Note on Professor Allardice's Paper "On the Locus of the Foci of a System of Similar Conics through three Points." [Proceedings, Vol. XXVII.]

By Professor K. J. Sanjana.

(Received November 1910. Read 10th February 1911.)

The fundamental equation in this paper,

$$
a_{1}{ }^{2}+b_{1}{ }^{2}+c_{1}^{2}-2 b_{1} c_{1} \cos \mathrm{~A}-2 c_{1} a_{1} \cos \mathrm{~B}-2 a_{1} b_{1} \cos \mathrm{C}=e^{2} \mathrm{I}^{2}
$$

can be derived, easily and without using trilinears, from the following property of conics.

Let F be one focus of a conic circumscribed to the triangle ABC ; draw AL perpendicular to the corresponding directrix from $\mathrm{A}\left(x_{1} y_{1}\right)$, BM from $\mathrm{B}\left(x_{2} y_{2}\right)$, CN from $\mathrm{C}\left(x_{3} y_{3}\right)$. Then

$$
\begin{aligned}
& \quad \Sigma a^{2} . \mathrm{FA}^{2}-2 \Sigma \mathrm{FB} . \mathrm{FC} \cdot b c \cos \mathrm{~A} \\
& =\Sigma a^{2}(\mathrm{FA}-\mathrm{FB})(\mathrm{FA}-\mathrm{FC})=e^{2 \Sigma} a^{2}(\mathrm{AL}-\mathrm{BM})(\mathrm{AL}-\mathrm{CN}) \\
& =e^{2} \Sigma\left[\left(x_{2}-x_{3}\right)^{2}+\left(y_{2}-y_{3}\right)^{2}\right]\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right) .
\end{aligned}
$$

The expression $\Sigma\left(x_{2}-x_{3}\right)^{2}\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)$ clearly vanishes: and the expression $\Sigma\left(y_{2}-y_{3}\right)^{2}\left(x_{1}-x_{2}\right)\left(x_{2}-x_{3}\right)$ is found to be the square of $\Sigma\left(x_{1} y_{2}-x_{2} y_{1}\right)$. Thus Σa^{2}. $\mathrm{FA}^{2}-2 \Sigma \mathrm{FB} . \mathrm{FC} . b c \cos \mathrm{~A}=4 e^{2} \triangle^{2}$.

As $a / 2 \sin \mathrm{~A}=b / 2 \sin \mathrm{~B}=c / 2 \sin \mathrm{C}=\Delta / \mathrm{I}=\mathrm{R}$, we get
$\Sigma \mathrm{FA}^{2} \sin ^{2} \mathrm{~A}-2 \Sigma \mathrm{FB} \sin \mathrm{B} . \mathrm{FC} \operatorname{sinC} \cdot \cos \mathrm{A}=e^{2} \mathrm{I}^{2}$.

Now $\mathrm{FA}^{2} \sin ^{2} \mathrm{~A}$ is the square of the line joining the feet of the perpendiculars from F on $A B$ and $A C$, and is thus equal to $\beta^{2}+\gamma^{2}+2 \beta \gamma \cos \mathrm{~A}$, i.e. to a_{1}^{2}. Hence we deduce the result above referred to.

It would appear that the property was obtained simultaneously by Professor M. T. Naraniengar : see the solution of his Question 16835 in the Educational Times, October 1910.

