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Abstract

We derive a large deviation principle for a Brownian immigration branching particle
system, where the immigration is governed by a Poisson random measure with a Lebesgue
intensity measure.
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1. Introduction

Consider a particle system in R
d . Particles are initially distributed according to a Poisson

random field with intensity measure µ. Each of these particles undergoes Brownian motion
until it either splits into two particles or disappears at an exponential rate. For a bounded
measurable set A ⊂ R

d , let Mt(A) denote the number of particles in A at time t . Define

〈Mt, f 〉 =
∑

x∈supp Mt

f (x), f ∈ L1(Rd).

We call (Mt)t≥0 a Brownian critical binary branching particle system; see Dawson (1993).
Consider a situation in which there are additional sources of particles from which immigration
occurs during the evolution. The immigration time and sites are determined by a Poisson
random field on [0, ∞) × R

d with a Lebesgue intensity measure. After arriving, each of these
particles propagates and moves in R

d in the same way as the other particles. Let Nt denote
the empirical measure of the immigration particle system at t . The process (Nt )t≥0 is called a
Brownian immigration branching particle system; see Li (1998).

The large and moderate deviation principles (LDPs and MDPs) for Brownian particle systems
and super-Brownian motion have been studied by several authors; see, for example, Cox and
Griffeath (1985), Deuschel andWang (1994), Deuschel and Rosen (1998), Iscoe and Lee (1993),
Lee (1993), and Hong (2003). In particular, Deuschel and Wang (1994) studied the LDP for
the occupation time process of a Poisson system of independent Brownian particles without
branching. The LDP for the occupation time process of branching Brownian motion was
studied by Cox and Griffeath (1985). Iscoe and Lee (1993) and Lee (1993) obtained the LDPs
for occupation processes of both a Brownian branching particle system and its measure-valued
version. In Zhang (2004a), (2004b), the author studied the LDP and MDP for super-Brownian
motion with immigration, where the speed function is t1/2 for d = 1, t/ log t for d = 2, and t

for d ≥ 3.
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A Brownian immigration particle system 1121

In this paper, we are interested in the LDP for the Brownian immigration branching particle
system (Nt )t≥0. Suppose that N0 = 0, i.e. there are no particles at the initial time. For a
bounded integrable function f ≥ 0, we have

1

T
〈NT , f 〉 →

∫
Rd

f (x) dx, T → ∞.

We shall study the LDP based on this central tendency for d = 1. In this case, the speed
function is t1/2, as in the case of super-Brownian motion with immigration (see Zhang (2004a)).
However, in the present paper we obtain the complete LDP, while in Zhang (2004a) only a local
LDP (in a neighborhood of

∫
f (x) dx) was proved. These discussions can also be applied to

super-Brownian motion with immigration, so the results of Zhang (2004a) can be modified and
the complete LDP holds.

We introduce some notation before we state our results. If u is a Borel measurable function
on [0, ∞) × R

d , we shall often suppress a variable and write u(t) for the function whose value
at x is u(t, x). If u is differentiable, we simply write ∂u(t)/∂t for ∂u(t, x)/∂t , and denote by

	u(t) ≡ 	u(t, x) :=
d∑

i=1

∂2

∂x2
i

u(t, x)

the Laplacian of u.
Let C(Rd) denote the space of bounded continuous functions on R

d . We fix a constant
p > d and let φp(x) := (1 + |x|2)−p/2 for x ∈ R

d . Let

Cp(Rd) := {f ∈ C(Rd) : |f (x)| ≤ const. × φp(x)}.
The nonnegative subset of Cp(Rd) will be denoted by C+

p (Rd). We denote by M(Rd) the set
of all positive Radon measures on the Borel σ -algebra of R

d . Let Mp(Rd) ⊂ M(Rd) be the
set of µ such that

〈µ, f 〉 :=
∫

f (x)µ(dx) < ∞ for all f ∈ Cp(Rd).

We endow Mp(Rd) with the p-vague topology: a sequence {µk} ⊂ Mp(Rd) converges in this
topology to µ ∈ Mp(Rd) if and only if 〈µk, f 〉 → 〈µ, f 〉 for all f ∈ Cp(Rd). Note that the
Lebesgue measure, which will always be denoted by λ, belongs to Mp(Rd) for p > d . Let
‖ · ‖ denote the usual supremum norm on R

d . For any Lebesgue square-integrable function ϕ

on [0, 1] × R
d , define its L2-norm by

‖ϕ(·, ·)‖L2([0,1]×Rd ) :=
(∫ 1

0
dt

∫
Rd

ϕ2(t, x) dx

)1/2

.

