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LOWER BOUNDS FOR TAU COEFFICIENTS AND

OPERATOR NORMS USING COMPOSITE MATRIX NORMS

CHOON PENG TAN

Lower bounds for the tau coefficients and operator norms are

derived by using composite matrix norms. For a special class of

matrices S, our bounds on |\B\| (the operator norm of B induced

by the i, norm) improve upon a general class of Maitre (1967)

bounds for p Z 2 .

1. Introduction

The tau coefficient of a nonnegative matrix A , denoted by i(A) 3

can be used as an upper bound on the maximum modulus of the subdominant

eigenvalues of A LSI. Explicit functional forms for the tau coefficients

in terms of the entries of A are available for the coefficients which

are defined with respect to the i, norms for p = 1 and °° , denoted

by iAA) and T f/U respectively. Rothblum and Tan [5] have shown

that for an n x n nonnegative matrix A , T, (A) and T (A) can be
1 co

3 2
computed by using 0(n ) and 0(n ) algorithms respectively. With

regard to the other tau coefficients, their functional forms are not
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known and hence they cannot be computed explicitly. The coefficient

Tp(A) i which is defined with respect to the Euclidean norm, can be

1/2evaluated as \' where \. is the maximal root of a polynomial

equation of degree n - 1 [6] . For the tau coefficients which cannot

be computed explicitly, it is desirable that bounds on them be available.

Computable upper bounds are available in [7, p.310] for the tau

coefficients which are defined with respect to the i norms for

1 S p < °> . By virtue of their definitions, lower bounds for the tau

coefficients and operator norms are readily available. However, our aim

is to study lower bounds of the type obtained by using composite matrix

norms. We shall show that in some cases, our bounds on the operator

norms improve upon some well-known bounds [2], [3].

2. Some Basic Definitions

We assume throughout the paper that A is an n * n nonnegative,

irreducible matrix with spectral radius p(A) = v • We denote the

positive right eigenvector of A corresponding to r , which is known

as the Perron vector, by w and w = (u>-) is unique up to a positive,

multiplicative scalar. Vector norms will be denoted by cj> and ty; \\-\\

will denote an i, norm for 1 < p < » , that is I |x| Ip r 'p

= (.£7 |x.|^j ^ for any vector x = (x.) .

DEFINITION 1. The tau coefficient of A with respect to a given

vector norm <j> is defined as;

T(A) = max {$(x'A) :x\u> = 0, $(x) = 1, x e. J?n}

where u is assumed to be known.

If $ is an Z norm for 1 < p < " , then we write x.(•) as
P <t>

k k
T (') . T (A ) where A is reducible is defined in a similar manner

where u> is the Perron vector of A . Definition 1 may also be extended

to any real matrix A and any real vector a) which is not necessarily
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the Perron vector of A . In th i s case, Tx(A) a s defined may not bound

the subdominant eigenvalues of A .

DEFINITION 2. The operator norm of a matrix B induced by the

vector norm <j> i s defined as :

I \B\ I = max {ii(Bx) :<b(x) = 1. x c € }

A vector norm I/I on <c is said to be absolute if Af(x) = <l>(\x\)

for any x e c , where Ixl denotes the vector (\x-\) . If x. < y-
X- Z- Is

for i = 2J2J . . . }rij then we write x S y . The vector norm ty i s said

to be monotonic if , whenever |x | S \y\ , then ty(x) S ii(y) for any two

vectors x and y . I t i s well known tha t a vector norm i s absolute i f

and only i f i t i s monotonic [ J ] .

A composite matrix norm i s derived from the composition of 2 vector

norms where one of them i s monotonic [ 4 ] . Specifically, we denote such a

norm by [ ] , . where

(11 ^-Bl, = ^[((ifS n)3 <\>(B p) j . . . , §(B ) ] 3

and B • denotes the j column of B for j = l,2i...,n and ty is
* 3

a monotonic norm. Note that [S] can be evaluated explicitly in terms

of the entries of B if the norms 4> and i> are defined explicitly in

terms of the components of any given vector. We use the notation [S]

and | \B\ I for tS] and ||S||, respectively, when <f> is an I

norm and ij/ is an I norm for 1 <> p < °° and 1 <, q < <».

3. Main Results

THEOREM 1.

^(A) = max {UVA) ' ] ^ / LV'l^.-V^ -frVe J?

where ty is any monotonic norm.
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Proof. Let V be any n * n real matrix such that Vu = Q . We

have

for i = lt2j . .. jit where (VA) • and V- denote the i rows of VA

and V respectively. Exploiting the fact that t|> is a monotonic norm,

i t follows that

UVAi'1. . < T.(A).LV'1. . .

We now show that equality in the above inequality holds for some particular

V . First, note that there exists a real vector x such that T,MJ

= §(x'A) where x'.w = 0 and §(x) = 1 . Let V be a matrix with

identical rows where the common row is x' . Hence,

where 1 = (131S . .. 31) and the proof is complete. Q

For particular matrices V , we have the following corollaries:

COROLLARY 1.

)~

[ B ' r , S I v ' - a j f 2 : ^ ' ] , . T . ( A ) < iv'.ul^l

where ^ is any real vector, B = (I - (%^ ^

W = (y'.tif)I - u v ' and ty is any monotonic norm.

COROLLARY 2 .

where B = LA -

and \\> is any monotonic norm.

COROLLARY 3 .

