold:

(1) If 𝔫 ∈ Supp(𝒰•1 (𝔰)), then dep(𝔫) > dep(𝔰).
(2) If 𝔫 ∈ Supp(𝒰•2 (𝔰)), then dep(𝔫) ≥ dep(𝔰) and Init(𝔫) > Init(𝔰) (using lexicographical order).
(3) If 𝔫 ∈ Supp(𝒰•3 (𝔰)), then dep(𝔫) ≥ dep(𝔰) > ℓ1 := dep(Init(𝔰)), Init(𝔫) ≥ Init(𝔰) and 1 ≤ 𝑛ℓ1+1 <

𝑠ℓ1+1.

Proof. First, we note that since 𝔰 ∉ IT, if 𝔰′=∅, then 𝑚 ≥ 1. By Corollary A.2, we have dep(𝔫) ≥ dep(𝔰)
for all 1 ≤ 𝑖 ≤ 3 and 𝔫 ∈ Supp(𝒰•𝑖 (𝔰)) and dep(𝔫) > dep(𝔰) for all 𝔫 ∈ Supp(𝒰•1 (𝔰)).

By the definition of 𝛼•𝑞 , when 𝔫 ∈ Supp(𝒰•2 (𝔰)), we can write 𝔫 = 𝔰T � [1, 𝔫0] for some 𝔫0 ∈ I. We
may assume 𝔰T ≠ ∅ since if 𝔰T = ∅, we have 𝒰•2 (𝔰) = 0 by the definition of �. Let 𝑗 := dep𝔰T and so
𝑠 𝑗 < 𝑞. Since 𝑠 𝑗 + 1 ≤ 𝑞, we have Init(𝔫) = (𝑠1, . . . , 𝑠 𝑗−1, 𝑠 𝑗 + 1, . . .) > (𝔰T, 𝑞 {𝑚}) = Init(𝔰).

Let 𝔫 = (𝑛1, . . .) ∈ Supp(𝒰•3 (𝔰)). We may assume that 𝔰′ ≠ ∅ and • = 𝜁 . In particular, dep(𝔰) > ℓ1.
Note that any 𝔫† ∈ Supp(𝐷𝜁

𝑞,𝔰′′ ) can be written as 𝔫† = (𝑠ℓ1+1 − 𝑖, 𝔫†−) for some 1 ≤ 𝑖 < 𝑠ℓ1+1 and
𝔫†− ∈ I. Then by the definition of 𝒰•3 (𝔰), we have 𝔫 = (𝔰T, 𝑞 {𝑚}, 𝔫†) = (𝔰T, 𝑞 {𝑚}, 𝑠ℓ1+1 − 𝑖, 𝔫†−). Thus,
Init(𝔫) = (𝔰T, 𝑞 {𝑚}, . . .) ≥ (𝔰T, 𝑞 {𝑚}) = Init(𝔰) and 𝑛ℓ1+1 = 𝑠ℓ1+1 − 𝑖 < 𝑠ℓ1+1. �

Theorem A.7 (Theorem 3.6 (2)). For each 𝑃 ∈ H, there exists 𝑒 ≥ 0 such that Supp((𝒰•)𝑒 (𝑃)) ⊂ IT,
where (𝒰•)0 is defined to be the identity map and for 𝑒 ∈ Z>0, (𝒰•)𝑒 is defined to be the e-th iteration
of 𝒰•.

Proof. We may assume that 𝑃 = 𝔰 = (𝑠1, . . .) ∈ I𝑤 for some 𝑤 ≥ 0. By Lemma A.6, for each index
𝔫 = (𝑛1, . . .) ∈ Supp(𝒰•(𝔰)), one of the following conditions holds:

(1) 𝔰 ∈ IT
𝑤 (and hence 𝔫 = 𝔰);

(2) 𝔰 ∉ IT
𝑤 , dep(𝔫) > dep(𝔰);

(3) 𝔰 ∉ IT
𝑤 , dep(𝔫) = dep(𝔰), Init(𝔫) > Init(𝔰) (using lexicographical order);

(4) 𝔰 ∉ IT
𝑤 , dep(𝔫) = dep(𝔰), Init(𝔫) = Init(𝔰), 𝑛dep(Init(𝔫))+1 < 𝑠dep(Init(𝔰))+1.

This means that 𝔫 = 𝔰 ∈ IT
𝑤 or

(dep(𝔫); Init(𝔫);−𝑛dep(Init(𝔫))+1) > (dep(𝔰); Init(𝔰);−𝑠dep(Init(𝔰))+1)

in {0, 1, . . . , 𝑤} × Init(I𝑤 ) × {−𝑤, . . . ,−2,−1} with the lexicographical order. Here, when Init(𝔰) = 𝔰
(resp. Init(𝔫) = 𝔫), temporarily we put 𝑠dep(Init(𝔰))+1 := 1 (resp. 𝑛dep(Init(𝔫))+1 := 1). Since this totally
ordered set is finite, this procedure will stop after a finite number of steps. �
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