If (Xt )t≥0 is a Markov process with state space Mp(Rd), we will denote by Pµ the probability
measure such that Pµ(X0 = µ) = 1. Expectation with respect to Pµ will be denoted by Eµ,
and P0 and E0 will be abbreviated to P and E, respectively.

Suppose that (Pt )t≥0 is the transition semigroup of Brownian motion in R
d and pt (x) is its

density function: pt (x) = (4πt)−d/2 exp{−|x|2/4t}. Suppose that (Mt)t≥0 is the Brownian
critical binary branching particle system introduced at the beginning of the paper. For µ ∈
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1122 M. ZHANG

Mp(Rd), let E(µ) denote the conditional law of (Mt)t≥0 given that M0 is a Poisson random
measure with intensity µ. Then

E(µ) exp{−〈Mt, f 〉} = exp{−〈µ, v(t, ·)〉}, f ∈ C+
p (Rd), (1.1)

where v ≡ v(t, x) is the unique mild solution to

∂v(t)

∂t
= 	v(t) − v2(t), v(0) = 1 − e−f ; (1.2)

see Dawson (1993). A Brownian immigration branching particle system (Nt )t≥0 is an
Mp(Rd)-valued Markov process with N0 = 0 and Laplace transform given by

E exp{−〈Nt, f 〉} = exp

{
−

∫ t

0
〈λ, v(s, ·)〉 ds

}
, f ∈ C+

p (Rd);

see Li (1998).
Suppose that f ∈ C+

p (Rd) and 〈λ, f 〉 = 1. For d = 1 and T > 0, define

�(T , θ) = T −1/2 log E exp{θT −1/2〈NT , f 〉}. (1.3)

We will prove, for some θ ∈ (−∞, θ0), θ0 > 0, that

�(θ) := lim
T →∞ �(T , θ) = θ +

∫ 1

0
ds

∫ s

0
〈λ, [V (r, ·; θ)]2〉 dr, (1.4)

where V (·, ·; θ) is the unique solution to the singular PDE

∂V (s)

∂s
= 	V (s) + V 2(s), 0 ≤ s ≤ 1, V (0) = θδ0.

Here δ0 is the Dirac mass at 0. Moreover, limθ↑θ0 �′(θ) = ∞, where a prime denotes
differentiation. Let I (a) be the Legendre transform of �(θ):

I (a) = sup
θ∈(−∞,θ0)

[aθ − �(θ)], a ∈ R.

Theorem 1.1. For d = 1, if U ⊂ R is open and C ⊂ R is closed, then

lim inf
T →∞ T −1/2 log P

{
NT

T
∈ U

}
≥ − inf

a∈U
I (a)

and

lim sup
T →∞

T −1/2 log P

{
NT

T
∈ C

}
≤ − inf

a∈C
I (a).

2. Proofs

In this section we prove Theorem 1.1. We need several supporting lemmas.

Lemma 2.1. There exists a θ0 > 0 such that, for θ ∈ (−∞, θ0),

∂V (t)

∂t
= 	V (t) + V 2(t), 0 ≤ t ≤ 1, V (0) = θδ0, (2.1)

has a unique solution V ≡ V (t, x; θ) satisfying

lim
θ↑θ0

‖V (·, ·; θ)‖L2([0,1]×R) = ∞. (2.2)

https://doi.org/10.1239/jap/1134587821 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1134587821


A Brownian immigration particle system 1123

Proof. For θ ≤ 0, the assertation follows from Kamin and Peletier (1985, p. 205). We
discuss the case θ > 0. In Zhang (2004a) (see Corollary 3.1 thereof), the author proved that
the unique solution of (2.1) exists in L2([0, 1] × R) for θ ∈ (0,

√
π/4). Hence, it remains to

determine the boundary point θ0. For l > 0, consider the following equation:

∂w(s)

∂s
= 	w(s) + w2(s), s < l, w(0) = δ0. (2.3)

Clearly, the solutions to (2.3) (which we denote by w ≡ w(s, x; δ0)) and (2.1) are related by

w(s, x; δ0) = θ−2V (θ−2s, θ−1x; θ).