X - (a symmetric matrix)

2
where (/= | |»| | oi" - u u' and i|/ is any monotonic norm.
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Remarks.
( i ) F o r V = I - (%'•%)' % %' and B = VA , we h a v e T , (A) < \ \B'\ | ,

hence Corollary 1 follows. By letting y = jg , we obtain Corollary 2.
Corollary 3 follows from Corollary 2 by noting that T, (A) ^ |\A ' \ | , .

(iil In the proof of Theorem 1, we do not make use of the property that
^ is an eigenvector nor assume that A i s nonnegative. Hence Theorem 1

and Corollaries 1 - 3 are true for any real matrix A and any real vector

u by defining an appropriate T A ^ J • If the norms <ji and i|i are

defined explicitly in terms of the components of any given vector, then
the lower bounds for T.G4J , | | 5 ' | | and | | i 4 ' | | given in Corollaries

1-3 are computable since we can choose any 2 known vectors u and y (in

the case of x,(A) , there is only freedom of choice in v ) .
$ %

If A is an n x n stochastic matrix, we may choose w = 1 =

(lj 1, ..., 1 ) and hence by Corollary 2, a lower bound for tv(A) is

given by:

(2) n
1-1 /q 1

JA)

7 /n
where 2 < p < ° ° and 1 S q <, » s i n c e LWl = i(n-l)+(n-l)Pl

and l l j f i l l 2 = " •

Theorem 3.3 in [5] states that for an irreducible and aperiodic

matrix A ,

k /

lim T,(A ) = max{|X| ; X is an eigenvalue of A and

k-*=o '

(3) X fi p(A) } .

As an application of Theorem 1 (in particular. Corollary 2), we show that

this theorem can be proved in an alternative way. Let

B = A - jgOgM/l liel \\) and i t follows that / = / - %(%'Ak/\ |^)| \\) for

k = 1, 2, 3, . . . . By Corollary 2,
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for k =1, 2, 3, ... where V = | |j()| | _J -(£({)' . It is well known

that for any two given matrix norms | | • | | , and [ ] . , there exists
<t> <f IT

a constant c(<t>,il>) > 0 which depends only on <j> and iji such tha t

(s) c(^)\\(Bk)<\\^ <

(see for example [J, p. 199]). From (4) and (5), we obtain

(6) cC^)\h\\22\\(B
k)'\\^1A< y / ; * \\(Bk)'\\^

for k = 1, 2, 3, ... . Let t ing k •*• °° , we have

1/k
lim T.(Ak) = lim | \(Bk)'\ \.1/k = p(B') = p (B)
k~» * k+~ •

and hence (3) is proved.

Merikoski [3] has shown that for any n x n (real or complex)

matrix B ,

(7) lB^iq^n
1/^\\B\\2

where 1 <, q <, °° and the bound is attainable for some particular B .

A more general form of the inequality (7) is given in [2, eqn. 10]:

<8> C B V * * C J ]MI | B | 1*
where (j) and ^ (monotonic) are any two vector norms. If § and ty are

H and X. norms respectively, then (8) reduces to:

(9) £ B ] p w ,

where 1 S p < <*> and 1 < q < "• . We proceed to show that our bounds
o n I 1̂ 1 |_ improve upon the Merikoski bound (7) and in general, the bounds

given in (9) when B is confined to a special class of matrices and

p £ 2 .

THEOREM 2. Let B be any n x n matrix of the form

(I-% ^>'/| |̂ >| \2) wher

2 < p < oo and 1 ̂  q < °> ,

B = F(I-% ^>'/| |̂ >| \2) where F and >̂ = (\>^) are real. Then for
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where W = l l ^ l l o - ^ - ^ J ^ ' •

55

Proof. The left inequality follows from Corollary 2 and hence i t

suffices to show the right inequality, namely

for p > 2 .

Note that the i column £. of the symmetric matrix W i s given by

and therefore,

for •£ = 1,2,. .. ,n . It is well known that the i norm of a given

vector is a monotonic non-increasing function of p [4] and thus

I I ̂  lip * I 1^1 I 2 for p > 2 . We have

and hence ||C«|| ^ I 1

exists a k such that

f o r Since 0 * there

(9 and for this k, \ | Cfe| I ^ |

Using the fact that the I norm is monotonic, it follows that

Example. We consider the matrix J4 in Example 6.1 of [5] :

A =

0 1 0

2 5 4

0 3 0 J

Let ^ = jjj = Ci, 7, 3J , the Perron vector of

eigenvalue 7 . Consider

corresponding to the
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which can be evaluated as:

-1B = S9

The matrix V = ||w||QJ-u)(o' is given by:

-14

14

-28

20

-20

40

-42

42

-84

58

-7

-3

-7

10

-21

-3

-21

50
w =

Thus,

(10) | | co |

and the values of these bounds on ||B|| are compared with those given

by C9) for p = 1,2, °> and q = 1,2, °> in the following table.

Values of the bounds ||ji>|L[B] /LWl and n~

for p = 132, <*> and q = 1,2, °° in the given Example

{3'\
P

(in brackets)

p V

1

2

OO

1

1.6889

tl.7175)

1.3578

(1.0518)

1.1783

CO. 85881

2

1.8085

(1.9016!

1.4262

(1.1645)

1.2236

(.0.95081

00

2.2703

(2.8475)

1.7587

(1.7437)

1.4482

(1.4237)

We observe from the table that the bounds given by Q0) are better than

those given by (.91 for p = 2, ~ and q = 1,2, » . The actual values of

| \B\ I are 2.8475, 2.0169 and 2.5763 for p = 1,2, °° respectively.
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