Thus, (2.3) has a unique solution in L2([0, l] × R) if l < π/16. Define

c = sup{t : (2.3) has a unique solution (still denoted by w(·, ·; δ0)) in L2([0, t] × R)}.
Therefore, c ≥ π/16. In the following, we prove that c < ∞. Fix t < c and define

w(s, x) =
∫

pt−s(x, y)w(s, y; δ0) dy, s < t.

By (2.3), we have

w(s, x; δ0) = ps(x) +
∫ s

0
Ps−r [w2(r, ·; δ0)](x) dr

and, so, with pt (x, y) := pt (x − y),

w(s, x) = pt (x) +
∫

pt−s(x, y) dy

∫ s

0
Ps−r [w2(r, ·; δ0)](y) dr

= pt (x) +
∫ s

0
dr

∫
pt−s(x, y)Ps−r [w2(r, ·; δ0)](y) dy

= pt (x) +
∫ s

0
Pt−r [w2(r, ·; δ0)](x) dr. (2.4)

For s < t < c and x ∈ R, and noting the definition of c, we have

w(s, x) ≤ pt (x) +
∫ s

0
[4π(t − r)]−1/2 dr

∫
w2(r, x; δ0) dx

≤ pt (x) + [4π(t − s)]−1/2
∫ s

0
dr

∫
w2(r, x; δ0) dx

< ∞.

On the other hand, by (2.4) and the Schwarz inequality, we obtain

w(s, x) ≥ pt (x) +
∫ s

0
(Pt−r [w(r, ·; δ0)](x))2 dr

= pt (x) +
∫ s

0
w2(r, x) dr,

which implies that w(s, x) is a super solution to

∂W(s, x)

∂s
= W 2(s, x), s < t, W(0, x) = pt (x).
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(That is, w(s, x) ≥ W(s, x) for any s < t and x ∈ R.) Clearly,

W(s, x) = pt (x)

1 − spt (x)
.

Choose t0 = 64π and x = 16π
√

log 2, meaning that 1
2 t0pt0(x) = 1. Let s = 1

2 t0. Then
w(s, x) ≥ W(s, x) = ∞, which implies that c ≤ t0 < ∞. Let

V (t, x; θ) := θ2w(θ2t, θx; δ0), 0 < t ≤ 1, x ∈ R. (2.5)

Then V (t, x; θ) is the solution of (2.1) for each θ < θ0 := √
c. To see (2.2), note that

lim
θ↑θ0

‖V (·, ·; θ)‖L2([0,1]×R) = θ0

∫ c

0
ds

∫
w2(s, y; δ0) dy.

By the definition of c, we conclude that
∫ c

0 ds
∫

w2(s, y; δ0) dy = ∞, and obtain (2.2).
Otherwise, if ∫ c

0
ds

∫
w2(s, y; δ0) dy < ∞

then let 0 < 	c < 1. For t ∈ [c, c + 	c] and n = 0, 1, 2, . . . , define

w̄n+1(t, x; δ0) = Pt−c[w(c, ·; δ0)](x) +
∫ t

c

Pt−r [w̄2
n(r, ·; δ0)](x) dr,

w̄0(t, x; δ0) = Pt−c[w(c, ·; δ0)](x).

(2.6)

Define the L2-norm of a function g(·, ·) on [c, c + 	c] × R by

‖g‖2
L2 =

∫ c+	c

c

dt

∫
g2(t, x) dx,

if this integral is finite. In analogy with (2.4), we have

w̄0(t, x) = pt (x) +
∫ c

0
Pt−r [w2(r, ·; δ0)](x) dr, t ∈ [c, c + 	c].

By the Cr -inequality, this implies that

‖w̄0‖2
L2 ≤ 2

∫ c+	c

c

dt

∫
p2

t (x) dx + 2
∫ c+	c

c

dt

∫ (∫ c

0
Pt−r [w2(r, ·; δ0)](x) dr

)2

dx

= 2
∫ c+	c

c

p2t (0) dt + 2
∫ c+	c

c

dt

∫ c

0
dr

∫ c

0
du

×
∫∫

p2t−r−u(y, z)w2(r, y; δ0)w
2(u, z; δ0) dy dz

≤
√

2

π
(
√

c + 	c − √
c) + 2

∫ c+	c

c

[4π(2t − 2c)]−1/2 dt

×
∫ c

0
dr

∫
w2(r, y; δ0) dy

∫ c

0
du

∫
w2(u, z; δ0) dz.
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Let A := ∫ c

0 ds
∫

w2(s, y; δ0) dy < ∞. We then find that

‖w̄0‖2
L2 ≤

√
2

π
(
√

c + 	c − √
c) +

√
2

π
A2

√	c ≤ k1
√	c,

where k1 is a constant depending only on c and A. In the following, we suppose that k1 > 1.
By the Cr -inequality and (2.6), we similarly find that

‖w̄n+1‖2
L2

≤ 2‖w0‖2
L2 + 2

∫ c+	c

c

dt

∫ (∫ t

c

Pt−r [w̄2
n(r, ·; δ0)](x) dr

)2

dx

≤ 2k1
√	c + 2

∫ c+	c

c

dt

∫ t

c

dr

∫ t

c

du

∫∫
p2t−r−u(y, z)w̄2

n(r, y; δ0)w̄
2
n(u, z; δ0) dy dz

≤ 2k1
√	c + 2

∫ c+	c

c

dt

∫ t

c

dr

∫ t

c

[4π(2t − r − u)]−1/2 du

×
∫∫

w̄2
n(r, y; δ0)w̄

2
n(u, z; δ0) dy dz

≤ 2k1
√	c + 1√

π

∫ c+	c

c

dt

∫ t

c

(t − r)−1/2 dr

∫
w̄2

n(r, y; δ0) dy

∫ t

c

du

×
∫

w̄2
n(u, z; δ0) dz

≤ 2k1
√	c + 1√

π
‖w̄n‖2

L2

∫ c+	c

c

dt

∫ t

c

(t − r)−1/2 dr

∫
w̄2

n(r, y; δ0) dy

≤ 2k1
√	c + 1√

π
‖w̄n‖2

L2

∫ c+	c

c

dr

∫ c+	c

r

(t − r)−1/2 dt

∫
w̄2

n(r, y; δ0) dy

≤ 2k1
√	c + 1√

π
‖w̄n‖2

L2

∫ c+	c

c

2
√

c + 	c − r dr

∫
w̄2

n(r, y; δ0) dy

≤ 2k1
√	c + 2√

π

√	c‖w̄n‖4
L2

≤ k2
√	c(1 + ‖w̄n‖4

L2), (2.7)

where k2 > 0 is a constant depending only on k1 and c. Choose 	c, 0 < 	c < 1, such that
(k1 + 1)k2

√	c ≤ 1
√

1 + 	c, and note that

‖w̄0‖2
L2 ≤ k1

√	c ≤ k1
√

1 + 	c.

Suppose that ‖w̄n‖2
L2 ≤ k1

√
1 + 	c. Recalling that we have assumed k1 > 1, by (2.7) we have

‖w̄n+1‖2
L2 ≤ k2

√	c[1 + k2
1(1 + 	c)]

≤ k2(k
2
1 + 1)

√	c(1 + 	c)

≤ k2(k
2
1 + k1)

√	c(1 + 	c)

≤ k1
√

1 + 	c

< ∞.
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From (2.6), we know that w̄n is increasing in n. Therefore, w̄ := limn→∞ w̄n exists in
L2([c, c + 	c] × R) and satisfies (2.3) on the interval [c, c + 	c].

It is easy to check that

w̃(t, x; δ0) =
{

w(t, x; δ0), t ∈ [0, c],
w̄(t, x; δ0), t ∈ [c, c + 	c], (2.8)

is a solution to (2.3) that remains in L2([c, c + 	c] × R). Let us see the uniqueness of this
solution. Suppose that w̃1 is another solution to (2.3) in L2([c, c + 	c] × R). Then

w̃(t, x; δ0) = Pt−c[w(c, ·; δ0)](x) +
∫ t

c

Pt−r [w̃2(r, ·; δ0)](x) dr, t ∈ [c, c + 	c],

w̃1(t, x; δ0) = Pt−c[w(c, ·; δ0)](x) +
∫ t

c

Pt−r [w̃2
1(r, ·; δ0)](x) dr, t ∈ [c, c + 	c].

By using the Schwarz inequality and arguing as in (2.7), we find that

J :=
∫ c+	c

c

dt

∫
|w̃(t, x; δ0) − w̃1(t, x; δ0)|2 dt dx

=
∫ c+	c

c

dt

∫ (∫ t

c

Pt−r [|w̃2(r, ·; δ0) − w̃2
1(r, ·; δ0)|](x) dr

)2

dx

≤ 2√
π

‖w̃‖2
L2‖w̃1‖2

L2

∫ c+	c

c

√
c + 	c − r dr

∫
|w̃(r, y; δ0) − w̃1(r, y; δ0)|2 dy

≤ 2√
π

‖w̃‖2
L2‖w̃1‖2

L2

√	cJ.

Since both w̃ and w̃1 belong to L2([c, c + 	c] × R), we can choose 	c > 0 such that

2√
π

‖w̃‖2
L2‖w̃1‖2

L2

√	c < 1.

Then we have

J =
∫ c+	c

c

dt

∫
|w̃(t, x; δ0) − w̃1(t, x; δ0)|2 dx = 0.

Therefore, if ∫ c

0
ds

∫
w2(s, y; δ0) dy < ∞,

then by (2.8) we can construct the unique solution of (2.3) in L2([0, c + 	c] × R). This
contradicts the definition of c, and the proof is complete.

Corollary 2.1. For each θ ∈ (−∞, θ0), there exists an a > 1 such that

∂U(t)

∂t
= 	U(t) + aU2(t), 0 < t ≤ 1, U(0) = θδ0, (2.9)

has a unique solution U(·, ·; θ) ∈ L2([0, 1] × R).
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Proof. Set Ũ = aU , where U is the solution to (2.9). Then Ũ is the solution to

∂Ũ(t)

∂t
= 	Ũ (t) + Ũ2(t), 0 < t ≤ 1, Ũ (0) = aθδ0. (2.10)

For each θ ∈ (−∞, θ0), we can choose an a > 1 such that aθ ∈ (−∞, θ0). By Lemma 2.1,
(2.10) has a unique solution Ũ , and the assertion follows.

Lemma 2.2. Suppose that f ∈ C+
p (Rd) with 〈λ, f 〉 = 1. Let

fT (x, θ) = T (exp{θT −1/2f (T 1/2x)} − 1).

For θ ∈ (−∞, θ0), the equation

∂VT (t)

∂t
= 	VT (t) + V 2

T (t), 0 ≤ t ≤ 1, VT (0) = fT (·, θ), (2.11)

has a unique solution VT (·, ·; θ), which converges to V (·, ·; θ) in L2([0, 1]×R) as T → ∞. If
we allow θ to be a complex number such that |θ | < θ0, then VT (·, ·; θ) is analytic in |θ | < θ0.

To prove Lemma 2.2 we need the following result.

Lemma 2.3. As T → ∞,∫ 1

0
dt

∫
(Pt [fT (·, θ)](x) − θpt (x))2 dx → 0.

Proof. If θ = 0 the assertion is obvious. For θ �= 0,∫ 1

0
dt

∫
(Pt [fT (·, θ)](x) − θpt (x))2 dx =

∫ 1

0
dt

∫∫
p2t (x, y)fT (x, θ)fT (y, θ) dx dy

− 2θ

∫ 1

0
dt

∫
p2t (x, 0)fT (x, θ) dx

+ θ2
∫ 1

0
p2t (0) dt. (2.12)

For the first term on the right-hand side of (2.12), we have

I1 :=
∫ 1

0
dt

∫∫
p2t (x, y)fT (x, θ)fT (y, θ) dx dy

=
∫ 1

0
dt

∫∫
p2t (T

−1/2(w − u))T (eθT −1/2f (w) − 1)(eθT −1/2f (u) − 1) dw du.

After simple calculation, we find that

|ex − 1| <

{
a|x|, 0 < x < log a, a > 1,

|x|, x ≤ 0.
(2.13)

For T > T0(θ, f ) := (θf )2(log 2)−2 we have

|θT −1/2f (x)| ≤ |θ | ‖f ‖T −1/2 < log 2.
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Then
T 1/2|(eθT −1/2f (w) − 1)| ≤ 2|θf (w)|.

By applying the dominated convergence theorem to I1, and recalling that 〈λ, f 〉 = 1, we find
that

I1 → θ2
∫ 1

0
p2t (0) dt < ∞.

Similarly, we obtain

I2 := 2θ

∫ 1

0
dt

∫
p2t (x, 0)fT (x, θ) dx → 2θ2

∫ 1

0
p2t (0) dt.

This completes the proof.

Proof of Lemma 2.2. For θ ≤ 0, by replacing f by −θT −1/2f (T 1/2·) in (1.2) and making
the change of variable V (t) ↔ −V (t), we obtain (2.11). For 0 < θ < θ0, define

V T (s, x, θ) =
∫

1

θ
fT (x − y, θ)U(s, y; θ) dy,

where U(·, ·; θ) is the solution to (2.9). By (2.1) and the Schwarz inequality, we have

V T (s, x, θ)

= Ps[fT (·, θ)](x) + a

∫ s

0
dr

∫
1

θ
fT (x − y, θ)Ps−r [U2(r, ·; θ)](y) dy

= Ps[fT (·, θ)](x) + a

θ

∫ s

0
dr

∫∫
fT (x − y, θ)ps−r (y, z)U2(r, z; θ) dy dz

= Ps[fT (·, θ)](x) + a

θ

∫ s

0
dr

∫∫
ps−r (w)fT (x − w − z, θ)U2(r, z; θ) dw dz

≥ Ps[fT (·, θ)](x) + a

θ

∫ s

0
dr

∫
ps−r (w) dw

(∫
fT (x − w − z, θ)U(r, z; θ) dz

)2

×
(∫

fT (x − w − z, θ) dz

)−1

≥ Ps[fT (·, θ)](x) + 1

θ2

∫ s

0
dr

∫
ps−r (w) dw

(∫
fT (x − w − z, θ)U(r, z; θ) dz

)2

= Ps[fT (·, θ)](x) +
∫ s

0
dr

∫
Ps−r [V 2

T (r, ·, θ)] dr.

In the fifth step, we have used (2.13), which yields(∫
fT (x − w − z, θ) dz

)−1

=
(

T

∫
(exp{θT −1/2f (T 1/2(x − w − z))} − 1) dz

)−1

≥
(

aθT 1/2
∫

f (T 1/2(x − w − z)) dz

)−1

= (aθ)−1

when T is sufficiently large.
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Thus, V T is a super solution of (2.11), i.e.

V T (s, x; θ) ≥ VT (s, x; θ)

for any (s, x) ∈ [0, 1] × R. By standard results on differential equations, we conclude that
(2.11) has a unique solution VT for θ ∈ (0, θ0).

In the following we discuss the limit of VT . By (2.11) and (2.1) we have, for 0 < ε < 1,

I (T ) :=
∫ ε

0
dt

∫
|VT (t, x; θ) − V (t, x; θ)|2 dx

≤ 2
∫ ε

0
dt

∫
(Pt [fT (x, θ)] − θpt (x))2 dx

+ 2
∫ ε

0
dt

∫ (∫ t

0
Pt−r [|V 2

T (r) − V 2(r)|](x) dr

)2

dx

=: 2I1(T ) + 2I2(T ), (2.14)

where

I1(T ) =
∫ ε

0
dt

∫
(Pt [fT (x, θ)] − θpt (x))2 dx → 0

according to Lemma 2.3. By the Schwarz inequality, in analogy with (2.7) we have

I2(T ) =
∫ ε

0
dt

∫ (∫ t

0
Pt−r [|V 2

T (r) − V 2(r)|](x) dr

)2

dx

=
∫ ε

0
dt

∫ t

0
ds

∫ t

0
dr

∫∫
p2t−s−r (x, y)|VT (r) − V (r)|2(x)

× |VT (s) + V (s)|2(y) dx dy

≤ (4π)−1/2
∫ ε

0
dt

∫ t

0
dr

∫
|VT (r, x) − V (r, x)|2 dx

×
∫ t

0
(2t − s − r)−1/2 ds

∫
(V 2

T (s, y) + V 2(s, y)) dy

≤ (4π)−1/2
∫ ε

0
dt

∫ t

0
(t − r)−1/2 dr

∫
|VT (r, x) − V (r, x)|2 dx

×
∫ t

0
ds

∫
(V

2
T (s, y) + V 2(s, y)) dy.

For any x ∈ R, using (2.13) we obtain

1

θ

∫
|fT (x − y, θ)| dy = 1

θ

∫
|fT (x − y, θ)| dx = 1

θ

∫
|fT (z, θ)| dz ≤ M(θ, f )
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for T > T0, where M(θ, f ) > 0 is a constant depending only on θ and f . Then, by the Schwarz
inequality, we have∫ 1

0

∫
V

2
T (s, x) dx ds

=
∫ 1

0
ds

∫ (
1

θ

∫
fT (x − y, θ)U(s, y; θ) dy

)2

dx

≤ 1

θ2

∫ 1

0
ds

∫
dx

(∫
|fT (x − y, θ)|U2(s, y; θ) dy

)(∫
|fT (x − y)| dy

)

≤ M(θ, f )

θ

∫ 1

0
ds

∫
U2(s, y; θ) dy

∫
|fT (x − y, θ)| dx

≤ M2(θ, f )

∫ 1

0
ds

∫
U2(s, y; θ) dy

< ∞.

By Lemma 2.1, we have ∫ 1

0
ds

∫
V 2(s, y; θ) dy < ∞.

By combining these results, for 0 < ε < 1 we find that

I2(T ) ≤ C

∫ ε

0
dt

∫ t

0
(t − r)−1/2 dr

∫
|VT (r, x) − V (r, x)|2 dx

≤ C

∫ ε

0
dr

∫ ε

r

(t − r)−1/2 dt

∫
|VT (r, x) − V (r, x)|2 dx

≤ C

∫ ε

0
2(ε − r)1/2 dr

∫
|VT (r, x) − V (r, x)|2 dx

≤ 2Cε1/2
∫ ε

0
dr

∫
|VT (r, x) − V (r, x)|2 dx

= 2Cε1/2I (T ),

where C > 0 is a constant. Recalling (2.14), we have

I (T ) ≤ 2I1(T ) + 4Cε1/2I (T ).

By choosing an ε > 0 such that 4Cε1/2 < 1, we see that

I (T ) ≤ 2(1 − 4Cε1/2)−1I1(T ) → 0

as T → ∞. Now consider dividing [0, 1] into intervals [0, ε], [ε, 2ε], . . . . By similar methods
we can prove that∫ 2ε

ε

dr

∫
(VT (r, x) − V (r, x))2 dx → 0, n = 0, 1, 2, . . . . (2.15)

In fact, for t ∈ [ε, 2ε] we have

VT (t, x; θ) = Pt−ε[VT (ε, ·; θ)](x) +
∫ t

ε

Pt−r [V 2
T (r, ·; θ)] dr,

V (t, x; θ) = Pt−ε[V (ε, ·; θ)](x) +
∫ t

ε

Pt−r [V 2(r, ·; θ)] dr.
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In analogy with (2.14), define

I ′(T ) =
∫ 2ε

ε

dt

∫
|VT (t, x; θ) − V (t, x; θ)|2 dx.

As T → ∞,

I ′
1(T ) :=

∫ 2ε

ε

dt

∫
(Pt−ε[VT (ε, ·; θ)](x) − Pt−ε[V (ε, ·; θ)](x))2 dx

≤
∫ 2ε

ε

dt

∫
(Pε[VT (t − ε, ·; θ)(x) − V (t − ε, ·; θ)](x))2 dx

=
∫ 2ε

ε

dt

∫
(VT (t − ε, ·; θ)(x) − V (t − ε, ·; θ)(x))2 dx

= I1(T )

→ 0.

The remainder of the proof of (2.15) is analogous to our previous discussions on I (T ). Clearly
there are no more than �1/ε� + 1 such intervals of the form [nε, (n + 1)ε], where �·� is the
least-integer function. Therefore we arrive at∫ 1

0
dr

∫
(VT (r, x) − V (r, x))2 dx → 0.

Now let us see the analyticity of VT (t, x; θ). For each T > 0, define {v(n)
T , n ∈ N}

recursively by

v
(0)
T (t, x; θ) = 0,

v
(n+1)
T (t, x; θ) = Pt [fT (·, θ)](x) +

∫ t

0
Pt−s[v(n)

T (s, ·; θ)]2(x) ds.
(2.16)

By induction, for each real number θ ∈ (0, θ0), we obtain 0 ≤ v
(n)
T (t, x; θ) ≤ V T (t, x; θ) for

all n, t , and x, and v
(n)
T is increasing in n. By applying the monotone convergence theorem to

(2.16), for each θ ∈ (0, θ0) we find that

v
(n)
T (t, x; θ) → VT (t, x; θ) as n → ∞.

Now allow θ to be a complex number. Again by induction, it is easy to see that, for n ∈ N ,
v

(n)
T (t, x; θ) is analytic in |θ | < θ0 and

sup
n

|v(n)
T (t, x; θ)| ≤ VT (t, x; |θ |), |θ | < θ0.

Thus, {v(n)
T (t, x; θ), n ∈ N} is a normal family of analytic functions on the disc |θ | < θ0,

and v
(n)
T (t, x; θ) → VT (t, x; θ) for θ in the real interval (0, θ0). Therefore, by Conway (1978,

p. 151, Theorem 2.1) and Vitali’s theorem (see Conway (1978, p. 154)), the sequence

{v(n)
T (t, x; θ), n ∈ N}

converges to an analytic function VT (t, x; θ) on the disc |θ | < θ0.
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Corollary 2.2. Suppose that �(θ) is defined by (1.4). As T → ∞, we have

�(θ) = θ +
∫ 1

0
ds

∫ s

0
〈λ, [V (r, ·; θ)]2〉 dr, (2.17)

and limθ↑θ0 �′(θ) = ∞.

Proof. For θ ≤ 0, by (1.3) and (1.1) we have

�(T , θ) = T −1/2 log E exp{〈NT , θT −1/2f 〉} = T −1/2
∫ T

0
dr

∫
ṽ(r, x; θT −1/2) dx,

where ṽ(·, ·; θT −1/2) is the solution to

∂ṽ(t)

∂t
= 	ṽ(t) + ṽ2(t), 0 < t ≤ 1, ṽ(0) = eθT −1/2f − 1.

By changing variables according to r = uT and x = T 1/2y, we obtain

�(T , θ) =
∫ 1

0
〈λ, VT (u, ·; θ)〉 du = 〈λ, fT (·, θ)〉 +

∫ 1

0
ds

∫ s

0
〈λ, [VT (r, ·; θ)]2〉 dr (2.18)

for θ ≤ 0, where fT is as given in Lemma 2.2 and VT (·, ·; θ) is the solution to (2.11). Now
allow θ to be a complex variable. For |θ | < θ0, the analyticity of fT (x, θ) and VT (t, x; θ)

implies that

�(T , θ) := 〈λ, fT (·, θ)〉 +
∫ 1

0
ds

∫ s

0
〈λ, [VT (r, ·; θ)]2〉 dr

is an analytic function on the disc |θ | < θ0. For a fixed f and T , denote the law of 〈NT ,

T −1/2f 〉 by µT . Then E exp{〈NT , θT −1/2f 〉} is the Laplace transform of the probability law
µT on [0, ∞). ByWidder (1941, p. 57, Theorem 5a), E exp{〈NT , θT −1/2f 〉} and, thus, �(T , θ)

are analytic in the half-plane {θ : θ = σ + iτ, σ < 0}. For each real number θ < 0, we then
have

�(T , θ) = �(T , θ).

Therefore, by the uniqueness of analytic extension, �(T , θ) can be uniquely extended to the
real line-segment [0, θ0), upon which it coincides with �(T , θ). Thus, (2.18) holds for the real
number θ, −∞ < θ < θ0. Let T → ∞. Then, noting the two formulae below (2.13), we have
〈λ, fT (·, θ)〉 → θ , and by applying Lemma 2.2 we recover (2.17). By (2.5), for θ ∈ (0, θ0) we
have

�(θ) = θ + θ4
∫ 1

0
ds

∫ s

0
dr

∫
w2(θ2r, θx; δ0) dx

= θ + θ−1
∫ θ2

0
ds

∫ s

0
dr

∫
w2(r, y; δ0) dy,
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and, so,

�′(θ) = 1 − θ−2
∫ θ2

0
ds

∫ s

0
dr

∫
w2(r, y; δ0) dy + 2

∫ θ2

0
dr

∫
w2(r, y; δ0) dy

≥ 1 − θ−2
∫ θ2

0
ds

∫ θ2

0
dr

∫
w2(r, y; δ0) dy + 2

∫ θ2

0
dr

∫
w2(r, y; δ0) dy

= 1 +
∫ θ2

0
dr

∫
w2(r, y; δ0) dy

= 1 + ‖V (·, ·; θ)‖2
L2([0,1]×R)

.

Thus, the second assertion follows from Lemma 2.1, and the proof is complete.

Proof of Theorem 1.1. This is immediate from Corollary 2.2 and the Gärtner–Ellis theorem
(see Dembo and Zeitouni (1998)).
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